RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 6

In the following exercises we consider $G=(V, E)$ an infinite, locally finite, connected, and transitive graph of degree $d>0$ with fixed origin $o \in V$. Let $p_{n}(o):=\mathbb{P}_{o}\left[X_{n}=o\right]$ be the return probability of the simple random walk $\left(X_{n}\right)$ on G started at o.
(\star) Exercise 1. Let $\rho(G)$ be the spectral radius of G.
(i) Prove that

$$
\rho(G)=\lim _{n \rightarrow \infty} p_{2 n}(o)^{\frac{1}{2 n}}
$$

and if G is not bipartite

$$
\rho(G)=\lim _{n \rightarrow \infty} p_{n}(o)^{\frac{1}{n}}
$$

(ii) Prove that $\frac{1}{d} \leq \rho(G) \leq 1$.
(*) Exercise 2. Let P be the transition operator associated to the simple random walk on G and let $I: \mathcal{C} \rightarrow \mathcal{C}$ be the identity operator.
(i) Show that $Q:=\frac{1}{2}(P+I)$ is the transition operator associated to the lazy random walk on G.
(ii) Calculate the spectral radius of the lazy random walk on G in terms of $\rho(G)$.

Definition. Let us consider the set of oriented edges $\vec{E}:=\{(x, y):\{x, y\} \in E\}$. For every $\theta, \psi: \vec{E} \rightarrow \mathbb{R}$ with finite support we define

$$
\langle\theta, \psi\rangle_{\vec{E}}:=\frac{1}{2} \sum_{e \in \vec{E}} \theta(e) \psi(e) \text { and }\|\theta\|:=\sqrt{\langle\theta, \theta\rangle_{\vec{E}}} .
$$

For every $f: V \rightarrow \mathbb{R}$, we define $\nabla f: \vec{E} \rightarrow \mathbb{R}$ by

$$
\forall(x, y) \in \vec{E},(\nabla f)((x, y)):=f(y)-f(x) .
$$

(\star) Exercise 3. Let P be the transition operator associated to the simple random walk on G and let $I: \mathcal{C} \rightarrow \mathcal{C}$ be the identity operator. Show that for every $f, g \in \mathcal{C}$

$$
\langle(I-P) f, g\rangle=\frac{1}{d}\langle\nabla f, \nabla g\rangle_{\vec{E}}
$$

(\star) Exercise 4. Let $\rho(G)$ be the spectral radius of G. Show that

$$
\rho(G)=1-\frac{1}{d}\left(\inf _{f \in \mathcal{C} \backslash\{0\}} \frac{\|\nabla f\|}{\|f\|}\right)^{2} .
$$

