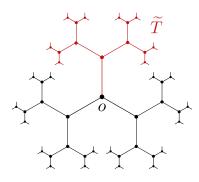
RANDOM WALKS ON TRANSITIVE GRAPHS (D-MATH) EXERCISE SHEET 8

In the following exercises we consider G = (V, E) an infinite, locally finite, connected, and transitive graph with fixed origin $o \in V$. Let (X_n) be the lazy random walk on G.

(*) Exercise 1. Consider $G = \mathbb{T}_3$ the 3-regular tree, and \widetilde{T} a branch of this tree, as in the figure below. Prove that

 $h(x) := \mathbb{P}_x[(X_n) \text{ exits in } \widetilde{T}], \text{ for each } x \in V,$

is harmonic and compute h(x).



(*) Exercise 2. Let $D \subset V$ finite and connected. Let $T := \inf\{n : X_n \in D\}$. Show that $\forall x \in D, \ \mathbb{P}_x[T < \infty] = 1.$

(*) Exercise 3. Let $x \in V$. Show that there exist (W_n) , (\widetilde{W}_n) two lazy random walks starting from x such that

$$\mathbb{P}[\exists n_0: \forall n \ge n_0, \ W_{n+1} = \widetilde{W_n}] = 1.$$

(*) Exercise 4. Let \mathcal{T} be the tail σ -algebra of (X_n) . We define

 $L^{\infty}(\mathcal{T}) := \{Z : \Omega \to \mathbb{R} : Z \text{ is } \mathcal{T}\text{-measurable, and } \exists C > 0, \mathbb{P}_o[|Z| \le C] = 1\}.$ Let $Z \in L^{\infty}(\mathcal{T})$. Show that $\forall x \in V, \ \forall n \ge d(o, x),$

$$\mathbb{E}_o[Z \mid X_n = x] = \mathbb{E}_o[Z \mid X_{n+1} = x].$$