Dr. A. Caspar
Dr. A. Dagbovie

Self Assessment

Please note that this self assessment is NOT graded!
We recommend that you solve it under open-book exam conditions and limit your time to $70-80$ minutes. Note for some exercises more than one answer is correct! Please submit your solutions by the 12 th of January at noon.

1. Consider the matrix $E=\left(\begin{array}{ccc}0 & -1 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ for a constant $b \in \mathbb{R}$. Let $F=\left(\begin{array}{ccc}0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ be a second matrix. Then the product $E F$ is given by ...
(a) $\left(\begin{array}{ccc}-b & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(b) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1\end{array}\right)$.
(c) $\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -b & 0 \\ 0 & 0 & 1\end{array}\right)$.
(d) $\left(\begin{array}{lll}b & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
2. Consider again the matrices $E=\left(\begin{array}{ccc}0 & -1 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $F=\left(\begin{array}{ccc}0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. If $b>0$ then \ldots
(a) the eigenvalues of the product $E F$ are negative numbers.
(b) the sum of the eigenvalues of the product $E F$ is a negative number.
(c) the product of the eigenvalues of the product $E F$ is a negative number.
(d) None of the above.
3. The matrix $A=\left(\begin{array}{cc}5 & 1 \\ -4 & 1\end{array}\right)$ has eigenvalues $\alpha_{1}=3$ and $\alpha_{2}=\ldots$
(a) $\alpha_{2}=1$.
(b) $\alpha_{2}=2$.
(c) $\alpha_{2}=3$.
(d) $\alpha_{2}=4$.
4. Which of the following vectors is an eigenvector of $\left(\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right)$?
(a) $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(b) $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
(c) $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
(d) None of the above.
5. Let $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ -3 & -1 & 2 \\ 1 & 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{ccc}x_{1} & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & x_{2}\end{array}\right)$. Which x_{1}, x_{2} yield $B=A^{-1}$?
(a) $\quad x_{1}=1$ and $x_{2}=-1$
(b) $\quad x_{1}=-1$ and $x_{2}=1$
(c) $x_{1}=x_{2}=1$
(d) $x_{1}=x_{2}=-1$
6. The inverse of $A=\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right) \ldots$
(a) exists only if $\varphi=0, \pi$.
(b) is given by $A^{-1}=\frac{1}{\cos ^{2} \varphi-\sin ^{2} \varphi}\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)$.
(c) is given by $A^{-1}=\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)$.
(d) is given by $A^{-1}=\left(\begin{array}{cc}\sin \varphi & -\cos \varphi \\ \cos \varphi & \sin \varphi\end{array}\right)$.
7. Let $A=\left(\begin{array}{ccc}0 & -4 & -3 \\ 2 & 2 & 2 \\ 1 & 4 & 4\end{array}\right)$. The vector $v=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ is an eigenvector of the inverse matrix A^{-1} with eigenvalue λ. Find the value of λ.
(a) $\quad \lambda=\frac{1}{2}$
(b) $\lambda=2$
(c) $\quad \lambda=\frac{1}{3}$
(d) $\lambda=3$
8. Which x yields $\operatorname{det}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right)=1$?
(a) $x=0$
(b) $x=1$
(c) $x=2$
(d) $x=4$
9. Let $B=\left(\begin{array}{cc}\cos (\varphi) & -\sin (\varphi) \\ \sin (\varphi) & \cos (\varphi)\end{array}\right)$ and $v=\binom{a}{a}$ with $a>0$. Which φ with $0 \leq \varphi<2 \pi$ matches the following figure?

(a) $\varphi=\frac{\pi}{4}$
(b) $\varphi=\frac{3 \pi}{4}$
(c) $\varphi=\frac{5 \pi}{4}$
(d) $\varphi=\frac{7 \pi}{4}$
10. Which of the following sets is a subspace of the vector space of (2×2) - matrices $M_{2 \times 2}$ with the usual addition and scalar multiplication?
(a) The set of all invertible (2×2) - matrices.
(b) $U=\left\{\left(\begin{array}{cc}a & 0 \\ a^{2} & a\end{array}\right) ; a \in \mathbb{R}\right\}$
(c) $U=\left\{A \in M_{2 \times 2}: A^{\top}=-A\right\}$
(d) None of the above.
11. The imaginary part of $z=\frac{8}{i+1}$ is given by \ldots
(a) $\Im(z)=-8$.
(b) $\Im(z)=-4$.
(c) $\Im(z)=4$.
(d) $\Im(z)=8$.
12. Let z_{0} and A, B, C, D be points representing complex numbers as indicated below

Which point represents $\frac{1}{z_{0}}$?
(a) A
(b) B
(c) C
(d) D
13. Let $\left(\begin{array}{ccc}2 & 0 & 4 \\ 0 & 1 & 0 \\ -1 & 0 & b\end{array}\right) \cdot x=0$. For which b does this equation have a solution $x \neq 0$?
(a) $b=-2$
(b) $b=-1$
(c) $b=0$
(d) $b=1$
14. The above matrix is involved in the following equation $\left(\begin{array}{ccc}2 & 0 & 4 \\ 0 & 1 & 0 \\ -1 & 0 & b\end{array}\right) \cdot\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ z\end{array}\right)$. There exist b and z such that $\left(\begin{array}{l}0 \\ 1 \\ \frac{1}{4}\end{array}\right)$ and $\left(\begin{array}{l}\frac{1}{2} \\ 1 \\ 0\end{array}\right)$ are both solutions. Find the value of z.
(a) $z=-2$
(b) $z=-\frac{1}{2}$
(c) $z=\frac{1}{2}$
(d) $z=1$
15. Consider the following matrix in row reduced echelon form:

$$
\left[\begin{array}{ccc|c}
2 & -1 & 3 & 4 \\
0 & \alpha+1 & 0 & \beta^{2}-1 \\
0 & 0 & \alpha-2 & \beta+1
\end{array}\right]
$$

For which choice of α and β does this system have a unique solution?
(a) $\alpha=2$ and any β
(b) $\alpha=2$ and $\beta=-1$
(c) $\alpha \neq 2$ and any β
(d) None of the above.
16. Which of the following ODEs are linear?
(a) $\left(y^{\prime}-2\right)^{2}=y$
(b) $\frac{y^{\prime}}{1-x^{2}}+\frac{y}{1+x}=\frac{1}{x^{2}}$
(c) $y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}$
(d) None of the above.
17. Consider the following slope field.

Which of the following ODEs fits?
(a) $\quad y^{\prime}(x)=\frac{1}{2} \cdot y(x)+1$
(b) $\quad y^{\prime}(x)=2 y(x)+1$
(c) $y^{\prime}(x)=-\frac{1}{2} \cdot y(x)+1$
(d) None of the above.
18. Which general solution matches the above slope field?
(a) $y(x)=C \cdot e^{\frac{1}{2} x}+1$
(b) $y(x)=C \cdot e^{-\frac{1}{2} x}-2$
(c) $y(x)=C \cdot e^{\frac{1}{2} x}+2$
(d) $y(x)=C \cdot e^{-\frac{1}{2} x}+2$
19. Which of the $y(x)$ defines the general solution of $y^{\prime \prime}-\omega^{2} y=0$ (with $\omega \neq 0$ constant)?
(a) $y(x)=C_{1} e^{\omega x}+C_{2} \cdot x \cdot e^{-\omega x}$
(b) $y(x)=C_{1} e^{\omega x}+C_{2} e^{-\omega x}$
(c) $y(x)=C_{1} e^{\omega^{2} x}+C_{2} e^{-\omega^{2} x}$
(d) None of the above.
20. What is the extension of MATLAB script files?
(a) .mat
(b) .m
(c) .script
(d) There are no script files in MATLAB.
21. The if else if statement is used for:
(a) one statement
(b) two variables
(c) multiple statements
(d) none of the above.
22. The MATLAB expression rand generates a real number in the open interval $(0,1)$. Which of the following would generate a random number in the open interval $(3,5)$?
(a) rand*2+3
(b) rand*3+5
(c) rand* $[3,5]$
23. Which statement returns the roots for the polynomial $x^{2}-x+3$?
(a) $\operatorname{poly}\left(\left[\begin{array}{lll}1 & -1 & 3\end{array}\right]\right)$
(b) solve ($\left.x^{\wedge} 2-x+3==0\right)$
(c) polyfit ($\left.x^{\wedge} 2-x+3==0\right)$
(d) $\operatorname{roots}\left(\left[\begin{array}{lll}1 & -1 & 3\end{array}\right]\right)$
24. How many times will the following loop run?
for $i=1: 10$
if (i < 4) break
end
end
(a) It will result in an error.
(b) 0 times
(c) 4 times
(d) 10 times

