Bonusaufgabe 9

Aufgabe 9.1

Betrachten Sie die Matrix $A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & -2 & -1 \end{pmatrix}$.

- (a) Nehmen Sie an, dass ein Vektor $x \in \mathbb{R}^3$ existiert, welcher das lineare Gleichungssystem $Ax = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ löst. Kann man daraus folgern, dass λx ebenfalls eine Lösung des linearen Gleichungssystems ist, also dass $A(\lambda x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ für $\lambda \in \mathbb{R}$? Begründen Sie Ihre Antwort.
- (b) Nehmen Sie an, dass Vektoren $w \in \mathbb{R}^3$ und $u \in \mathbb{R}^3$ existieren, welche die linearen Gleichungssysteme $Aw = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ respektive $Au = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ lösen. Kann man daraus folgern, dass w+u ebenfalls eine Lösung des linearen Gleichungssystems ist, also dass $A(w+u) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$? Begründen Sie Ihre Antwort.
- (c) Betrachten Sie die Lösungsmenge $K_1 = \left\{ v \in \mathbb{R}^3 \mid Av = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$. Welche Eigenschaften hat diese Menge? Beantworten Sie ausserdem die folgenden Fragen zur Menge K_1 .
 - i. Liegt der Vektor $s = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ in K_1 ? Begründen Sie.
 - ii. Liegt der Vektor $t = \begin{pmatrix} 8 \\ 9 \\ -2 \end{pmatrix}$ in K_1 ? Begründen Sie.
 - iii. Können Sie einen anderen Vektor finden, welcher in K_1 liegt? Falls ja, geben Sie ein konkretes Beispiel und begründen Sie Ihre Antwort.
- (d) Betrachten Sie nun die Abbildung

$$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
$$x \longmapsto Ax.$$

Betrachten Sie zusätzlich die Menge $K_2 = \left\{ x \in \mathbb{R}^3 \mid F(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$. Vergleichen und kontrastieren Sie die Mengen K_1 und K_2 . Was beobachten Sie? Begründen Sie Ihre Antwort.

Aufgabe 9.2

Betrachten Sie wiederum die Matrix $A = \begin{pmatrix} 1 & 0 & 4 \\ 2 & -2 & -1 \end{pmatrix}$.

- (a) Nehmen Sie an, dass ein Vektor $v \in \mathbb{R}^3$ existiert, welcher das lineare Gleichungssystem Av = w löst. Kann man daraus folgern, dass ein Vektor $u \in \mathbb{R}^3$ existiert, welcher für ein $\lambda \in \mathbb{R}$ das lineare Gleichungssystem $Au = \lambda w$ löst? Begründen Sie Ihre Antwort.
- (b) Nehmen Sie an, dass Vektoren $v_1 \in \mathbb{R}^3$ und $v_2 \in \mathbb{R}^3$ existieren, welche die linearen Gleichungssysteme $Av_1 = w_1$ respektive $Av_2 = w_2$ lösen. Kann man daraus folgern, dass ein Vektor $x \in \mathbb{R}^3$ existiert, welcher das lineare Gleichungssystem $Ax = w_1 + w_2$ löst? Begründen Sie Ihre Antwort.
- (c) Betrachten Sie die Menge $I_1 = \{ w \in \mathbb{R}^2 \mid \exists \ v \in \mathbb{R}^3 : Av = w \}$. Welche Eigenschaften hat diese Menge? Beantworten Sie ausserdem die folgenden Fragen zur Menge I_1 .
 - i. Liegt der Vektor $s = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in I_1 ? Begründen Sie.
 - ii. Liegt der Vektor $t = \begin{pmatrix} 5 \\ -4 \end{pmatrix}$ in I_1 ? Begründen Sie.
 - iii. Können Sie einen anderen Vektor finden, welcher in I_1 liegt? Falls ja, geben Sie ein konkretes Beispiel und begründen Sie Ihre Antwort.
- (d) Die Vektoren $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, und $v_3 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$ bilden eine Basis des Vektorraums \mathbb{R}^3 .

Bilden die Vektoren Av_1 , Av_2 und Av_3 auch eine Basis des \mathbb{R}^2 ? Bilden die Vektoren Av_1 , Av_2 und Av_3 eine Basis von I_1 ? Begründen Sie Ihre Antwort.

(e) Betrachten Sie wiederum die Abbildung

$$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
$$x \longmapsto Ax.$$

Betrachten Sie zusätzlich die Menge $I_2 = \{w \in \mathbb{R}^2 \mid \exists \ x \in \mathbb{R}^3 : \ F(x) = \ w\}$. Vergleichen und kontrastieren Sie die Mengen I_1 und I_2 . Was beobachten Sie? Begründen Sie Ihre Antwort.

Aufgabe 9.3

Betrachten Sie die Matrix $B = \begin{pmatrix} 3 & 3 \\ -6 & -6 \\ -1 & 0 \end{pmatrix}$ sowie die Mengen

$$K = \left\{ v \in \mathbb{R}^2 \mid Bv = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} \quad \text{und} \quad I = \left\{ w \in \mathbb{R}^3 \mid \exists \ v \in \mathbb{R}^2 : Bv = w \right\}.$$

- (a) Liegt der Vektor $s = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ in K? Begründen Sie.
- (b) Liegt der Vektor $s = \begin{pmatrix} 3 \\ -6 \\ -1 \end{pmatrix}$ in I? Begründen Sie.
- (c) Die Vektoren $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ bilden eine Basis des Vektorraums \mathbb{R}^2 . Bilden die Vektoren Bv_1 und Bv_2 eine Basis von I? Begründen Sie Ihre Antwort.

Aufgabe 9.4

- (a) Betrachten Sie eine Matrix $G \in \mathbb{R}^{2x3}$. Ist es möglich, dass die Menge $K = \left\{ v \in \mathbb{R}^3 \mid Gv = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ den Vektor $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ als einziges Element enthält? Begründen Sie Ihre Antwort.
- (b) Betrachten Sie eine Matrix $G \in \mathbb{R}^{2x3}$. Ist es möglich, dass die Menge $I = \{w \in \mathbb{R}^2 \mid \exists \ v \in \mathbb{R}^3 : \ Gv = w\}$ alle Vektoren des \mathbb{R}^2 enthält? Begründen Sie Ihre Antwort.
- (c) Betrachten Sie eine Matrix $H \in \mathbb{R}^{3x^2}$. Ist es möglich, dass die Menge $K = \left\{ v \in \mathbb{R}^2 \mid Hv = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$ den Vektor $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ als einziges Element enthält? Begründen Sie Ihre Antwort.
- (d) Betrachten Sie eine Matrix $H \in \mathbb{R}^{3x^2}$. Ist es möglich, dass die Menge $I = \{w \in \mathbb{R}^3 \mid \exists \ v \in \mathbb{R}^2 : \ Hv = w\}$ alle Vektoren des \mathbb{R}^3 enthält? Begründen Sie Ihre Antwort.