Nur die Aufgaben mit einem ⋆ werden korrigiert.

- 5.1. MC Fragen: Konvergente Reihen. Wählen Sie die richtige Antwort.
- (a) Sei $\sum_{n=0}^{+\infty} x_n$ eine konvergente Reihe. Welche der folgenden Aussagen ist falsch?
 - \bigcirc Die Folge $(x_{n+1}-x_n)$ konvergiert gegen 0.
 - O Die Reihe ist genau dann absolut konvergent, falls

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m \ge n \ge N, |x_m - x_n| < \varepsilon.$$

 \bigcirc Es gibt $C \geq 0$, sodass

$$|x_n + \dots + x_{2n}| \le C, \quad \forall n \ge 0.$$

- (b) Sei (x_n) eine reelle Folge, sodass $x_n \leq \frac{1}{n^2}$ für alle $n \geq 1$.
- \bigcirc Die Reihe $\sum_{n=1}^{+\infty} x_n$ ist konvergent, aber nicht unbedingt absolut konvergent.
- \bigcirc Die Reihe $\sum_{n=1}^{+\infty} x_n$ ist absolut konvergent.
- \bigcirc Die Reihe $\sum_{n=1}^{+\infty} y_n$ ist absolut konvergent, falls $|y_n| \leq x_n$ für alle $n \in \mathbb{N}$ ist.
- (c) Seien (x_n) eine komplexe Folge und $C \ge 0$, sodass $2^n |x_n| \le C$ für alle $n \ge 10$.
 - \bigcirc Der Konvergenzradius der Reihe $\sum_{n=0}^{+\infty} x_n$ ist höchstens 2.
 - \bigcirc Die Reihe $\sum_{n=0}^{+\infty}$ ist konvergent, aber nicht unbedingt absolut konvergent.
 - \bigcirc Die Reihe $\sum_{n=0}^{+\infty} \left(\frac{3}{2}\right)^n x_n$ ist absolut konvergent.
- **5.2.** Konvergenzkriterium Untersuchen Sie folgende Reihen auf Konvergenz und absolute Konvergenz.

$$\sum_{n=0}^{+\infty} n(-1)^{n+1}, \quad \sum_{n=0}^{+\infty} \frac{n^3 + 1}{n^5 + 3n^4 + 3n^3 + 2n^2 + 1}$$
$$\sum_{n=0}^{+\infty} \frac{(n!)^2}{2^{n^2}}, \quad \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}.$$

- **5.3.** * Komplexe Reihe Sei (x_n) eine komplexe Folge, sodass $\sum_{n=0}^{+\infty} x_n$ konvergent ist.
- (a) Zeigen Sie, dass $N_0 \in \mathbb{N}$ existiert so, dass $|x_n^2| \leq |x_n|$ für alle $n \geq N_0$ ist.

March 22, 2023

- (b) Folgern, dass $\sum_{n=0}^{+\infty} x_n^2$ absolut konvergent ist, falls $\sum_{n=0}^{+\infty} x_n$ absolut konvergent ist.
- (c) Zeigen Sie, dass, wenn $\sum_{n=0}^{+\infty} x_n$ nicht absolut konvergent ist, es sein kann, dass $\sum_{n=0}^{+\infty} x_n^2$ divergiert.
- 5.4. Konvergenzradius Zeigen Sie, dass der Konvergenzradius der Reihe

$$\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!} z^n$$

gleich 4 ist. (Hinweis: Benutzen Sie das Quotientenkriterium.)

5.5. * Wurzelkriterium Für jede reelle Zahl $x \ge 0$ und ganze Zahl $n \ge 1$ existiert eine einzige Zahl y, sodass $y^n = x$ ist. Wir bezeichnen $y = \sqrt[n]{x}$.

Sei (x_n) eine komplexe Folge, sodass die Folge $\left(\sqrt[n]{|x_n|}\right)$ gegen $\ell \in \mathbb{R}$ konvergent ist.

- (a) Zeigen Sie, dass die Reihe $\sum_{n=0}^{+\infty} x_n$ absolut konvergent ist, falls $\ell < 1$ ist.
- (b) Zeigen Sie, dass die Reihe $\sum_{n=0}^{+\infty} x_n$ divergent ist, falls $\ell > 1$ ist.