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CHAPTER 1

Preliminaries: logic, numbers, sets, maps

1.1. Logic

1.1.1. Introduction. Mathematics depends on being able to make very precise and
unambiguous statements. Experience shows that human languages often do not suffice for
this purpose; sentences expressed in German or English often allow different interpreta-
tions. For instance, the word “or” is sometimes meant to describe exclusive possibilities,
and sometimes allows the possibility that both are true.

Example 1.1.1. What does the sentence “Tomorrow, it will rain” mean?

• Tomorrow, it will rain all day.
• Tomorrow, it will rain at some point.

In this script, we will nevertheless mostly express mathematical results in ordinary
language. However, when needed, we will be able to use the notation of formal logic that
we now introduce. These are also relevant in other areas of science, including in computer
science, in handling binary data and binary logic.

We consider mathematical statements A, possibly depending on one or more “vari-
ables”, in which case we will use notation like A(x). These statements are required to
have an unambiguous “truth value”: for any given value of the variables, they are either
True or False (but may be True for certain values, and False for others).

Example 1.1.2. The assertion

E(n) : “n is an even natural number”

is of this type. So is

S(n) : “n is the square of a natural number”

1.1.2. Logical operations. A number of operations and notation allow us to con-
struct more and more sophisticated mathematical assertions starting from very simple
ones.

• (Logical negation): if A is a mathematical assertion, then

¬A
is the mathematical assertion which is True if A is False, and False if A is True.
It is read “not A”.

For instance, with notation as in Example 1.1.2, the following are True:

¬E(3), ¬S(7),

and the following are False:

¬E(4), ¬S(9).

• (Logical “or”): if A and B are assertions then

A ∨ B
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is the mathematical assertion which is True if either A is true, or B is true, or
both. It is read “A or B”.

For instance, with notation as in Example 1.1.2, the following are True:

E(2) ∨ S(2), E(9) ∨ S(4), E(16) ∨ S(9)

and the following is False:

E(3) ∨ S(3).

• (Logical “and”): if A and B are assertions then

A ∧ B

is the mathematical assertion which is True if both A is true and B is true. It is
read “A and B”.

For instance, with notation as in Example 1.1.2, the following is True:

E(6) ∧ S(25).

and the following are False:

E(2) ∧ S(2), E(9) ∧ S(4), E(7) ∧ S(8).

• (universal quantifier; “forall”): if A(x) is an assertion depending on a variable x,
then

∀x, A(x)

is the mathematical assertion which is True if A(x) is True for all possible choices
of x. It is read “for all x, A(x).”

For instance, with notation as in Example 1.1.2, the assertion

∀x, E(x)

is False.

• (existential quantifier; “there exists”)): if A(x) is an assertion depending on a
variable x, then

∃x, A(x)

is the mathematical assertion which is True if there is at least one choice of x
such that A(x) is True; it does not imply that this value is unique. It is read
“for all x, A(x).”

For instance, with notation as in Example 1.1.2, the assertion

∃x, E(x)

is True.

• (Logical “implication”): if A and B are assertions then

A→ B

is the mathematical assertion which is True if A implies B. It is read “A implies
B”.

For instance, with notation as in Example 1.1.2, the following is True:

E(x)→ E(x+ 2),

and the following is False:

E(x)→ S(x).
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Combining assertions (with proper use of parentheses to make it clear in which order
they are considered) with this constructions leads easily to many mathematical statements
that can express complicated properties.

Example 1.1.3. (1) Since the construction of ∀x, A(x) places no restriction on what
x is (any mathematical object would do, whether a number, a circle, a disc, a pyramid, a
function, etc), it may seem that only very few such statements have a chance to be true.

However, once can use subsidiary assertions and implication to, in effect, “restrict”
the variable.

For instance, consider in addition to Example 1.1.2 the assertion

N(n) : “n is a natural number”.

Then the assertion
∀n, (N(n)→ E(2n))

is True: indeed, once we know that n is a natural number (i.e., that N(n) is True), then
it follows that 2n is an even natural number (so that E(n) is also true).

(2) The logical or A ∨ B holds if either of the assertions A or B is True. We can
combine this with another assertion to express the “exclusive” or, which is true if one
and only one of the two is True.

One possibility for this purpose is

(A ∨ B) ∧ (¬(A ∧ B)).

Indeed, since this is an “and” of two parts, it s True if and only if both sides are True.
The first part A ∨ B is true if either A or B is True. But the second part ¬(A ∧ B) is a
negation, so it is True if and only if A ∧ B is False, which means that it is not the case
that both A and B are True. So one, and only one, of the two is True.

(3) Similarly, we can express as follows the variant of the existential quantifier ∃x, A(x)
that claims that there is a unique x such that A(x) is True:

(∃x, A(x)) ∧ (∀y∀z, (A(y) ∧ A(z)→ (y = z))).

Indeed, this is an “and” statement, so it holds when both sides are True. The first
part ∃x, A(x) tells us that there exists some x for which A(x) is True. The second
expresses that there is no more than one, by requiring that whenever A(y) and A(z) are
both true (logical “and”), it follows that y = z. So all possible y such that A(y) is True
are equal.

1.1.3. Negation rules. We conclude this section with an explanation of the rules
for expressing the negation ¬A of a mathematical statement expressed using the notation
above. This is important when applying the method of proof by contraposition: to prove
that a statement A implies B, it is equivalent to prove that the negation of B implies the
negation of A.

We express the rules in a table which we will then explain.

Rule Negation
¬A A

A ∨ B (¬A) ∧ (¬B)
A ∧ B (¬A) ∨ (¬B)
∀x, A(x) ∃x, ¬A(x)
∃x, A(x) ∀x, ¬A(x)
A→ B A ∧ (¬B)

3



We can easily check these by checking when any of the left-hand column statement is
False, which is when the negation is True:

• (Negation) To say that ¬A is not True, means that A is true.
• (Or) If it is not the case that either A or B is True, then this means that A is

False and B is False, and conversely.
• (And) If it is not the case that A and B are True, then this means that either A

is False or B is False.
• (For all) If it is not true that A(x) is True for all x, that means that for some x,

the statement A(x) is False.
• (There exists) If it is not true that there exists x for which A(x) is True, that

means that the negation of A(x) is True for all x.
• (Implication) This is the only challenging interpretation, since it doesn’t imme-

diately intuitively capture the idea of a “causal” relationship that we feel should
be there when we say that A implies B. However, one can argue that, in order
to say that it is not true that A implies B, it must be the case that A is (or
can be, when there is a variable) True, but B is not. This issue becomes usually
clearer when working with examples.

Example 1.1.4. We refer to the statements and notation of Example 1.1.3 and “com-
pute” their negations. The method is elementary: isolate first if the statement is a Nega-
tion, and Or, an And, etc, then apply the corresponding rule to combine negations of
the substatements which are the arguments of the Negation, Or, And, etc, and continue
until no more operation can be done.

(1) The statement

∀n, (N(n)→ E(2n))

expresses the fact that 2n is an even natural number when n is a natural number. Using
the rules above, its negation (which is False, of course) is the statement

∃n (N(n) ∧ ¬E(2n)).

Precisely, applying the method sketched previously, we have two steps before reaching
the complete negation:

¬(∀n, (N(n)→ E(2n)))

∃n, ¬(N(n)→ E(2n))

∃n, (N(n) ∧ ¬E(2n))

(the first is the rule for ∃n, A(n), the second is the rule for ¬(A→ B)).
This is indeed correct: it states that there is an n, which is a natural number (because

N(n) must be True), and for which 2n is not an even integer (because ¬E(2n) must be
True).

(2) The statement

(A ∨ B) ∧ (¬(A ∧ B)).

expresses that one and only one of the two statements A and B is True. Its negation
should express that either both are True, or both are False. By the rules above, this
negation is

((¬A) ∧ (¬B)) ∨ (A ∧ B),
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obtained in the following steps:

¬( (A ∨ B) ∧ (¬(A ∧ B)) )

(¬(A ∨ B)) ∨ ¬((¬(A ∧ B)))

((¬A) ∧ (¬B)) ∨ (A ∧ B)

(first we have the negation of an And, then in parallel the negation of an Or and of a
Negation).

Indeed, this has the expected meaning: the first part of this logical Or is True if and
only if both statements are False, and the second is True if and only if both are True.

(3) The statement

(∃x, A(x)) ∧ (∀y∀z, (A(y) ∧ A(z)→ (y = z))).

expresses the fact that there is a unique x for which A(x) is True. We express its negation
using the rules in the table: it becomes

(∀x, ¬A(x)) ∨ (∃y∃z, (A(y) ∧ A(z)) ∧ ¬(y = z))).

In other words: either A(x) is always False, or there exist y and z such that A(y) and A(z)
are both True, and in addition y is not equal to z – so the statement A(x) is True for at
least two different values of x.

In this case, the successive steps are as follows;

¬( (∃x, A(x)) ∧ (∀y∀z, (A(y) ∧ A(z)→ (y = z))) )

¬(∃x, A(x)) ∨ ¬( (∀y∀z, (A(y) ∧ A(z)→ (y = z))) )

(∀x, ¬A(x)) ∨ (∃y∃z, ¬( (A(y) ∧ A(z)→ (y = z)) )

(∀x, ¬A(x)) ∨ (∃y∃z, (A(y) ∧ A(z) ∧ ¬(y = z))

(negation of an And, then in parallel of a Forall and two Exists, then of an Implication).

1.2. Numbers and induction

1.2.1. Numbers. We denote

• by N = {1, 2, . . .} the set of all natural numbers,1

• by N0 = {0, 1, 2, . . .} the natural numbers including 0,

• by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} the integers,2

• by Q the rational numbers,
• by R the real numbers,
• by C the complex numbers.

We mostly assume known the basic properties and structures of N, Z and Q (addition,
multiplication, division, comparison of integers and rational numbers). We will discuss
in more details the real and complex numbers later.

1.2.2. Proof by induction. The natural numbers are often used to perform proofs

by induction.3∗

∗ Endnotes will give German translations of certain important mathematical terms.
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Theorem 1.2.1 (Induction principle). Suppose that for each n ∈ N we have a math-
ematical statement A(n). Then A(n) is True for all n ∈ N, provided the following condi-
tions hold:

(1) The statement A(1) is True.
(2’) For all n ∈ N, the statement

A(n)→ A(n+ 1)

is True, or in other words, A(n) implies A(n+ 1).

Remark 1.2.2. If the statements are indexed by n ∈ N0 instead of n ∈ N, we can
replace the two conditions by

(1’) The statement A(0) is True.
(2’) For all n > 0, the statement

A(n)→ A(n+ 1)

is True.
In either (2) or (2’), one assumes that A(n) is true, in order to deduce the next case

of the statement. One says that A(n) is the induction hypothesis. One can replace it by
the stronger-looking assumption that all the statements A(0), A(1), . . . , A(n) are true.

Example 1.2.3. (1) The following formula is particularly important and should be
remembered.

Proposition 1.2.4. Let x be a number not equal to 1. Let n ∈ N0. We have

(1.1) 1 + x+ · · ·+ xn =
1− xn+1

1− x
.

Proof. We proceed by induction on n: the statement A(n), for n ∈ N0, is that the
formula (1.1) is true.

For n = 0, the formula is

1 =
1− x
1− x

which is indeed true. Now we take n > 0 and we make the induction assumption that the
formula holds for this value of the parameter. In order to deduce the formula for n + 1,
we simply note that

1 + x+ · · ·+ xn + xn+1 = (1 + x+ · · ·+ xn) + xn+1 =
1− xn+1

1− x
+ xn+1,

where we used the induction hypothesis to replace the first sum by the result of apply-
ing (1.1).

Now we continue the computation easily:

1 + · · ·+ xn+1 =
1− xn+1

1− x
+ xn+1 =

1− xn+1 − (1− x)xn+1

1− x

=
1− xn+2

1− x
.

which is (1.1) with n replaced by n+ 1. �

(2) Here is an another example, which is rather surprising at first sight. Define a
sequence of integers Fn for n ∈ N by putting

F1 = F2 = 1, Fn+2 = Fn+1 + Fn for n > 1
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(these are known as Fibonacci numbers); for instance, we have F3 = 2, F4 = 2 + 1 = 3,
F5 = 3 + 2 = 5, etc.

It is in general almost impossible to find a simple expression for sequences obtained
by such inductive definition (when new terms are defined in terms of previous ones). But
here, we have

(1.2) Fn =
αn − βn

α− β
where

α =
1 +
√

5

2
, β =

1−
√

5

2
.

We will see later how one can understand where this formula comes from (see Ex-
ample 4.3.8). But at least, once it is stated, we easily check that it is indeed true using
induction.

Here, because the definition involves previous terms of the sequence, it is better to
use the variant of induction where we check the formula for n = 1 and n = 2, and then
assume (1.2) for n and n+ 1 in order to deduce it for n+ 2. (You should try to see why
this is a valid form of induction.)

For n = 1, the formula (1.2) is

1 = F1 =
α− β
α− β

= 1,

and for n = 2, it becomes

1 = F2 =
α2 − β2

α− β
= α + β = 1,

which is also true.
Now suppose for the purpose of induction that (1.2) is true for n and n+ 1, and let’s

try to prove it for Fn+2. It is easy to see how to proceed: by definition, we have

Fn+2 = Fn + Fn+1,

so that the two induction assumptions lead to

Fn+2 =
1

α− β
(αn − βn + αn+1 − βn+1).

We can simplify this: we have

αn − βn + αn+1 − βn+1 = αn(1 + α)− βn(1 + β),

and we note that

1 + α =
3 +
√

5

2
=
(1 +

√
5

2

)2
= α2, 1 + β =

3−
√

5

2
=
(1−

√
5

2

)2
= β2,

which leads to

Fn+2 =
1

α− β
(αn+2 − βn+2).

This concludes the inductive step of the proof.
We see that in this proof, the key property of α and β is that they are the two roots

of the algebraic equation

X2 −X − 1 = 0.
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1.2.3. The factorial. We conclude this section by defining the factorial4 function n!
for integers n ∈ N0: we put

n! = 1 · 2 · · · · · n,
if n > 1 (the product of the integers from 1 to n); for n = 0, the correct convention is to
define

0! = 1.

We can see then that we have the inductive property

(n+ 1)! = (n+ 1) · n!

for all n ∈ N0, including for n = 0. The first few values of n! are:

n 0 1 2 3 4 5 6 7 8
n! 1 1 2 6 24 120 720 5040 40320

1.3. Sets

1.3.1. Introduction. The goal of this section is to introduce notation about sets ;5

these are very useful to speak formally and consistently about many different types of
mathematical objects. In fact, in a precise sense, all mathematical objects can be con-
sidered to be sets of a kind or another.

A (mathematical) set X is an unordered collection of mathematical objects, which is
uniquely determined by the set of elements that it contains. These elements are arbitrary
mathematical objects (in particular, they can be sets themselves).

We use the notation a ∈ X to say that some object a belongs to a set X; when we
want to state that a mathematical object a is not an element of a set X, we write a /∈ X
(this is therefore the negation of the statement A that states that a is in X).

The fact that a set is determined by its elements means that two sets X and Y are
equal if and only if the following statement is True:

∀ a, ((a ∈ X)→ (a ∈ Y )) ∧ ((a ∈ Y )→ (a ∈ X)),

which we also abbreviate in

∀ a, ((a ∈ X)↔ (a ∈ Y ))

(the double arrow is read “if and only if”).

Example 1.3.1. (1) The various sets of numbers are all sets:

N0, N, Z, Q, R. C.

(2) We sometimes define a set by listing within curly brackets its elements:

X = {0, 1, 2, 3}
is a set with 4 elements. The fact that sets are “unordered” means that we can write
the elements of that list in any order. We can also repeat some elements multiple times
without changing the set (since this doesn’t change what the elements are).

So, for instance, we have

{0, 1, 2, 3} = {0, 3, 1, 2} = {0, 0, 0, 1, 3, 2, 2}.
(3) To illustrate that elements of a set can be arbitrary, define the set

X = {0, 1, {1, 2},N}.
This is a set with 4 elements: the integers 0 and 1, the set {1, 2}, and the set of natural
numbers. So one can write N ∈ X.
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1.3.2. Defining sets. The most usual method to define a set is to have a statement
A(x) depending on a variable x, and a given set X, and then to look at the set of all
elements of X for which A(x) is True. This is denoted

Y = {a ∈ X | A(a) holds}, or simply Y = {a ∈ X | A(a)}.
The vertical bar is read “such that”.

Example 1.3.2. (1) Using notation from Example 1.1.2, the set of even natural
numbers can be defined by

Y = {n ∈ N | E(n)}.
(2) Define

Y = {n ∈ Z | there exist a, b, c, d in N0 such that n = a2 + b2 + c2 + d2}.
This set Y turns out to be equal to N0, but this is very far from obvious: it was first
proved by Lagrange in the 18th Century.

(3) It is important, when defining sets in this manner, to specify the set X in which
elements are taken. Otherwise, paradoxical results may follow. For instance, consider
the “set”

P = {x | x /∈ x}.
If this is a set, then we can ask whether P ∈ P or not. But note that if P ∈ P , then

by “definition” we would have P /∈ P . And if P /∈ P , then again, that would mean that
P ∈ P .

(This construction is a mathematical version of a standard language paradox: in a
town, the barber shaves precisely those people who do not shave themselves. Does the
barber shave himself?)

1.3.3. Operations on sets. There are important operations with sets which we
now describe.

• Union:6 if X and Y are sets, the union X ∪ Y is the set such that a ∈ X ∪ Y if
and only if a ∈ X or a ∈ Y , or both. In other words, in logical sentences:

(a ∈ X ∪ Y )↔ ((a ∈ X) ∨ (a ∈ Y )).

For instance, we can write

N0 = N ∪ {0}.

• Intersection:7 if X and Y are sets, the intersection X ∩ Y is the set such that
a ∈ X ∩ Y if and only if a ∈ X and a ∈ Y . In other words, in logical sentences:

(a ∈ X ∩ Y )↔ ((a ∈ X) ∧ (a ∈ Y )).

For instance, we can write

Z ∩ {a ∈ Q | 0 6 a 6 1} = {0, 1}.

• The empty set8: if we consider instead of the last example the similar inter-
section

Z ∩ {a ∈ Q | 0 < a < 1},
then we obtain an important set, namely the empty set, which is the only set
with no elements at all. It is denoted ∅. So

Z ∩ {a ∈ Q | 0 < a < 1} = ∅.
9



Many other intersection sets are empty, for instance

{0, 1, 2} ∩ {−2, 3, 4} = ∅.

The empty set is also formally very useful when defining solution sets of equa-
tions, since it is important to allow the possibility than an equation has no
solution.

• Product:9 if X and Y are sets, then the product X × Y is the set of all ordered
pairs (a, b) where a ∈ X and b ∈ Y . The fact that these are ordered pairs (in
contrast with sets) means that

(a, b) = (c, d)

is equivalent to a = c and b = d, so that for instance (1, 2) 6= (2, 1), whereas
{1, 2} = {2, 1}.

For instance

{0, 1, 2} × {a, b, c, d} =

{(0, a), (0, b), (0, c), (0, d), (1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d)}.

A product can be visualized as points on a plane or a grid, as in the following
picture:

Another good example of a product is R ×R, which is the usual euclidean
plane, where (x, y) represents the point with first coordinate x and second coor-
dinate y.

Note that X × ∅ and ∅ ×X are both empty, whatever the choice of X.

1.3.4. Subsets. A set Y is a subset10 of a set X if all elements of Y are also elements
of X. We then say that Y is contained in X, and denote this property by

Y ⊂ X.

Example 1.3.3. (1) We have

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

(2) The empty set is contained in all sets: ∅ ⊂ X is true, whatever X is.
(3) We always have X ⊂ X.
(4) For any sets X and Y , we have

X ⊂ X ∪ Y, Y ⊂ X ∪ Y, X ∩ Y ⊂ X, X ∩ Y ⊂ Y.
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(5) Suppose that Z ⊂ X and that W ⊂ Y ; then

Z ×W ⊂ X × Y.

On the other hand, there are usually some subsets of X×Y which are not of the form
Z ×W . For instance, in the plane R×R, the line

∆ = {(x, y) ∈ R×R | x = y}

(the diagonal in the plane) is not of the form Z ×W .

1.3.5. Cardinality. If a set X is finite, which means that it has only a finite number
of elements, then we call this number of elements the cardinality of X. This is denoted

by Card(X), and is an element of N0.
11

For instance, the empty set is finite with cardinality 0.

Example 1.3.4. (1) The set

X = {∅, {∅}}
has two elements: the empty set, and the set {∅} (which itself has one element). Similarly

X = {N, {N0}}

has two elements; one is the (infinite) set N, and the other is the one-element set {N0}.
(2) If X and Y are finite sets, then so are X ∪ Y , X ∩ Y and X × Y . We have

Card(X × Y ) = Card(X) Card(Y ),

and

Card(X ∪ Y ) + Card(X ∩ Y ) = Card(X) + Card(Y ).

(this is because Card(X) + Card(Y ) “counts twice” the elements of X ∪ Y which are in
both sets, in other words those of X ∩ Y ).

1.4. Maps

1.4.1. Introduction. Many parts of mathematics, and many applications of math-
ematics, deal with the question of solving equations, and equations exist of completely
different nature. These include:

• Algebraic equations, such as

(1.3) x3 + 3x− 1 = 0

where the unknown x is a single number.
• Newton’s equations of classical mechanics: the unknown here is for instance the

trajectory of a particle, or of a 3-dimensional object. It involves therefore, for
each time t > 0, a point in the space R3.
• Maxwell’s equations, which are the fundamental equations of classical electro-

magnetism: there the unknown is, for each time t > 0 and each point x in space,
the value of the electric and magnetic field at that point and at that time (these
amount to two vectors in R3, so six coordinates).
• And there are the Schrödinger equations of quantum mechanics, the Einstein

equations of general relativity, etc, including equations which have not yet been
written down by anyone!
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In order to speak uniformly of all possible equations (including those that no scientist
has yet identified as useful), mathematicians have introduced a language that may look
abstract and complicated but allows us to use the same words for certain fundamental
properties of equations, independently of their nature. These properties include, for
instance, the question of whether there is a solution, and if yes, whether it is unique.

We represent any equation in the form

f(x) = y

where

• x is the unknown, an element of a given set X;
• y is the “right hand side”, an element of another given set Y ;

• f , which describes the equation, is a map12 from X to Y , which means that it is
a well-defined rule that associates to each element of X a unique element f(x)
in Y . We denote by

f : X → Y

the fact that f is a map from X to Y .

If f : X → Y is a map from X to Y , then we say that X is the definition set

or domain13 and that Y is the target set.14 If Y is a set of numbers, one often says that f

is a function15. For x ∈ X, one says that f(x) is the image of x (by f).16

Two maps f : X → Y and g : X ′ → Y ′ are equal if and only if X = X ′ and Y = Y ′,
and if furthermore f(x) = g(x) for all x ∈ X = X ′.

Example 1.4.1. (1) For an algebraic equation, one usually takes X = Y = C, or
X = Y = R, with y = 0, and f is the left-hand side of the equation, for instance

f(x) = x3 + 3x− 1

for the equation (1.3).
Note that whether the equation f(x) = 0 has a solution may depend on the choice

of X and Y ; this explains why the equality of maps depends on the choice of the definition
and target sets, and not simply on the fact that the “formula” defining f is the same.
Indeed, it is natural to expect that equal functions should have the same solutions!

As an example, the functions

f1 : R→ R f2 : C→ C

defined by f1(x) = x2+1 and f2(x) = x2+1 are not equal; indeed, the equation f1(x) = 0
has no solution, whereas the equation f2(x) = 0 does have solutions.

(2) A map f : X → Y has the property that f(x) is always defined, whatever x ∈ X
is taken. For instance, there is no function f1 : Z → Q such that f1(n) = 1/n, because
this is not well-defined when n = 0. One can however define f2 : X → Q where

X = {n ∈ Z | n 6= 0}
by f2(n) = 1/n. Or one can define f3 : Z → Q by defining f3(0) = 0 and f3(n) = 1/n
for n 6= 0. The functions f2 and f3 are not equal.

(3) The usual operations (addition, multiplication, etc) are maps of a special kind:
for instance f4 : Q×Q→ Q defined by

f4(x, y) = x+ y

defines addition. Division can be defined as a map f5 : Q×Q∗ → Q, where

Q∗ = {x ∈ Q | x 6= 0},
12



by f5(x, y) = x/y.

1.4.2. Injective, surjective, bijective. If we have a map f : X → Y that we use
to write down equations

f(x) = y

it is very often the case that we want to look at equations where y is not simply a fixed
element of Y – for instance, y could be related to “initial conditions” which may vary
with different experiments.

The following are then very natural questions concerning the equation f(x) = y, with
unknown x:

• Does it have a solution for all values of y in Y ?
• Does it have at most one solution?
• Does it have exactly one solution?

A positive answer is a property, which may or may not be true, of the map f . Math-
ematicians use the following terminology† to avoid repeating these three sentences over
and over again:

• If the equation f(x) = y has always at least one solution, we say that f is

surjective.17

• If the equation f(x) = y has never more than one solution, we say that f is

injective.18

• If the equation f(x) = y has always exactly one solution, we say that f is

bijective.19

Remark 1.4.2. In all three definitions, the unknown of the equation is x ∈ X, and
the “always” or “never” refers to the property being true for all possible y ∈ Y .

Note that by definition, to say that f is bijective is the same as saying that f is both
injective and surjective.

Example 1.4.3. (1) The standard example of a surjective map is the following: we
consider sets A and Y , where A is not empty, and we denote X = A× Y and the map

p : X → Y

defined by p(a, y) = y for all pairs (a, y) ∈ A× Y = X. (This is often called a coordinate
projection.)

This map p is surjective because the corresponding equation p(x) = y means precisely
that the second coordinate of x ∈ A× Y is equal to y, and so we can fix any a0 ∈ A, and
x = (a0, y) is a solution.

(2) The standard example of an injective map is the following: we consider a subset X
of a set Y , and the map

i : X → Y

defined by i(x) = x for all x ∈ X (which makes sense because X ⊂ Y , so that x ∈ Y
also; this is called an inclusion map.)

This is injective, because for any y ∈ Y , the corresponding equation i(x) = y
means x = y, so there is at most one possible choice for x. But note that it may be that y
was chosen to be an element of Y that is not in X, in which case the equation i(x) = y
has no solution.

† This terminology was only fixed relatively recently – before the 1950’s, all kinds of words would be
used for any of the three possibilities, making communication sometimes awkward.
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(3) The standard example of a bijective map is the identity map20 of a set X, which
is the map

f : X → X

defined by f(x) = x for all x ∈ X. In this case, the only solution of the equation f(x) = y
is given by x = y; since here all values of y are elements of X (because the target set
is X), this is always a solution.

We denote the identity map of X by IdX .

We will not emphasize too much the use of this terminology when this is not essential,
but we will be able to see how it allows us to speak uniformly of many different properties.

Remark 1.4.4. (1) How does one prove that a given map f : X → Y is injective, or
surjective?

For surjectivity: take an arbitrary y ∈ Y , and attempt to solve the equation f(x) = y;
if this is always successful, then f is surjective.

For injectivity: the most convenient approach is usually to take elements x1 and x2
in X, and to assume that f(x1) = f(x2), and then to deduce that x1 = x2. This is
equivalent to f being injective:

• If f is injective and f(x1) = f(x2), then putting y = f(x1), the equation f(x) = y
has (at least) the solutions x1 and x2; but for an injective map, there can be at
most one solution, so that x1 must be equal to x2, which establishes the condition
we stated.
• Conversely, assuming that this condition is true, we look at a given y ∈ Y and

at the equation f(x) = y; if it had at least two different solutions x1 and x2, that
would mean that f(x1) = f(x2) but x1 6= x2, which is impossible.

(2) How does one prove that a given map f : X → Y is not injective, or not surjective?
To prove that f is not surjective, it is enough to find a single y0 ∈ Y such that

f(x) 6= y0 for all x ∈ X.
To prove that f is not injective, it is enough to find two elements x1 6= x2 in X such

that f(x1) = f(x2).

We now consider a number of further examples.

Example 1.4.5. (1) Squaring a number defines maps

s1 : N→ N, s2 : Z→ Z, s3 : Q→ Q, s4 : R→ R, s5 : C→ C,

(so s1(n) = n2, etc).
We then have the following facts:

• s1 is injective but not surjective,
• s2, s3 and s4 are not injective, and not surjective,
• s5 is not injective, but is surjective.

Indeed:

• If two natural numbers have the same square, then they are equal (which means
that s1 is injective) but 3 is not the square of a natural number (which means
that s1 is not surjective).
• Since (−1)2 = 12, we have two elements of Z, or Q, or R with the same square,

and that means that none of the maps s2, s3 and s4 is injective.
Also −1 ∈ Z is not the square of any integer, or rational number, or real

number, which means that the equation x2 = −1 has no solution in any of these
three sets, and therefore none of s2, s3, s4 is surjective.

14



• Every complex number is the square of another complex number (which means
that s5 is surjective) but (−1)2 = 12 shows that s5 is not surjective.

(2) The map

f : Z× Z→ Z

defined by f(a, b) = a + b is surjective, but not injective: to see that it is surjective,
observe that f(0, b) = b for any b ∈ Z, and to see that it is not injective, note for instance
that f(1,−1) = f(2,−2) = 0.

(3) The map

f : N×N×N→ N

defined by

f(n,m, p) = 2n3m5p

is not surjective (for instance, there is no (n,m, p) with f(n,m, p) = 7). It is however
injective, because of the Fundamental Theorem of Arithmetic: a natural number has a
unique expression as a product of primes with various exponents, so that

2n3m5p = 2n
′
3m
′
5p
′

can only happen if (n,m, p) = (n′,m′, p′). (For instance, if n > n′, this equality would
imply that

2n−n
′
3m5p = 3m

′
5p
′

which is impossible because the left-hand side is an even integer, and the right-hand side
is not.)

(4) Let R+ be the set of non-negative real numbers (which means that x > 0). Then
squaring map defines s : R+ → R+ (because the square of a non-negative real number is
also non-negative). This map is bijective: it is injective because x2 = y2 can only happen
if x = y or x = −y, and if x and y are in R+, then either y < 0, so x = −y is not possible,
or y = 0, and then −y = y. In

The map s is surjective because of the existence of square roots of non-negative real
numbers (which we will recall later as a basic property of real numbers).

1.4.3. Composition. Maps between sets come with an extremely important oper-

ation, called composition.21

Suppose that we have sets X, Y , Z and maps f : X → Y and g : Y → Z, where the
important point is that the target set of the first map is the definition set of the second.
Then we define a map

h : X → Z

by putting

h(x) = g(f(x))

for all x ∈ X; this makes sense, since f(x) belongs to Y , so that we can evaluate g at this
value, and obtain an element of Z. This map is denoted g ◦ f , and called the composition
of g and f . To check that it exists, one often uses the diagram

X
f−→ Y

g−→ Z.

On can also compose more than two maps; given

X
f−→ Y

g−→ Z
h−→ W

15



we can form either h ◦ (g ◦ f) or (h ◦ g) ◦ f . Both of these are the same maps X → W ,
because they have the same definition set X and the same target set W , and for any
x ∈ X, we get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))),

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))).

This common map is usually written simply h ◦ g ◦ f .

Example 1.4.6. Consider the maps

R
f−→ R2 g−→ R

such that f(x) = (x, x) and g(x, y) = xy. Then g ◦ f is the squaring map R→ R since

g(f(x)) = g(x, x) = x2

for all x.
(2) For any sets X and Y and any maps

f : X → Y, g : Y → X,

we have the formulas
f ◦ IdX = f, IdX ◦ g = g

where IdX is the identity map of X.

1.4.4. Inverse of a bijective map. Suppose that f : X → Y is a bijective map.
Then, for any y in Y , there is a unique element x ∈ X such that f(x) = y (a unique
solution of the equation f(x) = y). Since x exists for every y and is unique, we can define
a map g : Y → X such that g(y) = x for all y ∈ X. (Note that this is often not defined
by an easy formula, even if f is.)

Definition 1.4.7. The map g : Y → X defined above for a bijective map f : X → Y

is called the inverse22 of f , and is often denoted g = f−1.

Proposition 1.4.8. Let f be a bijective map X → Y and g = f−1 its inverse.
(1) The map g is bijective and its inverse is f .
(2) We have

(1.4) f(g(y)) = y, g(f(x)) = x

for every x and y, or in other words

f ◦ g = IdY , g ◦ f = IdX .

Proof. One can prove directly (1), but it is better to see that it follows from (2),
which shows that formulas for compositions can be very useful. We will then prove (2).

So assume that (2) is true.
The map g is surjective: indeed, let x ∈ X; we must find y ∈ Y with g(y) = x, and

for this purpose, we define simply y = f(x), since then

g(y) = g(f(x)) = x

by the second formula in (1.4).
The map g is injective: indeed, let y1 and y2 be elements of Y such that g(y1) = g(y1).

We apply the map f to both sides of this equation and obtain

y1 = f(g(y1)) = f(g(y2)) = y2

by using (twice) the first formula in (1.4).
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This shows that g is bijective. To find its inverse g−1 : X → X, given an ele-
ment x in X, we must find the unique y = g−1(x) such that g(y) = x. We have seen
that g(f(x)) = x, and that means that this unique value of y is equal to f(x). This
means that g−1 = f .

Now we will prove (2). First, let y ∈ Y . By definition, x = g(y) is the unique element
of x such that f(x) = y, so that f(g(y)) = y. Secondly, let x ∈ X. Then g(f(x)) = x′ is
the unique element of X such that f(x′) = f(x). Since x has this property, the uniqueness
means that x′ = x, so g(f(x)) = x. �

Example 1.4.9. For R+ the set of non-negative real numbers and f the bijective
map R+ → R+ defined by f(x) = x2 (Example 1.4.5, (4)), the map f−1 is the squareroot
function: f−1(x) =

√
x. The properties above become the well-known formulas

√
x2 = x, (

√
y)2 = y

for any x > 0 and y > 0.

1.4.5. Other interpretations of maps. We have motivated the use of maps to
formalize very general equations. However, as often is the case, a useful scientific concept
has more than one application or interpretation. In this case, we can also use maps to
represent other kinds of date.

For instance, we mentioned that the solution to the Newton equations for the move-
ment of a particle consists in giving the position of the article at all times t > 0. This
means that this solution can be seen as a map

f : R+ → R3,

where f(t) is the point in space where the particle is located at time t.
Similarly, we will see that many signals that occur in electrical engineering and similar

engineering fields can be interpreted as maps of some kind.

1.5. The real numbers

Reference: [2, 2.1, 2.2, 2.3].
The most important set of numbers for analysis is the set R of real numbers. It is

required because, although all algebraic operations (addition, multiplication, division)
are defined for rational numbers, there are some equations which do not have rational
solutions, although they “obviously” have some solution. The simplest is

x2 = 2.

The geometric picture
c b = 1

a = 1

and the formula of Pythagoras a2+b2 =

c2 show that the length c has square equal to 2. But no rational number x satisfies x2 = 2.
(We recall the proof: if there were such a number, we could express it as a fraction x = p/q
with p and q in N, and not both even; then we get 2q2 = p2, so that p2 is even; in this
case, the number p itself must be even, so we can write p = 2m for some integer m > 1,
and then the last equation simplifies to q2 = 2m2, which means that q also is even, and
that is impossible.)
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Other “geometrically obvious” numbers, such as the length 2π of the perimeter of a
circle of radius 1, are also not rational (but this is much harder to prove!)

In R, however, all such “obvious” numbers have a meaning. However, it is not so
easy to construct rigorously the set of real numbers to understand its properties – this
was first done in 1858 by R. Dedekind, when he was teaching Analysis at ETH. Instead
of presenting such a construction, we will list the properties of the real numbers – in a
precise sense, one can show that they characterize the real numbers. In the remainder
of the course, we will see that starting from these basic properties, we can deduce all
the results of analysis (including give a rigorous definition of π), and also devise efficient
methods for numerical computations.

The structures that are required to characterize R are:

• The addition, and the number 0,
• The multiplication, and the number 1,
• Division by non-zero numbers,
• The order relation a 6 b for real numbers.

The difference between R and Q (where all these operations also exist) will be sum-

marized in a single statement called completeness23 of R, which expresses a property of
continuity (the fact that “there are no holes” in R, in a certain sense).

We list the various properties of these operations in order. The first of them are all
very well-known, and we will not discuss them very much – notice in particular that they
are all true for rational numbers!

Properties of addition. The following are true for any real numbers:

a+ 0 = 0 + a = a(1.5)

a+ b = b+ a(1.6)

a+ (b+ c) = (a+ b) + c(1.7)

there is a unique real number −a such that a+ (−a) = (−a) + a = 0.(1.8)

Properties of multiplication. The following are true for any real numbers:

a · 1 = 1 · a = a(1.9)

ab = ba(1.10)

a(bc) = (ab)c(1.11)

if a 6= 0, there is a unique real number a−1 such that a · a−1 = a−1 · a = 1.(1.12)

Properties of addition and multiplication together. The following are true for
any real numbers:

a · 0 = 0 · a = 0(1.13)

a(b+ c) = ab+ ac(1.14)

(a+ b)c = ac+ bc.(1.15)
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Properties of the order relation. The following are true for any real numbers:

a 6 a(1.16)

a 6 b and b 6 a imply that a = b(1.17)

a 6 b and b 6 c imply that a 6 c(1.18)

either a 6 b or b 6 a(1.19)

a 6 b implies that a+ c 6 b+ c(1.20)

a 6 b and c > 0 imply that ac 6 bc.(1.21)

And finally comes the last property, which is only valid for R and not for Q.

Completeness of R. Whenever we have two non-empty subsets A and B of real
numbers with the property that any element a of A is smaller or equal to any element
of B, then there is a real number c “between them”: there exists c ∈ R such that

a 6 c 6 b

for all a ∈ A and b ∈ B.
This is illustrated in the following picture:
To see that Q does not have this final property, we use it to prove:

Theorem 1.5.1. There exists a real number x such that x2 = 2.

Proof. We will construct sets A andB which satisfy the property of the completeness
statement, and for which the real number c will have to be a square root of 2.

The idea is quite easy: we define as before

R+ = {x ∈ R | x > 0}
and

A = {a ∈ R+ | a2 6 2},(1.22)

B = {b ∈ R+ | b2 > 2}.(1.23)

These sets are not empty: for instance, 0 ∈ A and 2 ∈ B. In addition, the condition
a 6 b is equivalent to a2 6 b2 for elements of R+ (as can be checked using all the
properties above), and therefore every element of A is smaller or equal than any element
of B. By the completeness property, there exists therefore a real number c “between” A
and B.

We now prove that c2 = 2 by proving that we can derive a contradiction if we assume
either that c2 > 2, or that c2 < 2. Then only the possibility c2 = 2 remains.

We begin by assuming that c2 < 2, and we will then show how to construct an
element a of A such that c < a, which contradicts the fact that c is “to the right” of A.
To do this, we first observe that c > 1, because 1 ∈ A. The reason that this works is
that the squaring operation is continuous : if we change the argument c by a very small
amount e, then the value of the square (c+ e)2 changes also very little, and in particular
the value (c+ e)2 will remain below 2.
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To do this precisely, define L = 2 − c2; this is a strictly positive real number. We
consider a real number e such that 0 < e < c, and define a = c+ e, so that c < a. Under
which condition can we ensure that a ∈ A? We compute

a2 = (c+ e)2 = c2 + 2ec+ e2 6 c2 + 3ec,

where the last inequality comes from the fact that e < c, so that e2 6 ec. If e is chosen
so that 3ec < L, for instance e = L/(6c), then we get 3ec < L and

a2 < c2 + L = 2,

which implies that a ∈ A.
The other assumption c2 > 2 is similar: we then construct an element b of B with

b < c – details are omitted. �

Remark 1.5.2. (1) Once we know the existence of
√

2, the sets A and B used above
are just

A = {a ∈ R+ | a 6
√

2},(1.24)

B = {b ∈ R+ | b >
√

2},(1.25)

in which case it is immediate that the only possible number c “in the midlle” is
√

2.
The use of the square allowed us to replace this definition, which would not make sense
without knowing the existence of

√
2, by one that is equivalent but involves only rational

numbers.
(2) There are many different properties which, together with those of Q, are equivalent

to the completeness property. The version in [2] is more complicated to state, but easier
to apply to construct (for instance) the square root of real numbers. However, we will
soon have easier and convenient tools to solve such equations, so we have used the version
that is also discussed in [1, 1.1].

(3) What this result really proves is that if there exists a set R with operations that
satisfy all the rules that we listed above, then that set contains an element with x2 = 2.
We have not however proved the existence of the set of real numbers, which is more
difficult.

(4) In the proof, we have used a number of simple properties that follow from the list
of properties of real numbers, (for instance that a2 > 0 for all a ∈ R, or that a 6 b is
equivalent to a2 6 b2 when a and b are in R+, or that 0 < a 6 b implies 0 < b−1 < a−1,
etc). Proving these is a good exercise.

Although there are “more” real numbers than rational numbers, the following im-
portant fact shows that rational numbers can be bound between any two distinct real
numbers (one says that they are “dense” in R).

Theorem 1.5.3. Let x < y be real numbers. There exists a rational number r such
that

x 6 r 6 y.

Proof. We assume for simplicity that 0 6 x < y, the other possibilities being similar.
Since y − x > 0, we find an integer n ∈ N such that

0 <
1

n
< y − x.
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Let k be the element of N0 such that k/n 6 x but (k + 1)/n > x. Then because
(k + 1)/n− k/n = 1/n < y − x, it follows that

x <
k + 1

n
6 y

and so the rational number (k + 1)/n satisfies the condition we want. �

1.6. Complex numbers

1.6.1. Definition and simple properties. Reference: [2, Kap. 3].
The set C of complex numbers completes the collection of number sets. Its additional

property in comparison with R is that all polynomial equations of degree n > 1, of the
form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

with arbitrary coefficients ai ∈ C and unknown x ∈ C have at least one solution.

Remark 1.6.1. In other words, for any given coefficients a9, . . . , an−1, the map

f : C→ C

defined by
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0

is surjective. In general it is not injective.

We recall a construction of C and some basic properties.

Definition 1.6.2. We define C = R × R, with special elements 0C = (0, 0) and
1C = (1, 0) and i = (0, 1), and with operations

(a, b) + (c, d) = (a+ c, b+ d),

(a, b) · (c, d) = (ac− bd, ad+ bc).

We view an element (a, b) of C as a point in the plane R×R. We have (a, b) = (c, d)
if and only if a = c and b = d.

With these definitions, we see that

(a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = (a, 0) + i(b, 0).

If we decide to identity (a, 0) with a ∈ R (as a point on the real axis in the plane), this
becomes

(a, b) = a+ ib.

Then the product rule follows by “the usual algebraic rules” together with the single
relation i2 = (−1, 0) = −1. Indeed:

(a, b)(c, d) = (a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ac+ bd).

Moreover, when restricted to R viewed as a subset of C, the addition and multipli-
cation correspond to those of real numbers:

(a, 0) + (b, 0) = (a+ b, 0)

(a, 0) · (b, 0) = (ab, 0).

This justifies the view that C is an extension of R.
With these operations, the properties of addition and multiplication of real num-

bers (except those that involve the order relation) are all true. We list them again for
completeness:
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Properties of addition. The following are true for any complex numbers:

u+ 0 = 0 + u = u(1.26)

u+ v = v + u(1.27)

u+ (v + w) = (u+ v) + w(1.28)

there is a unique complex number −u such that u+ (−u) = (−u) + u = 0.(1.29)

Properties of multiplication. The following are true for any complex numbers:

u · 1 = 1 · u = u(1.30)

uv = vu(1.31)

u(vw) = (uv)w(1.32)

if u 6= 0, there is a unique complex number u−1 such that u · u−1 = u−1 · u = 1.

(1.33)

Properties of addition and multiplication together. The following are true for
any complex numbers:

u · 0 = 0 · u = 0(1.34)

u(v + w) = uv + uw(1.35)

(u+ v)w = uw + vw.(1.36)

All of these are easy to check by direct computation, with the exception of the ex-
istence of the inverse u−1 of a non-zero complex number u. We check this by observing
that if u = (a, b) = a+ ib, then

(a+ ib)(a− ib) = a2 + b2,

which is a strictly positive real number if u 6= 0 (since then either a 6= 0 or b 6= 0). So
uv = 1 where

v =
a

a2 + b2
− i b

a2 + b2
.

The fact that v is the unique solution of the equation uv = 1 is then elementary.
We define two important functions that appeared in this small computation:

Definition 1.6.3. Let u = a+ ib ∈ C.
(1) The complex conjugate, or simply conjugate,24 of u is

ū = a− ib.
(2) The modulus25 of u is

|u| =
√
a2 + b2.

Note that in defining |u| we need the existence of the square root of any non-negative
real number, which generalizes Theorem 1.5.1, and can be proved similarly; we will see
how to do it more easily later, and for the moment take this existence for granted.
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Proposition 1.6.4. The following are true for all complex numbers:
(1) We have |uv| = |u| |v|.
(2) We have |u| = 0 if and only if u = 0.
(3) We have |u+ v| 6 |u|+ |v|.
(4) We have

u+ v = ū+ v̄, uv = ū v̄

(5) We have u ∈ R if and only if ū = u.
(6) We have u = a+ ib where a and b are given by

a =
u+ ū

2
, b =

u− ū
2i

.

All of these properties are easy, except (3). It can however be understood geometri-
cally: the modulus |u| is the distance in the euclidean plane from the origine 0 = (0, 0)
to the point u, and more generally |u − v| is the distance between the points u and v.
Then (3) is the triangle inequality : in the triangle with vertices 0, u, u + v, the dis-
tance |u+ v| from 0 to u+ v is at most the sum of the distance |u| from 0 to u and that
from u to u+ v, which is |u+ v − u| = |v|.

Remark 1.6.5. If u ∈ R then |u| =
√
u2 is simply equal to u if u ∈ R+, and to −u

otherwise. The real number |u| is also called the absolute value of u.

We now use these to check a special case of the fundamental theorem that we already
mentioned:

Theorem 1.6.6. Let n > 1. Let a0, . . . , an be arbitrary complex numbers with an 6= 0.
Then the equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

with unknown x ∈ C has at least one solution.

We prove this in the special case of the equation

x2 = a0,

namely we prove that every complex number is the square of another complex number.
Write a0 = a+ ib and x = c+ id with a, . . . , d real. Then the equation x2 = a0 holds

if and only if {
c2 − d2 = a,

2cd = b.

We use a trick to see how to solve this easily: let r0 > 0 be the modulus of a0; note
that any solution must satisfy |x|2 = |a0|, so that c2 + d2 = r0. Combined with the first
equation, we see that the only possibilities for c2 and d2 are

(1.37)

{
c2 = 1

2
(r0 + a)

d2 = 1
2
(r0 − a).

Since r20 = a2 + b2, we have |a| 6 r0, which means that

−r0 6 a 6 r0,

so that the numbers a + r0 and a − r0 are both non-negative. It follows that (by the
extension of Theorem 1.5.1 to all non-negative real numbers) that real numbers c and d
satisfying (1.37) exist. Then the equation c2 − d2 = a holds, and moreover

2c2d2 = r20 − a2 = b2,
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and one needs simply to adjust the signs of c and d to ensure that 2cd = b (if b > 0, take
c and d to be the square roots of 1

2
(r0 + a) and 1

2
(r0 − a), and if b < 0, take c to be the

square root and d to be the opposite).

1.6.2. Sum and product notation. We will frequently need a notation for sums
of many complex numbers, or products of them.

If I is a finite set, and we have complex numbers ui defined for all i ∈ I (which really
means that we have a map f : I → C, where we use the notation ui instead of f(i)), then
we denote by ∑

i∈I

ui

the sum of all ui, and by ∏
i∈I

ui

their product.

Example 1.6.7. Let I = {1, 2, 3}. Then∑
i∈I

ui = u1 + u2 + u3,

and ∏
i∈I

ui = u1u2u3.

By convention, if I is empty, the sum is equal to 0 and the product is equal to 1. This
allows us to say that if I and J are finite sets without common element, then∑

i∈I∪J

ui =
∑
i∈I

ui +
∑
i∈J

ui,
∏
i∈I∪J

ui =
∏
i∈I

ui ·
∏
i∈J

ui.

Quite frequently, the set I is a subset of consecutive integers in Z: for some N 6M ,
we have

I = {N,N + 1, . . . ,M}.
In this case, we write ∑

i∈I

ui =
M∑
n=N

un,
∏
i∈I

ui =
M∏
n=N

un.

1.6.3. Binomial coefficients and the binomial theorem. Reference: [2, 1.2].
The standard formula

(a+ b)2 = a2 + 2ab+ b2

extends to complex numbers. Its generalization to other powers also does, and we recall

the corresponding statement. This requires the binomial coefficients.26

Definition 1.6.8 (Binomial coefficients). Let k and n be elements of N0. We de-

note by
(
n
k

)
the binomial coefficient “n choose k”,27 which is the number of subsets of

cardinality k in a set with n elements.

Note that this number does not depend on the set with n elements that is used (they
are all “equivalent” for this purpose); we will usually use In = {1, . . . , n}.
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Example 1.6.9. We have
(
n
k

)
= 0, unless 0 6 k 6 n. Moreover(

n

0

)
=

(
n

n

)
= 1

(because the only subset with 0 elements is the empty set, and the only subset with n
elements of In is the set In itself.

Moreover, we have (
n

1

)
=

(
n

n− 1

)
= n,

because there are as many subsets of In with 1 elements as there are elements, and
moreover, a subset with n−1 element is determined uniquely by the unique element of In
that does not belong to it.

More generally, we get (
n

k

)
=

(
n

n− k

)
because the subsets of In with k elements correspond to those with n − k elements by
replacing each subset S by its complement, the set of elements of In that are not in S.

We use the binomial coefficients to state and prove the binomial formula:28

Theorem 1.6.10 (Binomial theorem). Let n ∈ N0. For any complex numbers u
and v, we have

(u+ v)n = un +

(
n

1

)
un−1v + · · ·+

(
n

k

)
un−kvk + · · ·+

(
n

n− 1

)
uvn−1 + vn

=
n∑
k=0

(
n

k

)
un−kvk.

Proof. We first give an informal proof that explains why the binomial coefficients
have to be there, but then also describe a proof by induction on n.

The n-th power of u+ v is a product of n terms each equal to u+ v:

(u+ v)n = (u+ v) · · · (u+ v).

We use the rule (u+ v)w = uw+ vw repeatedly; one sees that this gives rise to 2n terms,
each of which is a product of n complex numbers zi for 1 6 i 6 n, where zi is either u
or v. For instance

(u+ v)(u+ v) = u(u+ v) + v(u+ v) = uu+ uv + vu+ vv.

So each of the zi is of the form un−kvk for some integer k, which is the number of times
the factor v appears. This means that

(u+ v)n = c(n, 0)un + c(n, 1)un−1v + · · ·+ c(n, k)un−kvk

+ · · ·+ c(n, n− 1)uvn−1 + c(n, n)vn,

where c(n, k) is the number of terms zi where we have picked k times the number v. This
is equal to

(
n
k

)
, because each of these numbers zi corresponds to the subset of {1, . . . , n}

which indicates for which factor of the product we take the number v.
This explanation might look difficult to rigorously justify. We proceed then by induc-

tion on n ∈ N0. For n = 0, the formula is 1 = 1, so it is correct. (If one prefers to start
with the less obvious case n = 1, it is then u+ v = u+ v.)
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Assume that the formula is true for (u+ v)n. Then

(u+ v)n+1 = (u+ v)(u+ v)n = (u+ v)
n∑
k=0

(
n

k

)
un−kvk

=
n∑
k=0

(
n

k

)
un+1−kvk +

n∑
k=0

(
n

k

)
un−kvk+1.

In the second term, we use the new variable ` = k+ 1. The second term is then equal to
n+1∑
`=1

(
n

`− 1

)
un+1−`v`.

We can rename the variable ` to k again and (separating the cases k = 0 and k = n+ 1)
we obtain

(u+ v)n+1 = un+1 +
n∑
k=1

((n
k

)
+

(
n

k − 1

))
un+1−kvk + vn+1.

Since
(
n+1
0

)
=
(
n+1
n+1

)
= 1, we will therefore conclude the proof as soon as we know that(

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

We explain the proof of this below... �

Lemma 1.6.11 (Pascal’s Triangle). For any n and k in N0, we have(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

Proof. The number
(
n+1
k

)
of subsets of I = {1, . . . , n+1} of size k is equal to A+B,

where A is the number of such subsets S where n + 1 /∈ S and B is the number of such
subsets S where n+ 1 ∈ S.

We have A =
(
n
k

)
, because A counts simply the k-element subsets of {1, . . . , n}.

We have B =
(
n
k−1

)
, because in addition to n + 1, the subsets S must contain k − 1

elements of {1, . . . , n}. �

Example 1.6.12. The binomial coefficients are usually represented in a triangular
form (“Pascal’s Triangle”, although it was known before Pascal), with the coefficients

(
n
k

)
for a given n in each row. The lemma allows us to quickly compute a new row from the
previous one, but putting in the k-th column the sum of the number above, and the one
above and to the left (see below for that computation of

(
4
2

)
= 6).

n
0 1
1 1 1
2 1 2 1
3 1 3 + 3 1

=

4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
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Another formula for binomial coefficients is the following:

Proposition 1.6.13. Let n and k be elements of N0 with 0 6 k 6 n. We have

(1.38)

(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
.

For instance, we get (
n

2

)
=

n!

2(n− 2)!
=
n(n− 1)

2
.

Proof. It is easiest here to use induction on N0, using Lemma 1.6.11. For n = 0
there is a single binomial coefficient equal to 1 and the right-hand side is

0!

0!0!
= 1.

Now suppose that the formula (1.38) holds for a given n and all 0 6 k 6 n. Let then
k be such that 0 6 k 6 n + 1. Then using the formula m! = m(m − 1)! multiple times,
we get

(n+ 1)!

k!(n+ 1− k)!
=
n!(n+ 1− k + k)

k!(n+ 1− k)!
=
n!(n+ 1− k)

k!(n+ 1− k)!
+

n!k

k!(n+ 1− k)!

=
n!

k!(n− k)!
+

n!

(k − 1)!(n− (k + 1))!
.

Using the induction hypothesis twice, we see that this is equal to(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
by Lemma 1.6.11. �
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CHAPTER 2

Constructing real numbers

In this chapter, we consider two general methods to construct new real numbers:
using the infimum or the supremum of a suitable set of real numbers, or using infinite
sequences or sums. The second are also extremely useful to approximate real numbers,
usually with rational numbers. We will in particular explain how this leads to the usual
decimal expansion of a real number.

2.1. Intervals

The most important sets of real numbers for analysis are intervals. These are sets
defined as contain those real numbers that are either (1) between two bounds; (2) larger
than some bound; (3) smaller than some bound, and where moreover we allow “be-
tween”, “larger” and “smaller” to be defined either by strict inequalities or by non-strict
inequalities.

More precisely, we introduce the following notation. For bounded intervals, those
“between” two real numbers, say a and b, with a 6 b, we have four possibilities:

[a, b] = {x ∈ R | a 6 x 6 b}
[a, b[= {x ∈ R | a 6 x < b}

]a, b] = {x ∈ R | a < x 6 b}
]a, b[= {x ∈ R | a < x < b}.

Note how the use of brackets indicates whether the endpoint a or b is included or not.
We then have intervals “larger” than a bound, for which we use the symbol +∞ to

indicate the absence of upper-bound:

[a,+∞[= {x ∈ R | a 6 x}
]a,+∞[= {x ∈ R | a <},

and similarly with −∞:

]−∞, b] = {x ∈ R | x 6 b}
]−∞, b[= {x ∈ R | x < b}.

Finally, we view R as an interval, with no restriction either above or below, and we
sometimes write

]−∞,+∞[= R.

Note that the empty set is also an interval, for instance ∅ =]0, 0[.

Definition 2.1.1. A closed interval is an interval of the form either [a, b], or [a,+∞[
or ]−∞, a], which means that the endpoints are included (when they exist). We also say
that ∅ and R are closed intervals.

An open interval is an interval of the form either ]a, b[, or ]a,+∞[ or ]−∞, a[, which
means that the endpoints are excluded. We also say that ∅ and R are open intervals.
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An interval like [a, b[ is neither open nor closed. The set R is both open and closed
(another illustration of the fact that mathematical and common languages can have very
different interpretations...)

All intervals can be characterized by the following property, which informally states
that they are the subsets of R “without holes”.

Proposition 2.1.2. A subset I ⊂ R is an interval if and only if, whenever a 6 b are
elements of I, all real numbers c such that a 6 c 6 b are also in I.

(In other words: if a 6 b are elements of I, then the interval [a, b] is contained in I.)
It is easy to prove, simply using the definition, that any interval has this property.

We will not prove the converse here, but it should feel intuitively reasonable (see Exer-
cise 2.3.4).

2.2. Upper and lower bounds, minimum and maximum

In the completeness property of R, we see that condition that a real number c is larger
or equal to all elements of a subset A ⊂ R. This type of constraints occurs frequently.

Definition 2.2.1. Let A be a set of real numbers and c ∈ R.
The number c is an upper-bound for A if all elements of A are 6 c.
The number c is a lower-bound for A if all elements of A are > c.

Example 2.2.2. (1) Any real number c 6 1 is a lower-bound of the set N of natural
numbers. On the other hand, the set N has no upper-bound (because there is no real
number larger than all integers).

(2) The interval I = [0, 1] has many upper-bounds and many lower-bounds: any real
number c > 1 is an upper-bound (and no other, because if c < 1, then a = 1 is an
element of [0, 1] with c < a, which contradicts the definition of upper-bound), and any
real number c < 0 is a lower-bound.

(3) If A′ ⊂ A, then any upper-bound of A is an upper-bound of A′, and similarly for
lower-bounds.

(4) The interval J =]0, 1[ has the same upper-bounds and lower-bounds as the interval
[0, 1]. Indeed, any c > 1 is an upper-bound of J . If c < 1, on the other hand, although 1 /∈
J , there is a real number a ∈ J such that c < a: if c 6 0, we can take a = 0, and otherwise
the middle-point

a =
1 + c

2
,

of the segment from c to 1 is in J , and c < a.

Examples (2) and (4) show that for a set A ⊂ R, it is possible that an upper-bound
of A belongs to A (like for [0, 1] and the upper-bound 1), but it is also possible that A
has upper-bounds, but none belongs to A.

In the first case, we note that the upper-bound c in A must be unique: any other
upper-bound c′ ∈ A satisfies c 6 c′ (because c ∈ A and c′ is an upper-bound of A) and
c′ 6 c (conversely). This justifies the following definition:

Definition 2.2.3 (Maximum and minimum). Let A be a set of real numbers. The
maximum of A is the unique upper-bound of A that belongs to A, if it exists; it is then
denoted max(A).

The minimum of A is the unique lower-bound of A that belongs to A, if it exists; it
is then denoted min(A).
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Example 2.2.4. The interval I = [a, b], for a 6 b, satisfies

max(A) = b, min(A) = a.

The interval ]a, b[ has no maximum and no minimum. The interval [a, b[ has no
maximum, but has the minimum a.

Remark 2.2.5. We note that if A has a maximum, then max(A) is the smallest
upper-bound of A: in fact, if c < max(A), then the fact that max(A) ∈ A shows that c
is not an upper-bound of A.

2.3. Infimum, supremum and completeness

Many sets of real numbers have upper bounds or lower bounds, but among these,
many do not have a maximum or a minimum, as in the example of an open interval ]a, b[.
Nevertheless, in that case, the number b is clearly “the best” upper-bound for ]a, b[:
although it is not an element of the interval, it is an upper-bound, and no smaller real
number is an upper-bound. For this reason, b is called the supremum of ]a, b[.

This is a very general fact:

Theorem 2.3.1. Let A be a non-empty subset of real numbers which has at least one
upper-bound. Then the set of upper-bounds of A has a minimum, called the supremum
of A, which is denoted sup(A).

Proof. This is an important application of the property of completeness. We denote
by B the set of all real numbers b ∈ R which are upper-bounds for A. By assumption,
B is not empty, and by definition of upper-bounds, we have

a 6 b

for all a ∈ A and b ∈ B.
We can therefore apply the completeness property to the sets A and B. Let c be the

element “in the middle” given by this property. Then we have

a 6 c 6 b

for all a ∈ A and b ∈ B. The inequality a 6 c for all a ∈ A means that c is an upper-
bound for A; that means that c ∈ B. The inequality c 6 b for all b ∈ B means that c is a
lower-bound for B. So c is a lower-bound of B that belongs to B, so it is the minimum
of B. �

Example 2.3.2. (1) We have

sup(]0, 1[) = 1

according to Example 2.2.2, (4), since the set of upper-bounds of ]0, 1[ is [1,+∞[, and
this has minimum equal to 1.

(2) If A 6= ∅ has an upper-bound, then the set of upper-bounds of A is the interval

[sup(A),+∞[.

Indeed, sup(A) is an upper-bound, and all larger or equal real numbers b > sup(A) are
of course upper-bounds also.

(3) IfA has a maximum, then this is also its supremum: sup(A) = max(A) whenmax(A)
exists. Indeed, we have seen this in Remark 2.2.5.

(3) Let

A = {x ∈ Q+ | x2 6 2}.
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Then A is not empty and 2 is an upper-bound. So it has a supremum, and in fact

sup(A) =
√

2.

(so this is another case where the supremum does not belong to A).
Indeed, let c = sup(A); it is a positive number, and we need to prove that c2 = 2.

Note first that if x ∈ A, then x 6 c, so that x2 6 c2; since x2 6 2 by definition of A, we
must have c2 > 2. It remains to check that c2 6 2. Assume that we had c2 < 2. Then as
in the proof of Theorem 1.5.1, we can find e > 0 such that (c+ e)2 < 2. Now we can find
a rational number x with c < x < c + e (because, by Theorem 1.5.3, there is always a
rational number between two real numbers x < y), and then x2 6 (c+ e)2 < 2, so that x
would be an element of A larger than the upper-bound c, which is impossible.

Remark 2.3.3. (1) The statement of the theorem (that all non-empty subsets of R
bounded from above have a supremum) is equivalent to the property of completeness.
To see this, assume that the theorem is known to be true, and let us try to prove the
completeness property. So let A and B be non-empty sets of real numbers, with a 6 b
for all a ∈ A and b ∈ B. Then A has an upper bound (any element of B, which is not
empty), so we can define c = sup(A), since we assume that Theorem 2.3.1 is true. Since c
is an upper-bound of A, we have a 6 c for all a ∈ A. And since every element b of B
is an upper-bound of A, we have c 6 b, since the supremum of A is the minimum of all
upper-bounds. So we get

a 6 c 6 b,

which means that c is “in the middle”, and this establishes the completeness property.
(2) The analogue of the theorem for lower-bounds is that if A ⊂ R is a non-empty

set of real numbers which has a lower-bound, then the set of its lower-bounds has a
maximum, called the infimum of A, which is denoted inf(A).

For instance, we have inf(]0, 1[) = 0.
(3) When a non-empty set A ⊂ R has no upper-bound, it cannot have a supremum;

we use the notation
sup(A) = +∞

to indicate this concisely. Similarly, if A has no lower-bound, we write

inf(A) = −∞.
(4) Let A be a non-empty subset of R andB ⊂ R such that A ⊂ B. Then the following

elementary facts are often useful to compare the possible supremum and infimum of A
and B:

• If B has an upper-bound, then so does A and

sup(A) 6 sup(B),

• If B has a lower-bound, then so does A and

inf(B) 6 inf(A).

This is because, in the first case for instance, the set of upper-bounds of B contains the
set of upper-bounds of A.

Exercise 2.3.4. Let I ⊂ R be a subset of R such that whenever a 6 b are in I, the
interval [a, b] is contained in A. Show that I is an interval.

(Hint: consider first the case when I is not empty and bounded from above and
below; let x = inf(I) and y = sup(I); show that I is one of the intervals [x, y], ]x, y], [x, y[
or ]x, y[, depending on whether I has minimum or maximum, or both, or none.)
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To summarize the basic idea of the supremum: suppose that we have a subset A of
real numbers which is not empty and has an upper-bound, so that sup(A) exists. How
does one prove that a given real number c ∈ R is equal to sup(A)? Usually, the best
method is to prove the two inequalities

c > sup(A)(2.1)

c 6 sup(A)(2.2)

separately. Of course, together they imply that c = sup(A) (but either can be proved
separately, if we only want to show that c satisfies one of these).

To prove (2.1), it suffices to prove that c is an upper bound of A, or in other words
that

a 6 c

for all elements a ∈ A.
To prove (2.2), we need to prove that any real number d < c is not an upper bound

of A. In other words, for all d < c, we need to find an element a ∈ A such that d < a.

For many sets of real numbers, what we would really like to know is that they have
a maximum. But to prove this is often difficult. However, it is usually much easier to
prove that the set has an upper-bound; then the supremum always exists, and one can
try, as a second step, to check if the supremum belongs to the set of interest. We will see
various ways of ensuring that.

2.4. Sequences

We now have ways to construct many interesting real numbers (solutions of equations
of various types in particular), using the supremum or infimum of sets of real numbers.
However, we would like to also be able to compute concretely with these numbers. We
can do this by using “sequences”

x1, x2, x3, . . . , xn, . . .

of rational numbers that get “closer and closer” to a given real number. The definition
of sequences is simple, and we can extend it to complex numbers right away:

Definition 2.4.1. A sequence29 of complex numbers is a map s : N → C. If all
values of s are real numbers, we say that it is a real sequence.

In terms of notation, a sequence s with s(n) = an is often denoted s = (an)n∈N, or
simply s = (an) or s = (an)n. Two sequences (an) and (bn) are equal if and only if an = bn
for all n ∈ N.

Remark 2.4.2. (1) A sequence is ordered, and can have repetitions, and must not be
confused with the set of values {an}. For instance, the sequence s(n) = 2 for all n ∈ N
is an infinite sequence where all terms are equal to 2, and the sequences

(1,−1, 1,−1, 1,−1, . . .)

and

(−1, 1,−1, 1,−1, 1, . . .)

are distinct (although the sets of values of both sequences are the same set {−1, 1}).
In particular, to avoid confusion, we speak of the terms of the sequence, and say that

an is the n-term of the sequence (an)n∈N.
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(2) It is sometimes more convenient to order a sequence using N0, which amounts to
considering maps s : N0 → C. In this case, one writes s = (an)n∈N0 , or simply (an) if it
is clear that the first term is a0.

Example 2.4.3. (1) Constant sequences are defined by s(n) = a for all n, where
a ∈ C is a fixed number.

(2) [Arithmetic progressions]30 Let a and b be complex numbers. The sequence

(an+ b)n∈N0 = (b, a+ b, 2a+ b, . . .)

is called an arithmetic progression; the number a is called the common difference31 (be-
cause two consecutive terms

an+ b, a(n+ 1) + b

always differ by a).

(3) [Geometric progressions]32 Let a and b be complex numbers. The sequence

(ban)n∈N0 = (b, ab, a2b, . . .)

is called a geometric progression; the number a is called the common ratio (because, if a
and b are non-zero, two consecutive terms

ban, ban+1

have quotient equal to a).
(4) [Sequences defined by induction] Suppose that f : C → C (or f : R → R) is a

function. Given a ∈ C, we can then define a sequence (an) by starting with a and applying
f repeatedly: we define a1 = a and an+1 = f(an) for all n ∈ N. (So, for instance, we
have a3 = f(f(f(a))).) Such a sequence is said to be defined inductively (and the initial
term could also be a0).

For instance, arithmetic and geometric progressions are of this type: the sequence
(an+ b)n∈N0 can also be described by

a0 = b, an+1 = a+ an,

and the sequence (ban)n∈N0 can be described by

a0 = b, an+1 = aan.

The Fibonacci numbers of Example 1.2.3, (2), are also defined inductively, but this
time with two initial terms a1 = a2 = 1 and a rule of the form

an+2 = f(an, an+1),

where f(x, y) = x+ y. This can of course be generalized to other functions.
In general, it is however impossible to find a “simple” expression for the n-th term of

a sequence which is defined by induction (a formula for an that does not mention previous
terms of the sequence).

One can operate on sequences, by performing the operations for each value separately.
More generally:
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Definition 2.4.4. Let X be an arbitrary set. For functions f1 and f2 from X to C,
we denote by f1 + f2 the sum of the functions, defined by

(f1 + f2)(x) = f1(x) + f2(x)

for all x ∈ X, and by f1f2 the product, defined by

(f1f2)(x) = f1(x)f2(x).

If f2 is such that f2(x) 6= 0 for all x, then f1/f2 is defined by

(f1/f2)(x) = f1(x)/f2(x).

So, for instance, the sum of the arithmetic progression s1 = (2n)n∈N0 and of the
geometric progression s2 = (3n)n∈N0 is the sequence

s3 = (2n+ 3n)n∈N0 = (1, 5, 13, . . .)

Remark 2.4.5. In the language of linear algebra, the set E of complex-valued (resp.
real-valued) functions from X to C (resp. from X to R) is a complex (resp. real)
vector-space; the zero vector is the constant function always equal to 0.

Definition 2.4.6. A sequence s = (an) is bounded if and only if there exists a real
number R > 0 such that

|an| 6 R

for all n ∈ N.

Example 2.4.7. (1) An arithmetic progression (an + b)n∈N0 is bounded if and only
if a = 0. Indeed, if a = 0, then the sequence is constant; conversely, if a 6= 0, then using
the lower bound

|an+ b| > |a|n− |b|
we see that, for any real number R > 0, we have |an + b| > R for any integer n >
(R + |b|)/|a|.

(2) A geometric progression (ban)n∈N0 with b 6= 0 is bounded if and only if |a| 6 1.
Indeed, if |a| 6 1, then

|ban| = |b||a|n 6 |b|
for all n ∈ N0. Conversely, if |a| > 1, then we have |ban| = |b||a|n. If we write |a| = 1 + e
with e > 0, then by the binomial formula, we get

|ban| = |b|(1 + e)n = |b|
(

1 + ne+

(
n

2

)
e2 + · · ·

)
> |b|(1 + ne),

and this becomes > R when n > R/(e|b|).

2.5. Convergence of sequences of complex numbers

Reference: [2, 5.1, 5.2].
We are now ready to give the most important definition of analysis, that of convergence

of a sequence of real or complex numbers.
The intuition is the following: a sequence (an) converges to a real number a if “the

numbers an get closer and closer, and arbitrarily close, to a as n increases”. This means
that an, for n large enough, can be used to approximate a with arbitrary precision.

Example 2.5.1. When we write

π = 3.1415926535897932384626433832795028842 . . . ,

34



what we mean is that the sequence

(3, 3.1, 3.14, 3.141, 3.1415, . . .)

(whose terms are rational numbers, in that case) gives better and better approximations
of the real number π. This sequence converges to π.

In order to make this definition precise, we simply need to specify what “closer and
closer”, or “arbitrarily close”, really means. Intuitively, this means that the difference,
or rather the absolute value of the difference, is not too large, or becomes smaller as n
increases.

Definition 2.5.2. Let ε > 0 be a positive real number. Two complex numbers a and
b are at distance less than ε if |a− b| < ε.

Remark 2.5.3. If a and b are real numbers, this means that

a− ε < b < a+ ε,

which one can also summarize as saying that b is an approximation of a with error at
most ε.

Geometrically, if we view a as fixed, the set of complex numbers b at distance less
than ε of a is the “interior” of the disc centered at a with radius ε (this excludes the
circle, defined by |a− b| = ε).

This leads to the definition of convergence

Definition 2.5.4. Let s = (an)n∈N be a sequence of complex numbers and a ∈ C.
The sequence s converges to a as n tends to infinity, denoted

an −→ a, or lim
n→+∞

an = a,

if the following is true: for any positive real number ε, there exists an integerN , depending
on ε, such that

|an − a| < ε

whenever n > N . We then also say that a is the limit33 of the sequence (an).

As a matter of terminology, one sometimes also says that an tends to a as n→ +∞.

Remark 2.5.5. (1) The precise translation in a logical formula is that (an) converges
to a if and only if

(2.3) ∀ ε > 0, ∃ N ∈ N, ∀ n > N, |an − a| < ε

(2) It is intuitively clear that if a sequence (an) converges, then the limit a is unique: a
sequence cannot converge to two different numbers. Let us check this precisely: suppose
that (an) converges to a and b. Pick any ε > 0; there exist by assumption an integer N1

large enough so that |an − a| < ε/2 for n > N1, and an integer N2 large enough so that
|an − b| < ε/2 for n > N2. If n is the larger of N1 and N2, then we get

|a− b| 6 |a− an|+ |an − b| < ε/2 + ε/2 = ε

by the triangle inequality. So |a− b| is smaller than any positive real number ε, which is
only possible if |a− b| = 0 (otherwise, take ε = |a− b| to get a contradiction), or in other
words if a = b.

(3) It is important to remark that many sequences do not converge. In principle,
before speaking of the value of the limit, and attempting to use it in computations, one
must prove that it exists. Doing otherwise may lead to serious problems (as we will
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illustrate on some examples below). For instance, the sequence defined by an = (−1)n

does not converge to any real number (check this rigorously).
In general, unless stated differently, when we state a result in the form we have

lim
n→+∞

an = (something)

for some sequence (an), the meaning is that we claim first that the limit exists, and
secondly that it has the value on the right-hand side.

(4) A sequence of real numbers can only converge to a real limit (check this as an
exercise).

Example 2.5.6. (1) A constant sequence converges to the corresponding constant
value.

(2) Suppose that (an) and (bn) are sequences which coincide except for a finite number
of values of n: there exists an integer M such that an = bn for all n > M . Then the
sequence (an) converges if and only if (bn) does, and when this is the case, their limits
are the same.

To see this, suppose that (an) converges to a. Let’s prove that (bn) also does. Let
ε > 0 be given; by assumption there exists N ∈ N such that |an − a| < ε for n > N .
Now let N ′ be the larger of N and M ; for all n > N ′ we have

|bn − a| = |an − a| < ε.

This means that the sequence (bn) converges to a. Exchanging the role of the two se-
quences gives the converse assertion.

We express this property by saying that convergence is an asymptotic property of the
sequence; it doesn’t depend on the first terms of the sequence, but only on what happens
for n getting larger and larger; another asymptotic property is that of being bounded by
some R > 0, although the precise bound may depend on the first terms.

(3) In some sense, in order to understand convergence, we only need to understand
sequences of non-negative real numbers that converge to 0. Indeed, an arbitrary sequence
s = (an) of complex numbers converges to a if and only if the sequence (bn) with bn =
|an − a| converges to 0. This is simply because |bn − 0| = bn = |an − a|.

(4) In this respect, the following fact is then very useful: if (bn) converges to 0, and
if the sequence (cn) is bounded, then (bncn) also converges to 0. Indeed, suppose that
|cn| 6 R for all n, for some R > 0; then to have |bncn| < ε, it suffices to have |bn| < ε/R,
which is true for all n large enough.

A very important fact, which we will interpret also later as a case of continuity is
that we can operate easily on convergent sequences. Before stating this, we have two
elementary but very useful lemmas.

Lemma 2.5.7. Let (an) be a convergent sequence. Then (an) is bounded.

Proof. Let a be the limit of the sequence. Take ε = 1 in the definition; we find
N ∈ N such that |an − a| < 1 for all n > N . Then

|an| 6 |a|+ |an − a| 6 |a|+ 1

for all n > N . Let

R = max(|a1|, . . . , |aN−1|, |a|+ 1).

Then we get |an| 6 R for all n. �

Another lemma is very convenient to check convergence properties.
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Lemma 2.5.8 (Convergence by comparison). Let (an) be a sequence, a ∈ C, and (bn)
a sequence of non-negative real-numbers that converges to 0. Assume that there exists
M ∈ N such that for n >M , we have

|an − a| 6 bn.

Then (an) converges to a.

Proof. This follows from the definition: given any ε > 0, there exists N ∈ N such
that |bn| = bn < ε for n > N ; if n is at least the larger of M and N , then we get
|an − a| 6 bn < ε. �

Proposition 2.5.9. Let s1 = (an) and s2 = (bn) be sequences. Assume that s1
converges to a and that s2 converges to b.

(1) The sequence s1 + s2 converges to a+ b.
(2) The sequence s1s2 converges to ab.
(3) If b 6= 0, then there exists M ∈ N such that bn 6= 0 for all n > M ; the sequence

(cn) defined by

cn =

{
0 if n < M

an/bn if n >M

converges to a/b.
(4) If s1 and s2 are real sequences and an > bn for all n, then a > b.

Proof. For the proof of (1), let ε > 0. There exist by assumption an integer N1 so
that |an − a| < ε/2 for n > N1, and an integer N2 so that |bn − b| < ε/2 for n > N2. If
N is the larger of N1 and N2, then we get

|(an + bn)− (a+ b)| = |an − a+ bn − b| 6 |an − a|+ |bn − b| < ε

for n > N by the triangle inequality. This proves that (an + bn)n∈N converges to a+ b.
For the proof (2) and (3), we will use another presentation of the argument, which

is often much more convenient: for (2), we attempt to bound from above the quantity
|anbn − ab|, without assumption on n at first; we then try to check that the resulting
upper-bound tends to 0 as n→ +∞, and then use Lemma 2.5.8.

The trick in (2), which is suggested by the fact that we know that an − a and bn − b
are small for large n, is to write

ab− anbn = a(b− bn) + abn − anbn = a(b− bn) + (a− an)bn.

This expresses the sequence (anbn− ab)n∈N as the sum of the sequence (a(b− bn))n∈N
and the sequence ((a− an)bn)n∈N. But we claim that both of these converge to 0; if this
is true then (by part (1)), the sequence (anbn − ab)n∈N tends to 0.

But

|a(b− bn)| = |a||b− bn|, |bn(a− an)| = |bn||a− an|,
so the two sequences are expressed as the product of a bounded sequence (in the first
case, a constant sequence) multiplied by a sequence converging to 0; they converge to 0
by Example 2.5.6 (4).

We now prove (3). First, we need to show that the terms of the sequence (bn) are
non-zero when n is large; this is because they become close enough to b 6= 0. Precisely,
apply the definition of convergence with ε = 1

2
|b|: there exists M such that |bn− b| < 1

2
|b|

for n >M , and then we get

(2.4) |bn| > |b| − |b− bn| > 1
2
|b| > 0
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by the triangle inequality, which implies that bn 6= 0 for n >M .
Now, we proceed a bit as in (2): we have

an
bn
− a

b
=
anb− abn

bbn
.

This gives ∣∣∣an
bn
− a

b

∣∣∣ =
|anb− abn|
|bbn|

6
2

|b|2
|anb− abn|

for n > M , according to (2.4). But note that the sequence (anb − abn)n converges to 0,
by (1) applied to (anb) and (−abn) (which converge to ab and −ab, respectively, by (2));
then Example 2.5.6, (4), and Lemma 2.5.8, imply that an/bn → a/b.

Finally, to prove (4), we first assume that an > 0 for all n, and prove that a > 0.
Indeed, suppose that a < 0; let ε = |a|/2 > 0; then for n large enough we have |an−a| < ε,
and then

an < a+ ε = a+ 1
2
|a| = 1

2
a < 0,

which is a contradiction. �

Remark 2.5.10. A warning! Suppose that (an) and (bn) are convergent sequences
and that we know that an > bn for all n ∈ N; we can then only conclude in general that
a > b, and not that a > b. An example that illustrates this is an = 1/n and bn = 0; then
an > bn, but both sequences converge to 0.

We can also reduce in principle the study of limits of complex sequences to the case
of real ones.

Proposition 2.5.11. Let (an) be a sequence of complex numbers, and write an =
xn + iyn with xn and yn real. Let a = x+ iy ∈ C with x and y real.

(1) The sequence (an) converges to a if and only if xn → x and yn → y.
(2) If (an) converges to a, then (ān) converges to ā, and (|an|) converges to |a|.

Proof. Note first that

|an − a| 6 |xn − x|+ |i(yn − y)| = |xn − x|+ |yn − y|

for all n ∈ N, by the triangle inequality. If (xn) converges to x and (yn) converges to y,
then by Proposition 2.5.9, (1), the right-hand sequence converges to 0; by Lemma 2.5.8,
it follows that an → a.

Conversely, we use the inequalities

|xn − x| 6
√
|xn − x|2 + |yn − y|2 = |an − a|, |yn − y| 6 |an − a|

to conclude.
Since ān = xn − iyn, part (1) implies immediately the first part of (2). Then the

triangle inequality implies that

||an| − |a|| 6 |an − a|,

because

|a| − |an − a| 6 |an| 6 |a|+ |an − a|,

so that the second part follows. �
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2.6. Some basic limits

The next result gives some of the most fundamental examples of convergence; they
should be kept in mind in particular as good tools for applications of Lemma 2.5.8.

Proposition 2.6.1. We have the following limits:

lim
n→+∞

1

nk
= 0 for all k > 0,(2.5)

lim
n→+∞

an = 0 if |a| < 1,(2.6)

lim
n→+∞

nk

bn
= 0 if k ∈ R and |b| > 1,(2.7)

lim
n→+∞

an

n!
= 0 for all a ∈ R.(2.8)

So for instance, we get

1√
n
→ 0,

1

2n
→ 0,

n3

2n
→ 0,

4n

n!
→ 0.

Proof. The limit (2.5) is left as an exercise. The case of (2.6) follows from (2.7)
applied with k = 0 and b = 1/a. The limit (2.7) is easiest to prove using some later
results, so we omit the proof for the moment (see Example 2.8.4). Finally, we prove (2.8)
by noting that ∣∣∣an

n!

∣∣∣ =
|a| · · · |a|
1 · 2 · · ·n

.

where the numerator has n factors. Let N be an integer larger than 2|a|. Then for n > N ,
we get ∣∣∣an

n!

∣∣∣ =
|a|N

N !

1

2n−N
=

(2|a|)N

N !

1

2n
,

which converges to 0 according to (2.6), since the first factor is a constant sequence. �

Example 2.6.2. We can now compute many other limits. For instance, let k 6 l be
positive integers, let (a0, . . . , ak) be complex numbers with ak 6= 0, and let (b0, . . . , bl) be
complex numbers with bl 6= 0. Then

(2.9) lim
n→+∞

akn
k + · · ·+ a1n+ a0

blnl + · · ·+ b1n+ b0
=

{
ak
bl

if k = l

0 if k < l.

To see this, we use a useful trick: we write

akn
k + · · ·+ a1n+ a0 = akn

k
(

1 +
ak−1
ak

1

n
+ · · ·+ a0

ak

1

nk

)
,

bln
l + · · ·+ b1n+ b0 = bln

l
(

1 +
bl−1
bl

1

n
+ · · ·+ b0

bl

1

nl

)
This allows us to write

akn
k + · · ·+ a1n+ a0

blnl + · · ·+ b1n+ b0
=
ak
bl

1

nl−k
cn
dn

with

cn = 1 +
ak−1
ak

1

n
+ · · ·+ a0

ak

1

nk
, dn = 1 +

bl−1
bl

1

n
+ · · ·+ b0

bl

1

nl
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By Proposition 2.5.9, (1) and (3), and (2.5), we see that

lim
n→+∞

cn
dn

= 1.

By (2.5) again if l > k, and n0 = 1 if k = l, we have

lim
n→+∞

ak
bl

1

nl−k
=

{
0 if l > k
ak
bl

if l = k.

Since this limit exists, using once more Proposition 2.5.9, (2), we deduce that

lim
n→+∞

akn
k + · · ·+ a1n+ a0

blnl + · · ·+ b1n+ b0
= lim

n→+∞

ak
bl

1

nl−k
,

which is what we claimed.
We will see later that when k > l, the sequence in the left-hand side of (2.9) does not

converge.

2.7. The decimal expansion of a real number

We will now explain how the decimal expansion of a real number may be constructed
and interpreted as a “natural” sequence of rational numbers converging to a given real
number.

Let
D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

This is the finite set of (decimal) digits.
Let a ∈ R+. There exists a unique element of N0, denoted bac, such that

bac 6 a < bac+ 1.

Let a′ = a− bac, so that 0 6 a′ < 1.
We now construct inductively sequences (dn)n∈N and (an)n∈N, with dn ∈ D and

an ∈ Q ∩ [0, 1[, such that

(2.10) an 6 a′ < an + 10−n

for all n ∈ N.
For n = 1, we let d1 ∈ D be the unique d ∈ D such that

a′ ∈
[ d

10
,
d+ 1

10

[
,

(note that these intervals have no common points, and that their union is the interval
[0, 1[), and we denote a1 = d1/10. We then have a1 6 a′ 6 a1 + 1/10, so the first step of
the induction is done.

If we assume that dn and an are defined and that (2.10) holds, we define dn+1 to be
the unique d ∈ D such that

a′ ∈
[
an +

d

10n+1
, an +

d+ 1

10n+1

[
(in other words, knowing that

an 6 a′ < an + 10−n,

we split the interval of “uncertainty” in ten equal size sub-intervals, and look in which of
these a′ can be found). We put

(2.11) an+1 = an +
dn+1

10n+1
.
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By construction, we have then

an+1 6 a′ < an +
dn+1 + 1

10n+1
= an+1 +

1

10n+1
,

veryfing (2.10) at the next step, and so the inductive construction is done.
The construction shows that we can express an in the more concise more

an =
d1
10

+ · · ·+ dn
10n

,

or

an = 0.d1 · · · dn
in decimal notation.

Theorem 2.7.1 (Decimal expansion). The sequence (bac + an)n∈N, where (an) is
defined above, converges to a.

Proof. According to the property (2.10) in the construction of the decimal expan-
sion, we have

|bac+ an − a| = |an − a′| 6
1

10n

for all n ∈ N. Since the sequence (10−n) tends to 0 (by (2.6)), we deduce the convergence
from Lemma 2.5.8. �

We will say that the integral part bac and the sequence (dn)n∈N define the decimal
expansion of a non-negative real number a. These are uniquely determined; if a ∈ R is
negative, then we also need to recall the minus sign.

Example 2.7.2. Let a =
√

2. Since the function f(x) = x2 on R+ is increasing, we
have 1 6 a < 2. So bac = 1 and a′ =

√
2− 1.

By computing (1 + d/10)2 for d ∈ D and comparing it with 2, we see that

1 +
4

10
6 a < 1 +

5

10
,

and then computing (1 + 4/10 + d/100)2, we get the next “digit”

1 +
4

10
+

1

100
6 a < 1 +

4

10
+

2

100

(because the square of 1.41 is 6 2, but that of 1.42 is > 2).
This can be continued indefinitely, and with enough patience, one gets the first 28

digits of
√

2:

1.4142135623730950488016887242 6
√

2 < 1.4142135623730950488016887242 + 10−29.

This method of approximating
√

2 is relatively quick: as an iterative algorithm, each
step adds one digit of precision, which means that the error is divided by 10 approx-
imately. We will later see that there are even quicker algorithms (a form of Newton’s
method, although it was known much earlier than the general version), where (roughly
speaking) each step multiplies the number of correct digits by 2; see Proposition 2.8.5
and Example 5.4.11.

In terms of the decimal expansion of real numbers, convergence of a real sequence (an)
to a can be thought of as follows: for any given number P ∈ N of “digits of precision”,
all the numbers an have the same integral part banc and the same first P digits when n
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is larger than some N ∈ N. This is because the integral part and the first P digits of an
“almost always” coincide with those of a if

|an − a| < 10−P−1,

which occurs for all n large enough. (This does not work all the time, because of examples
like 0.999 and 1.001, which are very close, but have no common digit, but it is nevertheless
a good intuition.)

2.8. Proving convergence without knowing the limit

If we want to use convergent sequences to construct interesting real numbers, a diffi-
culty is that the definition of convergence requires to know what is the limit in advance.

There are two very important convergence conditions that do not require to know the
limit. The first is very simple, but does not apply to all convergent sequences. The second,
called the Cauchy Criterion, is a general condition that is equivalent to the convergence
of a sequence of complex numbers.

The first one concerns monotone sequences.

Definition 2.8.1. A sequence (an) of real numbers is non-decreasing if an 6 an+1

for all n. It is non-increasing if an+1 6 an for all n. If it is either non-decreasing or
non-increasing, we say that it is monotone.

Remark 2.8.2. (1) Many sequences are not monotone – a simple example is an =
(−1)n.

(2) If (an) is non-decreasing, then we get by induction

an 6 am

for all m > n. If (an) is non-increasing, then similarly, we get

an > am

for m > n.

Theorem 2.8.3. A monotone sequence s = (an) of real numbers converges if and only
if it is bounded. In fact, if s is non-decreasing, then

lim
n→+∞

an = sup{an | n ∈ N},

and if s is non-increasing, then

lim
n→+∞

an = inf{an | n ∈ N}.

Proof. We prove the result for a non-decreasing sequence. We know that a conver-
gent sequence is bounded. Conversely, assume that (an) is non-decreasing and bounded.
The set of values A = {an} is then bounded and non-empty, hence its supremum
a = sup(A) exists by Theorem 2.3.1. We now prove that (an) converges to a. Let
ε > 0 be given. Then a − ε < a, so that a − ε is not an upper-bound of the set A; this
means that there is some element of A, say aN ∈ A, such that a − ε < aN 6 a. Since
(an) is non-decreasing, for any n > N , we get

a− ε < aN 6 an 6 a

(the second inequality is because a is an upper-bound of A), so |a− aN | < ε. �
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Example 2.8.4. (1) Let k ∈ R and b ∈ C with |b| > 1. Let

an =
nk

bn

for n ∈ N. We want to prove that (an) converges to 0 (which establishes (2.7)). It is
enough to prove that the sequence

|an| =
nk

|b|n

converges to 0, which means that (by replacing b with |b|) we may assume that b is a real
number > 1. We can also replace k by a larger number (which only makes |an| larger)
and therefore assume that k ∈ N.

For n ∈ N, we get
an+1

an
=

1

b

(n+ 1

n

)k
.

According to (2.9), we have then

an+1

an
→ 1

b
< 1

as n → +∞. In particular, there exists M ∈ N and c < 1 such that an+1/an 6 c for
an > M , or equivalently 0 6 an+1 6 can 6 an for n > M . Consequently, the sequence
(an) is non-increasing for n > M , and (because convergence is an asymptotic property)
it converges to the infimum a of the values of an for n > M , by Theorem 2.8.3. We
have a > 0 since the terms of the sequence are non-negative. The inequality an+1 6 can
for n >M implies then

a 6 can

for all n > M . Since c > 0, this means that c−1a 6 an for all n > M , hence c−1a 6 a,
which is absurd unless a = 0 (because c−1 > 1).

(2) Let A ⊂ R be a non-empty set of real numbers which has an upper-bound and
let a = sup(A). We can construct as follows a sequence (an), with values in A, converging
to a.

First if a ∈ A (so A has a maximum), then we can put an = a for all n.
So assume that a /∈ A. For n ∈ N, the number a − 1/n cannot be an upper-bound

of A, so there exists an ∈ A such that

a− 1

n
< an < a.

This implies that |an − a| < 1/n, so that (an) converges to a by Lemma 2.5.8 and (2.5).
(3) We show how to use Theorem 2.8.3 to construct the square root of any non-

negative real number c. It suffices to do this when c > 1. Indeed, if we can do this, then
for c < 1, we find a such that a2 = 1/c, and then (1/a)2 = c.

Proposition 2.8.5. Let c > 1 be a real number. Define a sequence (an) by a1 = c
and

an+1 =
1

2

(
an +

c

an

)
.

Then (an) is non-increasing and its limit a satisfies a2 = c.

Proof. We first prove that
1 6 an 6 c

for all n ∈ N (in particular, this means that an 6= 0, so an+1 can always be defined).
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We proceed naturally by induction. We have 1 6 a1 6 c. Suppose that 1 6 an 6 c.
Then

an+1 =
1

2

(
an +

c

an

)
6

1

2
(c+ c) = c

an+1 =
1

2

(
an +

c

an

)
>

1

2
(1 + 1) = 1,

which concludes the proof by induction.
Next, we claim that a2n > c for all n ∈ N. This is true for n = 1 since a21 = c2 > c

(because c > 1).
Now we can check that (an) is non-increasing. We have

an+1 − an =
1

2

( c
an
− an

)
=
c− a2n

2an
6 0

by what we just proved.
By Theorem 2.8.3, the sequence (an) converges. Let a be its limit. The sequence

(an+1) also converges to a; but

an+1 =
1

2

(
an +

c

an

)
,

and the right-hand side, according to Proposition 2.5.9, (3) and (1), converges to 1
2
(a +

c/a). Since the limit of a convergent sequence is unique, this means that

a =
1

2
(a+

c

a

)
,

which translates to a2 = c. �

For instance, let c = 2. Then the first few steps of the sequence are a1 = 2 and

a2 =
3

2

a3 =
17

12

a4 =
577

408
= 1.4142156862745098039215686274509803922 . . .

a5 =
665857

470832
= 1.4142135623746899106262955788901349101 . . . ,

whereas √
2 = 1.4142135623730950488016887242096980786 . . .

Note that |a4 −
√

2| < 3 · 10−6 and |a5 −
√

2| < 2 · 10−12, which displays the remarkable
efficiency of this algorithm: the number of correct digits is roughly multiplied by 2 when
going from an to an+1.

The second criterion for convergence “without knowing the limit” is due to Cauchy.
It can be motivated by the observation that if a sequence (an) of real numbers converges
to a, then for n and m both large, the numbers an and am are very close: if n > N and
m > N , where N is such that |an − a| < ε for n > N , then

|an − am| 6 |an − a|+ |a− am| < 2ε.

The inequality |an − am| < 2ε does not refer to a, which makes the following definition
possible:
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Definition 2.8.6. A Cauchy sequence (an) is a sequence of complex numbers which
has the above property: for any ε > 0, there exists N ∈ N such that if n and m are
integers both larger or equal to N , we have

|an − am| < ε.

Remark 2.8.7. In terms of logical formulas, this means that (an)n∈N is a Cauchy
sequence if and only if

∀ ε > 0, ∃ N ∈ N, ∀ n > N, ∀ m > N, |an − am| < ε.

Up to replacing ε by ε/2 in the argument preceeding the definition, we see that it
means that any convergent sequence is a Cauchy sequence. The remarkable fact (which
is in fact also equivalent to completeness) is that the converse is true:

Theorem 2.8.8 (Cauchy). A sequence (an) of complex numbers is convergent if and
only if it is a Cauchy sequence.

We only give here an intuitive explanation of this important fact, in order to show
that it is not so mysterious; a precise proof will be given in the next section.

We assume that all an are non-negative real numbers, and that they form a Cauchy
sequence. We then look at the decimal expansions of the numbers an, and we observe
that for an integer P ∈ N, the condition

|an − am| < 10−P−1

“almost implies” that the P first digits (and integral parts) of an and am are the same. The
Cauchy condition implies that, whatever the choice of P , this will be the case whenever
n and m are sufficiently large. But this means that we can “read” this common integral
part, and these common digits, by looking at larger and larger P . Then we can construct
the real number a with this integral part and these digits (this will be made precise later
on); it shouldn’t be surprising then that (an) converges to a.

Proving that a sequence (an) is a Cauchy sequence can seem difficult because there
are so many parameters (ε, N , n and m) in the definition. In practice, the simplest
approach is often to start with arbitrary integers m and n, and attempt to find a good
upper-bound for |am − an|. For symmetry reasons, it is possible to assume that m > n,
which can be helpful; one then attempts to find a bound of the form

|am − an| 6 bn

where bn is independent of m, and we know that bn → 0. Indeed, if this is the case,
then for any ε > 0, we find N ∈ N such that |bn| = bn < ε for n > N . Then if both m
and n are integers > N , then either m > n, in which case we get |aman| 6 bn < ε by
the above assumption, or n > n, in which case we exchange the role of m and n and get
|an − am| 6 bm < ε.

Example 2.8.9. (1) The following is an important example of application of the
Cauchy criterion:

Proposition 2.8.10. Let c be a real number with 0 6 c < 1. Suppose that (an) is a
sequence of complex numbers such that

|an+2 − an+1| 6 c|an+1 − an|
for all n ∈ N. Then the sequence (an) is convergent.

Proof. Let n ∈ N and m > n be given. Since the information we have concerns
the distance between consecutive terms of the sequence, we naturally split the difference
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am − an in intermediate steps ak+1 − ak with n 6 k 6 m − 1; then we can reduce these
to an+1 − an by induction:

|ak+1 − ak| 6 c|ak − ak−1| 6 · · · 6 ck−n|an+1 − an|.

This leads to

am − an = (am − am−1) + · · ·+ (an+1 − an) =
m−1∑
k=n

(ak+1 − ak),

and by the triangle inequality to

|am − an| 6
m−1∑
k=n

ck−n|an+1 − an|

= |an+1 − an|
(

1 + c+ · · ·+ cm−n−1
)

=
1− cm−n

1− c
|an+1 − an|

by (1.1). Since 0 6 c < 1, we have 1− cm−n 6 1, so this means that

|am − an| 6
1

1− c
|an+1 − an|

whenever n 6 m. Note that m does not appear anymore on the right-hand side. This
means that we can obtain the Cauchy condition as soon as we prove that an+1−an tends
to 0 as n→ +∞. We do this using induction again:

|an+1 − an| 6 c|an − an−1| 6 cn−1|a2 − a1|.

Since the sequence (cn) tends to 0 by (2.7), we are done. �

(2) The Cauchy criterion can be a useful way to prove that a sequence does not
converge. One of the most important examples is the following. We define an for n ∈ N
by

an = 1 +
1

2
+ · · ·+ 1

n
=

n∑
k=1

1

k
.

We claim that (an) diverges. To see this, we compute a2n − an, and show that it is
not very small, however large is. Precisely, we get

a2n − an =
1

2n
+ · · ·+ 1

n+ 1
> n · 1

2n
=

1

2
.

This is not compatible with the Cauchy criterion: indeed, with ε = 1
2
, this would imply

that there exists N ∈ N such that, for all n > N and m > N , and in particular for n > N
and m = 2n > N , we have

|am − an| = a2n − an <
1

2
,

which we just saw is not the case.
Since, we have an+1 > an, this means by Theorem 2.8.3 that the sequence (an) is not

bounded, so that for any R > 1, there exists n ∈ N such that an > R. We will later be
able to approximate the smallest value of n for which this is true, as a function of R.
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2.9. Subsequences

The sequence (1,−1, 1,−1, . . .) is an example of a bounded sequence of real numbers
that does not converge. However, if we only look at the odd-numbered terms (1, 1, 1, . . .),
we have a constant sequence, which is convergent. Remarkably, a version of this fact
holds for any bounded sequence of complex numbers.

First we explain what is the most general form of “taking the odd-numbered terms”.

Definition 2.9.1 (Subsequence). Let s = (an)n∈N be a sequence of complex numbers.

A sequence (bk)k∈N is called a subsequence34 of s if there exist integers

(2.12) n1 < n2 < · · · < nk < · · ·
such that

bk = ank

for all k ∈ N.
If the sequence (bk) converges, then its limit is called an accumulation point35 or limit

point of s.

We note (since it is sometimes useful) that the condition (2.12) implies (by induction
on k) that nk > k for all k ∈ N.

Example 2.9.2. (1) Let an = 2n. Among the subsequences of (an), we have

(22k)k∈N, (22k+1)k∈N, (22k)k∈N

with, respectively, bk = a2k, bk = a2k+1 and bk = a2k .
On the other hand, the sequence

(bk) = (2, 8, 4, 32, 16, . . .)

is not a subsequence of (an): although each term bk is a term of the original sequence,
bk = ank

, the integers nk do not satisfy the requirement (2.12); for instance, b2 = a3 and
b3 = a2, so n2 = 3 and n3 = 2.

(2) The sequence (an)n∈N = ((−1)n)n∈N has the constant sequences 1 and −1 as
subsequences, in fact in many different ways: for instance 1 = a2k+1 = a4k+1, and −1 =
a2k = a2k for all k ∈ N. In particular, 1 and −1 are both accumulation points of (an)
(one can check that they are the only ones).

(3) If a sequence s = (an) converges to a ∈ C, then a is the unique accumulation point
of s. This should be intuitively clear: the terms of the sequence approach a, and cannot
be made to approach a different limit even by taking only some of them. Rigorously,
let (bk) be a convergent subsequence of s, with bk = ank

. Since nk > k, we see that for
any given ε > 0, if N ∈ N is such that |an − a| < ε for all n > N , then we also get
|bk − a| = |ank

− a| < ε for k > N , since nk > k > N .
(Remarkably, the converse is true for bounded sequences: a bounded sequence which

has only one accumulation point a converges to a; see Proposition 2.9.5.)
(4) A sequence (an) may well have infinitely many accumulation points. For instance,

one can show that the set of accumulation points of the sequence (cos(n))n∈N, which is
bounded with values in the closed interval I = [−1, 1], is equal to the whole interval I.

Now we state the important theorem concerning existence of accumulation points.

Theorem 2.9.3 (Bolzano–Weierstrass). Let (an)n∈N be a bounded sequence of complex
numbers. Then (an) has at least one accumulation point.
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Proof. We begin with the case of a real sequence, which is more intuitive. Let R > 0
be such that |an| 6 R for all n ∈ N. The idea is to apply successive dissections : we first
split the interval [−R,R] in two equal subintervals, and note that at least one of the
two subintervals must contain infinitely many terms of the sequence; then we split this
subintervals into two even smaller ones, and iterate, finding smaller and smaller intervals
that contain infinitely many terms of the sequence – this ends up with an accumulation
point.

To be precise, let I1 = [α1, β1] with α1 = −R and β1 = R, so an in in I1 for all n ∈ N.
We construct by induction a sequence of intervals

Ik = [αk, βk],

and a sequence of integers nk, with

(2.13) αk−1 6 αk 6 βk 6 βk−1, βk − αk =
1

2
(βk−1 − αk−1), nk > nk−1, ank

∈ Ik

if k > 2, and with the property that there are infinitely many integers n with an ∈ Ik.
Taking n1 = 1, we have already done this for k = 1; now assume that Ik has been

constructed with the property (2.13). We have

Ik =
[
αk,

βk + αk
2

]
∪
[βk + αk

2
, βk

]
,

and among the integers n with an ∈ Ik, there must be infinitely many with

an ∈
[
αk,

βk + αk
2

]
,

or infinitely many with

an ∈
[βk + αk

2
, βk

]
(otherwise, there would only be finitely many n with an ∈ Ik). Let Ik+1 be one of these
two intervals, chosen so that it has this property; its endpoints αk+1 and βk+1 satisfy

αk 6 αk+1 6 βk+1 6 βk,

and the length βk+1 − αk+1 of Ik+1 is half of the length of Ik. Finally, since infinitely
many n exist with an ∈ Ik+1, we can choose nk+1 be be any integer larger than nk with
ank+1

∈ Ik+1.
This concludes the inductive definition. Now let bk = ank

for k ∈ N; the sequence
(bk) is a subsequence of (an) by construction, with bk ∈ Ik for all k ∈ N.

By (2.13), the sequence (αk) is non-decreasing and bounded by R:

−R = α1 6 α2 6 · · · 6 αk 6 βk 6 β1 = R.

Hence the sequence (αk) has a limit α by Theorem 2.8.3. Similarly the sequence (βk) is
non-increasing and bounded, so it has a limit β.

Since β1 − α1 = 2R, we have βk − αk = 22−kR for k ∈ N by (2.12) and induction. So
by Proposition 2.5.9 and (2.6), we get β − α = 0. Finally, since bk ∈ Ik, we have

|bk − α| 6 βk − αk = 22−kR,

which implies that (bk) also converges to α.
This concludes the proof of the theorem for real sequences. If (an) is a complex

sequence, then we proceed as follows: since the sequence (Re(an))n is a bounded sequence
of real numbers, there is, by what we just saw, a convergent subsequence (bk) with
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bk = Re(ank
); denote its limit by b. Now the sequence (Im(ank

))k is also a bounded
sequence of real numbers; we find therefore a convergent subsequence (cl)l∈N, with

cl = bkl

for some integers kl; let c ∈ R be its limit.
Now the sequence (dl) = (ankl

)l∈N is still a subsequence of (an); its real part is a

subsequence of (bk), hence also converges to b, while its imaginary part was chosen to
converge to c. By Proposition 2.5.11, it follows that dl converges to a + ib. This is
therefore an accumulation point of the sequence (an). �

Remark 2.9.4. An unbounded sequence can have accumulation points: for instance,
let

an = (1 + (−1)n)2n

for n ∈ N, which defines sequence

(0, 8, 0, 32, 0, 128, 0, . . .).

This sequence is not bounded (because it contains the terms 22n+1, which are not bounded),
but clearly admits 0 as accumulation point.

As an application of the Bolzano–Weierstrass Theorem, we can now prove Theo-
rem 2.8.8.

Proof of Theorem 2.8.8. We need to prove that all Cauchy sequences converge.
We will do this by combining two steps:

Step 1. Any Cauchy sequence (an) is bounded.
Step 2. If a ∈ C is an accumulation point of a Cauchy sequence (an), then (an)

converges to a.
By Step 1, Theorem 2.9.3 implies that a Cauchy sequence (an) has an accumulation

point a; then by Step 2, the sequence converges to a.
We now complete Step 1. Let (an) be a Cauchy sequence. Let ε = 1 and let N ∈ N

be such that |an − am| < 1 for all n > N . Then for n > N , we get

|an| 6 |an − aN |+ |aN | 6 |aN |+ 1,

by the triangle inequality; therefore, for all n ∈ N, we have

|an| 6 max(|a1|, . . . , |aN |, |aN |+ 1).

Finally, we complete Step 2. Let (an) be a Cauchy sequence, and a ∈ C an accumu-
lation point of (an). Let (bk) with bk = ank

be a subsequence converging to a.
We now need to prove that (an) converges to a. Fix ε > 0. For any integer n ∈ N,

we use another parameter k ∈ N to write

|an − a| 6 |an − bk|+ |bk − a|.
We need to select k carefully. First, since the sequence (an) is a Cauchy sequence,

there exists N ∈ N such that |an − am| < ε/2 if n and m are > N . In particular
|an − bk| < ε/2 if n > N and if k > N (since then nk > N).

Secondly, since (bk) converges to a, there exists K ∈ N such that |bk − a| < ε/2
if k > K. If we take for k the fixed value k = max(K,N), then we see that

|an − a| <
ε

2
+
ε

2
= ε

for any n > N . This concludes the proof of convergence. �

We finish this section by proving a fact we mentioned earlier in a remark.
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Proposition 2.9.5. Let (an)n∈N be a bounded sequence of complex numbers. If the
sequence has a unique limit point a, then

lim
n→+∞

an = a.

Proof. We show that the negation of the statement leads to a contradiction. So we
need to write the negation of the formula (2.3); using the rules in Section 1.1.3, we obtain

∃ ε > 0, ∀ N ∈ N, ∃ n > N, |an − a| > ε.

In words: for some fixed ε > 0, we can find for any N an integer larger than N such that
an is at distance at least ε from a.

We deduce from this that there is a subsequence (bk) of the sequence (an) which
satisfies

|bk − a| > ε

for all k ∈ N (by induction on k: applying the negation property for N = 1 first, then
N = n1 + 1, etc, one constructs the sequence nk so that bk = ank

satisfies this property).
Since (an) is bounded, so is the subsequence (bk); according to Theorem 2.9.3, the

sequence (bk) has a convergent subsequence; let b be its limit; it is also a limit point of
the original sequence (an). But the inequality |bk−a| > ε implies (by replacing bk by the
terms of the convergent subsequence and using Proposition 2.5.11 and Proposition 2.5.9)
that |b− a| > ε > 0. So b is an accumulation point of the original sequence which is not
equal to a, which contradicts the assumption. �

2.10. Series

Many sequences (sn)n∈N are defined in such a way that we have s1 = a1 and

sn+1 = sn + an+1 for n > 1,

where (an)n∈N is another sequence of complex numbers. In such a case, we say that

the sequence (sn) is the series36 with terms (or summands) (an), and we denote the
sequence (sn) by the expression

+∞∑
n=1

an.

By induction, we see that the n-th term of the sequence can be expressed in the form

sn = a1 + a2 + · · ·+ an =
n∑
k=1

ak,

and the sn are called the partial sums of the series.
If the sequence (sn) converges, then its limit s ∈ C is called the sum of the series with

terms (an), and we write
+∞∑
n=1

an = s.

As before, when we write such a formula, with a complex number in the right-hand side,
we first mean that the series converges, and then that its sum is the number s. We may
also have series with terms starting with a0, which we write

+∞∑
n=0

an.
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Example 2.10.1. (1) The decimal expansion of a real number a is of this form,
according to (2.11); Theorem 2.7.1 can be restated, for a > 0, by saying that

a = bac+
+∞∑
i=1

di10−i

where the sequence (di) is the sequence of digits defined in Section 2.7.
(2) An important example of convergent series is the geometric series

+∞∑
n=0

an

where |a| < 1. Indeed, by (1.1), the partial sums are

1 + a+ · · ·+ an =
1− an+1

1− a
for n ∈ N. Since an+1 → 0 by (2.6), we deduce that the series converges and that

+∞∑
n=0

an =
1

1− a
.

Remark 2.10.2. Conversely, we can interpret any sequence (an) also as a series, by
writing

an = (an − an−1) + · · ·+ (a3 − a2) + (a2 − a1) + a1 = a1 +
n∑
k=1

(ak − ak−1).

Translating directly the properties of convergence of sequences, we obtain immediately
the following results:

Proposition 2.10.3. Let
∑
an and

∑
bn be convergent series, with sums a and b,

respectively. Then

lim
n→+∞

an = 0

+∞∑
n=1

(an + bn) = a+ b

+∞∑
n=1

(zan) = za for z ∈ C

if an 6 bn for all n ∈ N then a 6 b

+∞∑
n=1

ān = ā.

Moreover, if we write xn = Re(an) and yn = Im(an), then
+∞∑
n=1

xn = Re(a),
+∞∑
n=1

yn = Im(a).

Proof. For the first point, we note that in terms of the partial sums (sn), we have

an = sn − sn−1.
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Both sequences (sn) and (sn−1) converge to a, so by Proposition 2.5.9, (1), the sequence
(an) converges to a− a = 0.

The second statement is also a consequence of the same part of Proposition 2.5.9,
and the third corresponds to multiplying a convergent sequence with a constant. For the
fourth, note that the assumption implies that

n∑
k=1

ak 6
n∑
k=1

bk

for all n ∈ N, hence a 6 b by Proposition 2.5.9, (4). And the last parts come from
Proposition 2.5.11. �

Remark 2.10.4. (1) Note that there is no obvious representation of the product

ab =
(+∞∑
n=1

an

)(+∞∑
n=1

bn

)
as a series, so the second formula above is restricted to multiplying by a fixed number z.
We will see later some cases where the product of two series has a convenient expression
as a single series.

(2) It is important to remember that the converse of the first property does not hold :
there are series

∑
an, with an → 0, which are not convergent. We already saw this in

Example 2.8.9, (2), where an = 1/n: the series

∞∑
n=1

1

n

does not converge.

The analogue of Theorem 2.8.3 is very simple for series: since the difference of con-
secutive partial sums sn+1 − sn is just an+1, this is the sign of the terms that matters.

Theorem 2.10.5. Let (an) be a real sequence with an > 0 for all n > 1. Then the
series

∑
an converges if and only if its partial sums are bounded, i.e, if there exists R > 0

such that
a1 + · · ·+ an 6 R

for all n ∈ N.

When an > 0 for all n, we will often write

+∞∑
n=1

an < +∞,
+∞∑
n=1

an = +∞

to indicate that the series is convergent or not (in the second case, we say that it is
divergent). So for instance, we write

+∞∑
n=1

1

n
= +∞.

In the application of Cauchy’s Criterion to series, we need to consider differences
|sn − sm|. It is here usually most convenient to assume that n > m; then

sn − sm = an + · · ·+ am+1 =
n∑

k=m+1

ak.
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Checking Cauchy’s Criterion requires us to estimate the modulus of these numbers
from above. And here there is a difference between series and general sequences, because
there is a natural first upper-bound, based on applying directly the triangle inequality:
we have

|sn − sm| 6 |an|+ · · ·+ |am+1| =
n∑

k=m+1

|ak|.

The right-hand side is also what is needed to apply the Cauchy Criterion, but to the
sequence of non-negative real numbers (|an|)n. This means that we obtain from Theo-
rem 2.8.8 and Theorem 2.10.5 the following very useful fact: if the terms (an) of a series
are such that

+∞∑
n=1

|an| < +∞,

then the series
∑
an converges. This is important enough that this condition has a name:

Definition 2.10.6. A series
∑
an is absolutely convergent37 if the series

+∞∑
n=1

|an|

converges.

So we have seen the first part of the following result:

Theorem 2.10.7. If the series
∑
an converges absolutely, then it converges, and

moreover we then have ∣∣∣+∞∑
n=1

an

∣∣∣ 6 +∞∑
n=1

|an|.

Proof. We need only check the last inequality (which is fairly natural, as an exten-
sion of the triangle inequality). For any n > 1, the usual triangle inequality gives∣∣∣ n∑

k=1

ak

∣∣∣ 6 n∑
k=1

|ak|.

Since the series
∑
an converges, the left-hand side converges to∣∣∣+∞∑

n=1

an

∣∣∣
by Proposition 2.5.11; the second converges to

+∞∑
n=1

|an|,

so that we conclude by applying Proposition 2.5.9, (4). �

Remark 2.10.8. In practice, we often prove absolute convergence by proving an
inequality

(2.14) |an| 6 bn

where the series
∑
bn is already known to be convergent. Indeed, this implies that

n∑
k=1

|ak| 6
n∑
k=1

bk 6
+∞∑
k=1

bk

53



for all n ∈ N, and we can apply Theorem 2.10.5. (We see here how the two methods of
proving convergence without knowing the limit complement each other.)

Conversely, note that if we know that

(2.15) |an| > bn

and that
∑
bn diverges, then the series

∑
an does not converge absolutely (but it may

still converge, as we will see in an example below).
In both cases, as usual, it is enough if there exists M ∈ N such that the comparison

bound (2.14) or (2.15) is true for all n >M .

Example 2.10.9. (1) As an example, consider an arbitrary sequence (dn)n∈N of dec-
imal digits, so dn ∈ {0, . . . , 9}. The series

+∞∑
n=1

dn10−n

is then convergent since |dn10−n| 6 9 · 10−n, and we know that the series
∑

10−n is
convergent (Example 2.10.1, (2)). This means that any infinite sequence of decimal
digits defines a number (in Section 2.7, we showed that any real number has a decimal
expansion, but it could have been the case that some sequences of digits are not possible).

There is however a small issue to remember when dealing with decimal expansions:
if we start with an arbitrary sequence (dn) of digits and define

a =
+∞∑
n=1

dn
10n

,

then the decimal digits of a, as defined in Section 2.7, do not always coincide with the
sequence (dn). For instance, take d1 = 0 and dn = 9 for all n > 2, so that

a = 0.09999999 . . .

We have then

a = 9
+∞∑
n=2

1

10n
=

9

100

+∞∑
n=0

10−n =
9

100

1

1− 1/10
=

9

90
=

1

10
,

and the sequence of digits for 1/10, according to Section 2.7, is

0, 1, 0, 0, . . .

(2) The series
+∞∑
n=1

(−1)n−1

n
= 1− 1

2
+ · · ·+ (−1)n

n
+ · · ·

is an example of a series which is convergent, but not absolutely convergent. To see this,
note first that |(−1)n/n| = 1/n, so the series does not converge absolutely. To prove the
convergence, we consider the odd and even partial sums:

un = s2n = 1− 1

2
+ · · ·+ 1

2n
, vn = s2n+1 = 1− 1

2
+ · · · − 1

2n+ 1
.

We then observe that

vn 6 vn+1 6 un+1 6 un
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holds for all n ∈ N: indeed

vn+1 − vn =
1

2n+ 2
− 1

2n+ 3
> 0, un+1 − un =

1

2n+ 2
− 1

2n+ 1
6 0,

un − vn =
1

2n+ 1
> 0.

The sequences (un) and (vn) are therefore monotone; moreover

v1 6 vn 6 un 6 u1,

for all n ∈ N, so these sequences are bounded, and converge to some limits u and v.
Since un− vn → 0, it follows that v = u. Now, each partial sum of the series is either s2n
or s2n+1 for some n, and then it follows that the whole series converges to u = v. (One
can show in this case that the sum of the series is log(2)).

It is easy to see that the argument above is more general, and leads to the following
useful result:

Proposition 2.10.10. Let (an) be a non-increasing sequence of positive real numbers
which converges to 0. The series

+∞∑
n=1

(−1)n−1an

converges.

This applies for instance to

+∞∑
n=1

(−1)n−1√
n

,
+∞∑
n=1

(−1)n−1

log(2n)
,

and many other series; such series are called alternating series.

Remark 2.10.11. It is important to know that absolutely convergent series are “much
better behaved” than series that are convergent, but not absolutely; for this reason, it
is best to try to prove absolute convergence of a series, even if it might be easier to just
prove convergence.

The following theorem gives a striking illustration of the difference of behavior of the
two kinds of series, and indicates that manipulating infinite sums without being careful
may be risky.

Definition 2.10.12. Let (an) be a sequence of complex numbers. A rearrangement
of the series

∑
an is a series

∑
bk for which there exists a bijective map f : N→ N such

that
bk = af(k)

for all k ∈ N.

For instance, the series

a2 + a1 + a4 + a3 + a6 + a5 + · · ·

where we exchange successive pairs of terms a2n+1 + a2n, or the series

a4 + a2 + a3 + a1 + a5 + a6 + a7 + · · · ,

where we only permute the first four terms, are rearrangements of
∑
an. On the other

hand, the series

a2 + a2 + a1 + a3 + a4 + · · · ,
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is not a rearrangement, because we are repeating the term a2 twice. Neither is

a2 + a3 + a4 + a5 + · · · ,
because we have omitted the term a1.

If we have a sum with finitely many terms, then a rearrangement doesn’t change its
value (since a+ b = b+ a for any complex numbers a and b), for instance

a1 + a2 + a3 + a4 = a4 + a2 + a1 + a3.

It is then maybe natural to expect that the same is true for “infinite sums”, which
are series.

However, this is only the case for absolutely convergent series. More precisely, one
can prove the following:

Theorem 2.10.13. (1) If
∑
an is absolutely convergent, then are rearrangement

∑
bk

is also absolutely convergent, and
+∞∑
n=1

an =
+∞∑
k=1

bk.

(2) If an ∈ R for all n and the series
∑
an is convergent, but not absolutely convergent,

then for all c ∈ R, there exists a rearrangement
∑
bk such that

+∞∑
k=1

bk = c.

There exist also rearrangements that are not convergent.

See [2, §6.3] for a discussion and a concrete example of a rearrangement of the series∑
(−1)n−1/n which has a different values as the series itself.

For every sequence (an) that is known to converge to 0, it is natural to ask whether the
series

∑
an is in fact convergent. We now do this with the examples of Proposition 2.6.1.

Proposition 2.10.14. (1) The series
+∞∑
n=1

1

nk

converges for k > 1 and diverges for k 6 1.
(2) The series

+∞∑
n=0

nk

bn

converges absolutely if |b| > 1 and k ∈ R.
(3) The series

+∞∑
n=0

an

n!

converges absolutely for all a ∈ C.

Proof. (1) The terms 1/nk are of course positive. Since we already know that
∑

1/n
diverges, and since 1/nk > 1/n if k 6 1, the comparison principle as in Remark 2.10.8
implies that

∑
1/nk diverges for k 6 1.

Now we show how to prove the convergence for k > 1 by bounding the partial sums and
using the convergence of the geometric series. Namely, for m > 1 such that n 6 2m − 1,
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we write

1 +
1

2k
+ · · ·+ 1

nk
6

2m−1∑
i=1

1

ik

and we split the right-hand side into the sums

2j+1−1∑
i=2j

1

ik

for 0 6 j 6 m− 1; for instance, for j = 2, this is

1

4k
+ · · ·+ 1

7k
.

In each sum the largest term is the first one, and there are 2j terms, so that

2j+1−1∑
i=2j

1

ik
6

2j

2jk
= bj

with b = 21−k. Since k > 1 by assumption, we have 0 < b < 1, and hence by (1.1), we get

n∑
i=1

1

ik
6

m∑
j=0

bj 6
1

1− b

for all n, which proves the convergence in that case.
(2) This is a generalization of the geometric series. Here we may observe that if c > 1

is such that 1 < c < |b| (for instance c = (1 + |b|)/2), then we have

lim
n→+∞

nk

(|b|/c)n
= 0

by (2.7). So there exists some integer N ∈ N such that

|n|k

bn
6

1

2

1

cn

for all n > N . Since the geometric series
∑

(1/c)n converges, we deduce by comparison
that

+∞∑
n=1

|n|k

bn
< +∞,

which proves the absolute convergence of
∑
nk/bn.

(3) We proceed in a similar way. By (2.8), we have

lim
n→+∞

(2|a|)n

n!
= 0,

so that there exists N ∈ N such that

|a|n

n!
6

1

2n

for all n > N . The series
∑

2−n converges, hence by comparison we deduce that the
series

∑
an/n! converges absolutely. �
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One can of course ask if the sums of the series above are interesting or simple numbers.
They are indeed all interesting; the function

ζ(k) =
+∞∑
n=1

1

nk

for k > 1 is known as the Riemann zeta function, and remains very mysterious; one knows
that

(2.16) ζ(2) =
+∞∑
n=1

1

n2
=
π2

6
,

for example, and similar formulas for ζ(2k), when k > 1 is an integer, but it is not known
if ζ(5) is a rational number or not.

Since it is a geometric series, we have
+∞∑
n=0

b−n =
1

1− 1/b
,

for |b| > 1; the series
∑
nkb−n also have “nice” expressions for all k ∈ N0.

Finally, the series
+∞∑
n=0

an

n!

has the value exp(a) = ea, as we will see later (in fact, this will be the rigorous definition
of the exponential function).

Example 2.10.15. To see how useful these basic examples are, together with the
comparison method, consider the series

+∞∑
n=0

cos(3 exp(14
√
πn!) + sin(3 cos(n3)))

n!
.

Without knowing anything about the numerator, except that | cos(x)| 6 1 for all x ∈ R,
we can conclude that ∣∣∣cos(3 exp(14

√
πn!) + sin(3 cos(n3)))

n!

∣∣∣ 6 1

n!

hence the series converges absolutely, and its sum has absolute value 6
∑

1/n!.

2.11. Convergence to infinity

Certain sequences (an) are not convergent but have a different type of very “regular”
behavior: the terms an become larger and larger as n increases. This is the subject of
the next definition:

Definition 2.11.1. Let (an) be a sequence of real numbers.
(1) We say that the sequence an converges to +∞, denoted

lim
n→+∞

an = +∞,

if for all real numbers T ∈ R, there exists N ∈ N such that an > T for all n > N .
(2) We say that the sequence an converges to −∞, denoted

lim
n→+∞

an = −∞,

if for all real numbers T ∈ R, there exists N ∈ N such that an < T for all n > N .
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Example 2.11.2. We have

lim
n→+∞

n = +∞, lim
n→+∞

−n2 = −∞.

Convergence to infinity can in fact be related to convergence to a real number.

Proposition 2.11.3. Let (an) and (bn) be sequences of real numbers.
(1) We have

lim
n→+∞

an = +∞

if and only if an > 0 for all n large enough and

lim
n→+∞

1

an
= 0.

(2) We have
lim

n→+∞
an = −∞

if and only if an < 0 for all n large enough and

lim
n→+∞

1

an
= 0.

Proof. We prove (1), the second part being similar. If an → +∞, then the definition
with T = 0 implies that an > 0 for n large enough; we then deduce that 1/an → 0 since,
when an > 0, the condition an > T is equivalent to 0 < |1/an| = 1/an < T−1. For any
ε > 0, we take T = ε−1, and obtain the definition of convergence to 0.

Conversely, if there exists M ∈ N such that an > 0 for n >M and if 1/an → 0, then
similarly, for a given T > 0, we take ε = T−1 in the definition of convergence to 0, and
obtain an N ∈ N such that

0 < an = |an| < T−1

for n > N , so that an > T for n > N . �

Remark 2.11.4. (1) It is possible that 1/an → 0 but that the sequence does not
converge to either +∞ or −∞. For instance, for an = (−1)n/n, we have 1/an = (−1)nn,
which does not have a constant sign for n large.

(2) It is not true in general that a sequence that is not convergent must converge to
either +∞ or −∞, as the example of an = (−1)n shows.

Example 2.11.5. (1) According to Proposition 2.5.9, we have for instance

lim
n→+∞

an

nk
= +∞, for a > 1 and k ∈ R,

lim
n→+∞

n!

an
= +∞, for a > 0.

(2) We can now complete Example 2.6.2 in the missing case. Precisely, let k 6 l be
positive integers, let (a0, . . . , ak) be complex numbers with ak 6= 0, and let (b0, . . . , bl) be
complex numbers with bl 6= 0. Assume that k > l. Then

lim
n→+∞

akn
k + · · ·+ a1n+ a0

blnl + · · ·+ b1n+ b0
=

{
+∞ if ak/bl > 0

−∞ if ak/bl < 0.

Indeed, we have first

lim
bln

l + · · ·+ b1n+ b0
aknk + · · ·+ a1n+ a0

= 0
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by Example 2.6.2. We then just need to check that, for n large enough, the sign of

akn
k + · · ·+ a1n+ a0

is the same as the sign of ak, and similarly for the other term and the sign of bl. This
is true because the other terms are smaller for n very large. Precisely, assume first that
ak > 0, the other case being similar. Since

lim
n→+∞

ak−1n
k−1 + · · ·+ a1n+ a0

aknk
= 0,

there exists N ∈ N such that

|ak−1nk−1 + · · ·+ a1n+ a0| 6
akn

k

2
,

for all n > N , from which the triangle inequality gives

akn
k + · · ·+ a1n+ a0 > akn

k − 1

2
akn

k > 0

for n > N .
(3) If (an) is a non-decreasing sequence, then we know by Theorem 2.8.3 that it

converges if and only if it is bounded from above. If that is not the case, then (an) is
unbounded, and we then have

lim
n→+∞

an = +∞.

Indeed, for any T ∈ R, there exists some N such that aN > T , since the sequence is
unbounded from above; since it is non-decreasing, we obtain

an > aN > T

for all n > N , which proves that an → +∞.

From Proposition 2.11.3, or directly, one can easily deduce the following result (where
we consider mostly sequences converging to +∞, leaving the analogues of convergence to
−∞ to the reader).

Proposition 2.11.6. Let (an) and (bn) be sequences of real numbers.
(1) If an → +∞ and (bn) is bounded from below, then

lim
n→+∞

(an + bn) = +∞.

(2) If an → +∞ and there exists δ > 0 such that bn > δ for all n, then

lim
n→+∞

anbn = +∞.

Proof. We establish (1) and leave (2) as an exercise (taking the inverse is there very
useful).

If (bn) is bounded from below, this means that there exists a real number R such that
bn > R. Then for any T ∈ R, we find N ∈ N such that an > T − R for all n > N , and
then we get an + bn > T for all n > N . �

Remark 2.11.7. Case (1) applies, for instance, if the sequence (bn) is convergent, or
if bn > 0 for all n. For instance, it follows that

lim
n→+∞

(n3 + 2

n2 + 1
+ 10000 · (−1)n

)
= +∞.

Of course, there are variants of these facts for sequences converging to −∞, which
we leave to the reader to state if needed (they can be reduced to the previous case by
replacing the terms of a sequence with their opposites).
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CHAPTER 3

Continuous functions

In this chapter, we begin the study of functions defined on R or on a subset of R,
and with real values. These are fundamental in analysis, and the most common functions
(such as square root, logarithm, exponential, trigonometric functions, etc) are of this
type.

3.1. Functions and graphs

Let I ⊂ R be a set of real numbers. We will call function on I a map f : I → R or
f : I → C (in the second case, we will usually speak of complex-valued functions). We
will assume most of the time that I is an interval, but this is not always necessary.

Example 3.1.1. (1) A polynomial function38 (or sometimes simply polynomial) is a
function f : R→ C such that

f(x) = akx
k + · · ·+ a1x+ a0

for some complex numbers (a0, . . . , ak), called the coefficients of the polynomial. If ak 6= 0,
then it is a polynomial function of degree k. If all coefficients are zero, then the function
is always zero, and doesn’t have a well-defined degree. If all coefficients are real numbers,
then f defines a function f : R→ R.

It is important to note that the degree and the coefficients are determined uniquely
by the function: it is not possible to have an equality

akx
k + · · ·+ a1x+ a0 = blx

l + · · ·+ b1x+ b0

for all x unless k = l and ai = bi for all i.
(2) Let f2 be a non-zero polynomial and let I be the set of real numbers where

f2(x) 6= 0 (this only excludes finitely many values of x). If f1 is a polynomial, then we
can define a rational function f : I → R by f(x) = f1(x)/f2(x).

(3) Let I be any subset of R. The function defined by

f(x) =

{
1 if x ∈ I
0 if x /∈ I

is called the characteristic function of the set I.

As in Definition 2.4.4, we can add and multiply functions defined on the same set I,
and we can divide a function f by a function g such that g(x) 6= 0 for all x ∈ I. For
instance, polynomials are obtained by sums and products from the constant functions
and the identity function f(x) = x.

Real-valued functions defined on subsets of R can be graphically represented in a way
that makes it often possible to understand intuitively their properties.

Definition 3.1.2. Let I ⊂ R be a set of real numbers. Let f : I → R be a function
defined on I. The graph of f is the subset Gf of the plane R×R defined by

Gf = {(x, y) ∈ I ×R | y = f(x)}.
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Remark 3.1.3. Not all subsets G of the plane can be the graph of a function. To see
whether this is the case, one must check that for every x ∈ R, there is at most one value
of y for which (x, y) ∈ G; the set of x where there is exactly one value of y is then the
definition set I, and the function is defined by mapping x to this unique value of y with
(x, y) ∈ G.

Example 3.1.4. (1) Let f : I → R be a function. For any y0 ∈ R, the intersection
of the graph of f with the horizontal line Ly0 with equation y = y0 is the set of points
(x, y) such that, on the one hand, we have y = f(x) (because (x, y) ∈ Gf ) and on the
other hand y = y0 (because (x, y) ∈ Ly0). This means that these are the points (x, y0)
where x is a solution of the equation f(x) = y0.

From this, we see that

• To say that f is injective means that whatever the value of y0 ∈ R, the horizontal
line Ly0 with equation y = y0 intersects the graph Gf in at most one point;
• To say that f is surjective is to say that whatever the value of y0 ∈ R, the

horizontal line Ly0 with equation y = y0 intersects the graph Gf in at least one
point.

(2) Let I and J be subsets of R and f : I → J a bijective function. The graph of
the inverse bijection f−1 (see Definition 1.4.7) is obtained by taking the symmetric of the
graph Gf with respect to the diagonal (which means that (x, y) is in Gf if and only if
(y, x) ∈ Gf−1).

62



Definition 3.1.5. Let I ⊂ R be an interval (Section 2.1). A function f : I → R
is said to be non-decreasing (resp. strictly increasing) if we have f(x) 6 f(y) whenever
x 6 y (resp. if f(x) < f(y) if x < y).

A function f : I → R is said to be non-increasing (resp. strictly decreasing) if we
have f(x) > f(y) whenever x 6 y (resp. if f(x) > f(y) if x < y).

A function that is either non-decreasing or non-increasing is called monotone; if it is
either strictly increasing or strictly decreasing, it is called strictly monotone.

Example 3.1.6. (1) The function defined by f(x) = x2 on R+ is strictly increasing.
The function defined by g(x) = x2 on R− =]−∞, 0] is strictly decreasing.

(2) The function defined by f(x) = x3 on R is strictly increasing.
(3) A constant function f(x) = a for x ∈ I is non-decreasing, but not strictly increas-

ing (unless I is reduced to a single point).

Note that any strictly monotone function f : I → R is injective: indeed, if x 6= y,
then either x < y, in which case f(x) < f(y), or y < x, in which case f(y) < f(x); in
both cases, we get f(x) 6= f(y).

3.2. Continuous functions

Reference: [2, 7.1, 7.2, 7.4, 7.5].
Suppose that I is a set of real numbers and f : I → R a function. How can we hope

to compute its value for a real number x0 ∈ I which is only determined or represented by
an approximation x1? Even if we can compute f(x1), this can only be useful if f has the
property that the values of f are close when evaluated at nearby values of the variable x,
like x0 and x1.

This property of a function is called continuity.39 It is defined precisely as follows:

Definition 3.2.1. Let I be a set of real numbers and f : I → C a function.

Let x0 ∈ I. We say that f is continuous40 at x0 if for every ε > 0, there exists δ > 0
such that, whenever x ∈ I satisfies |x− x0| < δ, we have |f(x)− f(x0)| < ε.

If f is continuous at all x ∈ I, then we say simply that f is continuous on I.

Remark 3.2.2. (1) The logical formula for continuity of f at x0 is

∀ε > 0, ∃δ > 0, ∀x ∈ I, (|x− x0| < δ −→ |f(x)− f(x0)| < ε),

and for continuity on I, it becomes

∀x0 ∈ I, ∀ε > 0, ∃δ > 0, ∀x ∈ I, (|x− x0| < δ −→ |f(x)− f(x0)| < ε).

Intuitively, this means that if we want to know what is f(x0) with a certain precision
(determined by ε), it suffices to know x0 with the precision δ.

Geometrically, one can say (at least if I is an interval) that f is continuous if “one
can draw the graph of f in the plane without lifting the pen”. However, a continuous
function can be quite complicated. Below is a fairly typical example.

(2) There are many analogies between properties of convergence of sequences and
continuity. For instance, the analogue of the fact that convergence is an asymptotic
property of a sequence (Example 2.5.6, (2)) is the fact that continuity at x0 is a local
property of the function f for values of x close to x0. Precisely, suppose that g is a
function on I and that there exists α > 0 such that

f(x) = g(x)
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whenever x ∈ I satisfies |x− x0| < α (so the graphs of f and g coincide at least over the
interval defined by |x − x0| < α). Then f is continuous at x0 if and only if g is. (The
reason is that for a given ε > 0, we can replace the value of δ in the logical formula for
the continuity of f by min(α, δ).)

(3) If f : I → C is continuous on I, then it is also continuous on any subset J ⊂ I.

Example 3.2.3. (1) Constant functions are continuous, and so is the identity function
I → R (which maps x to x); more generally, for any complex number c, the function
defined by f(x) = cx on I is continuous on I (exercise).

(2) Let I = [a, b] for some real numbers a < b. The characteristic function f of I,
viewed as a function from R to R, is continuous at all x0 ∈ R except for x0 = a and
x0 = b.

Indeed, if x0 /∈ {a, b}, then there exists α > 0 such that f is constant when |x−x0| < α,
and one can use the fact that continuity is a local property (for instance, if a < x0 < b,
one can take α = min(1

2
(x0 − a), 1

2
(b− x0)); and then f(x) = 1 for |x− x0| < α).

If x0 = a, on the other hand, for any δ > 0, the interval ]a − δ, a + δ[ contains real
numbers x that are not in I, and then f(x) = 0, so |f(x)− f(x0)| = 1, which means that
the formula defining continuity is not satisfied when ε < 1.

(3) Although most of the functions that we encounter in applications are continuous,
or at worse continuous outside of a few points, it is important to know that there are
functions that are not continuous at any point. For instance, let I = [0, 1] and define

f(x) =

{
0 if x /∈ Q

b if x = a/b with a ∈ N0, b ∈ N, without common factor.

So for instance, f(0) = 1, f(1/2) = 2, f(3/5) = 5, but f(1/
√

2) = 0 because 1/
√

2 /∈ Q.
We claim that, for any x0 ∈ [0, 1], the function f is not continuous at x0. To see this,

consider first x0 /∈ Q and take ε = 1/2 in the definition of continuity. If f were continuous
at x0, there would exist δ > 0 such that |f(x)| = f(x) < 1/2 when |x − x0| < δ. But in
the interval [0, 1]∩]x0 − δ, x0 + δ[, there always exists a rational number x, for which we
have f(x) > 1 (Theorem 1.5.3).

Now, on the other hand, if x ∈ Q, and x = a/b without common factor, so that
f(x) = b > 1, then let again ε = 1/2. If f were continuous at x0, there would exist δ > 0
such that |f(x) − b| = f(x) < 1/2 when |x − x0| < δ, which means that f(x) = b since
f(x) is a non-negative integer. But in the interval [0, 1]∩]x0−δ, x0+δ[, there always exists
an irrational number x for which f(x) = 0 (for instance x = x0 + 1

n
√
2

or x = x0 − 1
n
√
2
,

for n > δ−1).
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In order to prove continuity, we can also use a comparison approach that is easier to
handle than the definition.

Lemma 3.2.4. Let I be a set of real numbers and let f , g be functions I → C.
Suppose that g is continuous on I, and that we have

|f(x)− f(y)| 6 |g(x)− g(y)|
for all x and y in I. Then f is continuous on I.

Proof. Indeed, given ε > 0, if we take δ > 0 such that |g(x) − g(y)| < ε whenever
|x− y| < ε, then we also obtain

|f(x)− f(y)| 6 |g(x)− g(y)| < ε

for |x− y| < δ. �

One example of comparison is particularly helpful and important.

Definition 3.2.5. Let I be a set of real numbers and f : I → C a function. Let c ∈
R+. One says that f is Lipschitz-continuous if

|f(x)− f(y)| 6 c|x− y|
for all x and y in I.

We also say that c is a Lipschitz constant for f (it is not unique).

Any Lipschitz-continuous function is continuous, by applying the lemma to the func-
tion g(x) = cx.

Remark 3.2.6. Intuitively, to say that f is Lipschitz is to say that, in order to com-
pute f(x0) with N digits of precision, we need to know x0 with N+n digits approximately,
where n is the number of digits of c.

As in the case of convergent sequences, we can operate with continuous functions,
and continuity is preserved. In addition, we can also use composition, which provides a
powerful tool to prove the continuity of almost all functions defined “using elementary
functions”.

We state the results for continuity over the whole interval, but they are also true for
continuity at a single point x0.

We begin with a useful lemma. A continuous function is not necessarily bounded
(meaning that there might not exist R ∈ R+ such that |f(x)| 6 R for all x ∈ I; an
example is the identity function f(x) = x on I = R). However, we have the following:

Lemma 3.2.7. Let I be a set of real numbers and f : I → C a function. Let x0 ∈ I
such that f is continuous at x0.

(1) If f is continuous at x0, then it is locally bounded around x0, which means that
there exists α > 0 such that f is bounded for x ∈ I such that |x− x0| < α.

(2) If f is real-valued and f(x0) > 0 then there exists α > 0 such that for all x ∈ I
such that |x− x0| < α, we have

f(x) > 1
2
f(x0),

and in particular f(x) > 0.
Similarly if f(x0) < 0, then there exists α > 0 such that f(x) 6 1

2
f(x0) < 0 for all

x ∈ I such that |x− x0| < α.

Proof. (1) Applying continuity with ε = 1, and then the triangle inequality, we find
α > 0 such that

|f(x)| 6 |f(x0)|+ |f(x)− f(x0)| 6 |f(x0)|+ 1
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for x ∈ I with |x− x0| < α.
(2) Applying continuity with ε = 1

2
f(x0) > 0, and then the triangle inequality, we

find α > 0 such that

f(x) > f(x0)− |f(x)− f(x0)| > f(x0)− 1
2
f(x0) > 1

2
f(x0) > 0

when x ∈ I is such that |x− x0| < α. �

Proposition 3.2.8. Let I be a set of real numbers and let f , g be continuous functions
I → C.

(1) The functions f + g and fg are continuous on I, and if g(x) 6= 0 for all x ∈ I,
then f/g is continuous.

(2) Let J ⊂ R be such that f(x) ∈ J for all x ∈ I. Let h : J → C be a function on J .
The composition

h ◦ f : I → C,

such that (h ◦ f)(x) = h(f(x)) for all x ∈ I, is continuous.

Proof. We leave (1) as an exercise (but we will also show how to deduce this later
from another continuity condition).

(2) Let x0 ∈ I be given. Let ε > 0. Since h is continuous at f(x0), there exists δ1 > 0
such that |h(y)−h(f(x0))| < ε if |y− f(x0)| < δ1. And since f is continuous at x0, there
exists δ > 0 such that |f(x)− f(x0)| < δ1 if |x− x0| < δ. Hence, whenever |x− x0| < δ,
we get |h(f(x))− h(f(x0))| < ε by applying the first inequality to y = f(x). �

With this proposition, it follows that essentially any function constructed using finitely
many “elementary” operations or functions is continuous where it is defined.

Example 3.2.9. (1) Any polynomial function is continuous on R (or on any subset
of R). Similarly, if f is a polynomial function and I does not contain any zero of f ,
then for any polynomial g, the rational function defined by h(x) = f(x)/g(x) for x ∈ I
is continuous on I.

(2) Since the squaring function is continuous, for any continuous function f : I → R,
the function f 2 is also continuous.

(3) The function on R defined by v(x) = |x| is continuous. This follows for instance
from the formula

| |x| − |y| | 6 |x− y|
which proves that it is even Lipschitz-continuous. Using composition, it follows that for
any continuous function f , the function |f | is also continuous.

There is another approach to proving continuity, which uses sequences, and which is
also a powerful way to prove that sequences converge.

Proposition 3.2.10. Let I be a set of real numbers. Let f : I → C be a function.
Then f is continuous at a point x0 ∈ I if and only if, for any sequence (an) with values
in I that converges to x0, we have

lim
n→+∞

f(an) = f(x0).

Proof. Assume first that f is continuous at x0. Let (an) be a convergent sequence
with limit x0 and with an ∈ I for all n. Let ε > 0 and let δ be such that |f(x)−f(x0)| < ε
when |x−x0| < δ. Since an → x0, there exists N ∈ N such that |an−x0| < δ for n > N ;
for all such n, we then get |f(an) − f(x0)| < ε, which means that the sequence (f(an))
converges, with limit f(x0).
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Conversely, assume that the convergence condition is satisfied. To prove that f is
continuous at x0, we assume the opposite, and deduce a contradiction.

The negation of convergence at x0 is the formula

∃ε > 0, ∀δ > 0, ∃x ∈ I, (|x− x0| < δ ∧ |f(x)− f(x0)| > ε)

(in other words: for some fixed ε > 0, however small δ is, we can find x ∈ I at distance
less than δ for which f(x) is at least at distance ε from f(x0)).

We fix the ε given by this statement. We then apply it to δ = 1/n, where n ∈ N is an
arbitrary integer; we denote by an a value in I with |an−x0| < 1/n and |f(an)−f(x0)| > ε.
This last condition, since it holds for all n, implies that f(an) does not converge to f(x0).
But on the other hand, we have

|an − x0| <
1

n
by construction, which implies that an → x0 (since 1/n → 0). So there is at least one
sequence converging to x0 whose image by f does not converge to f(x0). �

Example 3.2.11. (1) Proposition 3.2.10 leads to a proof of Proposition 3.2.8, based
on the known statements for convergence of sequences. For instance, for the statements
in part (1) of Proposition 3.2.8, note that if f and g are defined at x0, then for any
sequence (an) in I that converges to x0, we have (f + g)(an) → f(x0) + g(x0) and
(fg)(an)→ f(x0)g(x0) by Proposition 2.5.9 and Proposition 3.2.10.

(2) Suppose that f : R → R is a continuous function. Let a1 ∈ R and defined a
sequence (an) inductively by

an+1 = f(an)

for n ∈ N. Suppose that we know that (an) is convergent (that might not always be the
case!). Then its limit a satisfies f(a) = a.

Indeed, in the equation an+1 = f(an), the left-hand side converges to a, while the
right-hand side converges to f(a), so these numbers must be equal.

Graphically, this means that we can find all possible limits of such inductive sequences
by looking at intersection points of the graph of f with the diagonal

∆ = {(x, x) ∈ R×R | x ∈ R}

(since these intersection points are precisely the points (x, y) with x = y = f(x)).

3.3. Global properties of continuous functions

We have discussed now local properties of continuity. Even when stated over the whole
definition set, the statements that were proved could apply to continuity at a single x0.

Howver, functions which are continuous on certain sets of real numbers, satisfy two
extremely important global properties, which we now state.

Theorem 3.3.1 (Intermediate value theorem). Let I be an interval of real numbers
and let a < b be elements of I. If f : I → R is a continuous function and if

f(a) < f(b) (resp. f(a) > f(b))

then for any c ∈ [f(a), f(b)] (resp. for any c ∈ [f(b), f(a)]), there exists x ∈ [a, b] such
that f(x) = c.

Another way to state this theorem is to say that the image of an interval by a con-
tinuous function is an interval.
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Theorem 3.3.2 (Extremum Theorem). Let a < b be real numbers. Let f : [a, b]→ R
be a continuous function. Then the set of values

f([a, b]) = {f(x) | x ∈ [a, b]} ⊂ R.

has a maximum and a minimum.

This statement implies in particular that f is bounded on an interval of the form [a, b].
If we combine it with the intermediate value theorem, we can see that for any a 6 b,
there exist c 6 d in R such that

f([a, b]) = [c, d].

Here c is the minimum value of f on [a, b], and d the maximum; to say that they are the
minimum and the maximum is to say in particular that there exist x0 and x1 in [a, b]
such that

f(x0) = c = min
x∈[a,b]

f(x), f(x1) = d = max
x∈[a,b]

f(x).

Remark 3.3.3. (1) The extremum theorem only holds for intervals of the form [a, b]
(bounded, and containing both endpoints). This can be seen with the following examples:
if I =]a, b] or ]a, b[, take f(x) = 1/(x − a), which is not bounded; if I = [a, b[, take
f(x) = 1/(x − b); if I is not bounded (either in the positive or negative direction), take
f(x) = x2.

For this reason, such intervals have a special name: they are called compact intervals.41

(2) If f is monotone on [a, b], but not necessarily continuous, then it is also true that
f has a maximum and a minimum, which are in fact the end points. For instance, if f is
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non-decreasing, then max f(x) = f(b) and min f(x) = f(a), simply because we have

f(a) 6 f(x) 6 f(b)

for all x ∈ I. On the other hand, the image of f is then not always equal to the whole
interval [f(a), f(b)], as shown by the example of the function

f(x) =

{
x+ 1 if x > 0

x if x 6 0.

Before we prove these theorems, let us illustrate one important application.

Example 3.3.4. (1) Let k ∈ N be an odd integer and a0, . . . , ak real numbers,
where ak 6= 0. Then we claim that there exists (at least) one real number x ∈ R such
that

akx
k + · · ·+ a1x+ a0 = 0.

(So it follows that the function f : R → R defined by f(x) = akx
k + · · · + a1x + a0 is

surjective.)
To see this, note that we may assume that ak > 0. Now define the continuous function

f : R→ R by

f(x) = akx
k + · · ·+ a1x+ a0.

We claim that there exists a < 0 such that f(a) < 0 and b > 0 such that f(b) > 0.
Then the intermediate value theorem shows that there exists x ∈ [a, b] with f(x) = 0,
which was our goal.

To check the claim, we note that from Example 2.11.5, we have

lim
n→+∞

f(n) = +∞

so that there certainly exists some integer b ∈ N with f(b) > 0. Moreover, since the
degree k of the polynomial is odd, we have

f(−n) = −aknk + · · · − a1n+ a0,

and hence for the same reason, we have

lim
n→−∞

f(−n) = −∞,

which gives an integer a ∈ N such that f(−a) < 0.
(2) Let k ∈ N be an integer. Define f(x) = xk for x ∈ R+; this is a continuous

function from R+ to R+. We claim that it is surjective, so that for any y > 0, there
exists some real number x > 0 such that xk = y (which is unique because the function f
is strictly monotone; it is denoted k

√
y or y1/k).

Indeed, let y ∈ R+. Since

lim
n→+∞

nk = +∞,

there exists n ∈ N such that nk > y, and then we have

0 = f(0) < y < f(n)

and by the Intermediate Value Theorem, there must exist x ∈ [0, n] such that xn = y.

Proof of Theorem 3.3.1. The idea is to use a subdivision argument, somewhat
similar to the construction of a convergent subsequence, although it will be seen to be
more effective (in the sense that it can actually be used to approximate the solution of
the intermediate value problem).
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We consider the case where f(a) < f(b) and f(a) < c < f(b). First, by replacing f
with g defined by g(x) = f(x)− c, we are in the situation where g(a) < 0, g(b) > 0, and
we want to find x such that g(x) = 0.

We construct by induction on n ∈ N0 a sequence of intervals

In = [an, bn]

such that

an 6 an+1, bn+1 6 bn,(3.1)

g(an) < 0, g(bn) > 0, bn − an =
1

2n
(b− a)(3.2)

for all n. For n = 0, we can take a0 = a and b0 = b. If In has been constructed, we
consider c = (an + bn)/2, and define In+1 depending on the sign of g(c). Precisely, we put

In+1 = [an, c] = [an, (an + bn)/2]

if g(c) > 0, and
In+1 = [c, bn] = [(an + bn)/2, bn]

if g(c) < 0. Then the conditions (3.1) and (3.2) are satisfied.
Now we conclude in a classical way: from the construction, we have

a = a0 6 · · · 6 an 6 bn 6 · · · 6 b0 = b

for all n, so the sequence (an) is bounded and non-decreasing and converges to some
number x0, while (bn) is bounded and non-increasing and converges to x1. Since

bn − an =
1

2n
(b− a),

we have x0 = x1. Let us denote by x this common value; we claim that g(x) = 0, which
will conclude the proof.

From x = lim an and the continuity of g, we know that g(x) = lim g(an) by Propo-
sition 3.2.10; since g(an) 6 0 for all n, it therefore follows that g(x) 6 0 (by Proposi-
tion 2.5.9, (4)). Similarly, x = lim bn implies that g(x) = lim g(bn), and from g(bn) > 0,
it follows that g(x) > 0. Both combined give g(x) = 0. �

Proof of Theorem 3.3.2. We prove the existence of the maximum, the case of
the minimum being similar. We first assume that f is bounded, and will check that this
is indeed the case afterwards. In this is the case, then the set f([a, b]) is a non-empty
bounded set of real numbers (it contains f(a)). Let M be its supremum (which exists by
Theorem 2.3.1). We need to prove that M is the value g(x) for some x ∈ [a, b].

We know at least that for any n ∈ N, the number M − 1/n is not an upper-bound
for f([a, b]). This means that there exists an ∈ [a, b] such that

M − 1

n
< f(an) 6M.

Now we want to use Proposition 3.2.10, but the sequence (an) may not converge.
However, we have a 6 an 6 b for all n, so the Bolzano–Weierstrass Theorem (Theo-
rem 2.9.3) implies that there exists a convergent subsequence (bk) with bk = ank

for some
nk ∈ N. Let x ∈ [a, b] be its limit. We have

M − 1

nk
< f(bk) 6M

for all k ∈ N. Since nk > k, we have 1/nk → 0, and then since f(bk) converges to f(x)
by continuity, we deduce that f(x) = M .
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There remains to check that f is indeed bounded. The argument is similar: if f is
not bounded, then for any n ∈ N, we can find an ∈ [a, b] such that |f(an)| > n. We find
a convergent subsequence (bk), with limit x, by Theorem 2.9.3; the bounds

|f(an)| > n

for all n ∈ N imply that |f(an)| → +∞, which contradicts Proposition 3.2.10, since f(an)
should converge to the real number f(x). �

3.4. Injective continuous functions

We have already noted that a strictly monotone function on an interval I is necessarily
injective. In general, the converse is not true: for instance, with I = [0, 1], defining

f(x) =


x if 0 6 x < 1/3,

−x+ 1 if 1/3 6 x < 2/3

x if 2/3 6 x 6 1,

we have an injective function that is not monotone (since it is increasing on [0, 1/3[ and
decreasing on [1/3, 2/3[).

However, the converse does hold for continuous functions.

Proposition 3.4.1. Let I be an interval. A continuous function f : I → R is injective
if and only if it is strictly monotone.

Proof. We first suppose that I is of the form I = [a, b] with a < b. Suppose that f
is injective and continuous on I. Either f(a) < f(b) or f(a) > f(b), since f is injective;
we assume that the first inequality holds, and then we prove that f is strictly increasing
(the other case is similar).

Let c and d be real numbers such that

a 6 c < d 6 b.

We then use the Intermediate Value Theorem as follows:

• We have f(d) > f(a); indeed, otherwise we have

f(d) < f(a)

(we have f(d) 6= f(a) since f is injective) and the Intermediate Value Theorem
gives some x ∈ [d, b] such that f(x) = f(a), contradicting the injectivity of f .
• We have f(c) < f(d); indeed, we can assume that a < c (the previous case han-

dles the situation when a = c), and then we would get otherwise the inequalities

f(a) < f(d) < f(c)
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and the Intermediate Value Theorem would give some x with x ∈ [a, c] such that
f(x) = f(d), which again contradicts the injectivity of f .

The case of a general interval can be reduced to that case by noting that there are
always sequences an < bn such that

I =
⋃
n∈N

[an, bn]

and an is decreasing and bn is increasing (for instance, if I is the interval I = ]a,+∞[,
we can take an = a + 1/n and bn = a + n). By the above, f is strictly increasing or
strictly decreasing on [a1, b1]. Suppose that it is strictly increasing; then for any n, the
function f is strictly monotone on [an, bn], and it must be strictly increasing on [an, bn],
which contains [a1, b1]. �

Let f : I → R be continuous and strictly monotone. Let J = f(I) be the image of
f ; this is also an interval by the Intermediate Value Theorem. Then if we view f as a
function f : I → J , we have a bijective function (since f is injective, and changing the
target set to J makes it surjective).

The inverse bijection f−1 is also strictly monotone, of the same type as f : for instance,
if f is increasing, and if u < v are elements of J , then the elements a = f−1(u) and
b = f−1(v) such that u = f(a) and v = f(b) satisfy a < b, because otherwise from b < a
we would get f(b) < f(a).

On the other hand, it is not obvious that f−1 should be continuous. This is however
true:

Proposition 3.4.2. Let f : I → R be continuous and strictly monotone and let
J = f(I) be the image of f . Then the inverse f−1 : J → I of the bijection f : I → J is
continuous.

Proof. We assume again first that I = [a, b] for some a < b, and we consider the
case when f is increasing. Then J = [f(a), f(b)]. Let y ∈ J . We prove continuity of
f−1 at y using Proposition 3.2.10. Thus let (bn) be a sequence in J that converges to y.
We have unique elements an = f−1(bn) and x = f−1(y) in I such that f(an) = bn and
f(x) = y.

The sequence (an) is bounded, since its terms belong to I = [a, b]. By the Bolzano–
Weierstrass Theorem 2.9.3, there exists a convergent subsequence (ank

); its limit x satisfies
a 6 x 6 b since all terms do. For all k, we have

f(ank
) = bnk

,

so the sequence f(ank
) converges to y = lim bnk

. On the other hand, by continuity of f ,
the same sequence converges to f(x), so that y = f(x).

We are therefore in the situation where a bounded sequence has a unique limit point;
applying Proposition 2.9.5, it follows that an → x, which means that f−1(bn)→ f−1(y).
Proposition 3.2.10 then shows that f is continuous at y.

In the general case, we use the fact that continuity is a local property: we can find
c < d such that a < y < b and

[c, d] ⊂ J

and we can argue with the restriction of f to [f−1(c), f−1(d)], which is continuous and
(by monotony and the intermediate value theorem) has image [c, d]. (To be fully precise,
such c and d exist unless a or b is an endpoint of the interval J ; when that is the case,
say d = max J , we find c < y 6 b with [c, b] ⊂ J and we use this interval instead.) �
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Example 3.4.3. It follows for instance that, for any integer k ∈ N, the function
defined by f(x) = x1/k on R+ is continuous, since it is the inverse bijection of the
function g(x) = xk from R+ to R+.

3.5. Other limits of functions

Let f : I → C be a function defined on an interval I ⊂ R. If a is an “endpoint” of
the interval, even if a /∈ I, it is possible to approach a by elements of I, and the behavior
of f(x) is then sometimes also regular, in the sense that the values approach a fixed real
number (or maybe infinity, in the same way as sequences can converge to plus or minus
infinity). This leads to various definition of limits of functions. We summarize (most of)
them quickly:

• (Finite limit at a point a ∈ I): suppose that ]a − η, a + η[⊂ I for some η > 0;
then we say that f has a limit y ∈ C when x tends to a, denoted

lim
x→a

f(x) = y

if for all ε > 0, there exists δ > 0 such that if x ∈ I satisfies |x − a| < δ, then
|f(x)− y| < ε.
• (Finite limit on the left at a point a): suppose that ]a, b] ⊂ I for some b ∈ I;

then we say that f has a limit y when x tends to a, denoted

lim
x→a
x>a

f(x) = y

if for all ε > 0, there exists δ > 0 such that if x ∈ I satisfies |x − a| < δ, then
|f(x)− y| < ε.
• (Finite limit on the right at a point b): suppose that [a, b[⊂ I for some a ∈ I;

then we say that f has a limit y when x tends to b, denoted

lim
x→b
x<b

f(x) = y

if for all ε > 0, there exists δ > 0 such that if x ∈ I satisfies |x − b| < δ, then
|f(x)− y| < ε.
• (Finite limit at plus infinity): suppose that [a,+∞[⊂ I for some a ∈ I; then we

say that f has a limit y when x tends to +∞, denoted

lim
x→+∞

f(x) = y

if for all ε > 0, there exists T > a such that if x > T , then |f(x)− y| < ε.
• (Finite limit at minus infinity): suppose that ]−∞, b] ⊂ I for some b ∈ I; then

we say that f has a limit y when x tends to −∞, denoted

lim
x→−∞

f(x) = y

if for all ε > 0, there exists T < b such that if x < T , then |f(x)− y| < ε.
• (Infinite limit on the right at a point a): suppose that ]a, b] ⊂ I for some b ∈ I;

then we say that f tends to +∞ (resp. to −∞) when x tends to a, denoted

lim
x→a
x>a

f(x) = +∞, resp. lim
x→a
x>a

f(x) = −∞

if for all M > 0, there exists δ > 0 such that if x ∈ I satisfies |x − a| < δ, then
f(x) > M (resp f(x) < −M).
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• (Infinite limit at plus infinity): suppose that [a,+∞[⊂ I for some a ∈ I; then
we say that f has limit +∞ (resp. −∞) when x tends to +∞, denoted

lim
x→+∞

f(x) = +∞, resp. lim
x→+∞

f(x) = −∞

if for all M > 0, there exists T > a such that if x > T , then f(x) > M (resp.
f(x) < −M).
• (Infinite limit at minus infinity): suppose that ]−∞, b] ⊂ I for some b ∈ I; then

we say that f has limit +∞ (resp. −∞) when x tends to −∞, denoted

lim
x→−∞

f(x) = +∞, resp. lim
x→−∞

f(x) = −∞

if for all M > 0, there exists T < b such that if x < T , then f(x) > M (resp.
f(x) < −M).

We have not included all the possible variants....
However, all of these can be proved or remembered in a uniform manner by using

the analogue of Proposition 3.2.10, and the definition of sequences converging to plus or
minus infinity:

Proposition 3.5.1. In all of the above situations, the limit holds if and only if, for
any sequence (an) in I converging to the “limit point”, whether finite or infinite, the
sequence (f(an)) converges to the stated limit, whether finite or infinite.

Example 3.5.2. (1) We have the following limits:

lim
x→0
x>0

sin(x)

x
= 1, lim

x→+∞

1

x2 + 1
= 0

lim
x→0
x<0

1

x
= −∞, lim

x→−∞
e−2x = +∞.

For instance, we check the second using sequences: for any sequence (an) that con-
verges to +∞, we have a2n + 1→ +∞, hence 1/(a2n + 1)→ 0.

(2) A function f : [a, b]→ C is continuous at x0 if and only if

lim
x→x0

f(x) = f(x0).

(3) Limits can sometimes be used to prove the existence of a maximum or a minimum
even for functions defined on other types of intervals using other properties. For instance,
let I = R and assume that f is a continuous function such that f(x) > 0 for all x ∈ R
and

lim
x→−∞

f(x) = 0 = lim
x→+∞

f(x).

Then we claim that f has a maximum (but not necessarily a minimum; an example is
f(x) = 1/(1+x2), where the maximum is 1 = f(0), and where there is no minimum since
f(x) > 0 for all x ∈ R).

Indeed, since f(0) > 0, the assumption implies that for there exists R > 0 such that
we have 0 < f(x) 6 f(0) when |x| > R. On the compact interval [−R,R], the function f
has a maximum M0 at some point x0 ∈ [−R,R], and we have M > f(0). For |x| > R,
we get f(x) 6 f(0) 6M , so M is a maximum for all values of f(x).

(4) Generalizing Examples 2.6.2 and 2.11.5, if k ∈ N0 and l ∈ N0 are integers and

f(x) = akx
k + · · ·+ a1x+ a0, g(x) = blx

l + · · ·+ b1x+ b0
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are polynomials with ak 6= 0 and bl 6= 0, then

lim
x→+∞

f(x)

g(x)
=


ak
bl

if k = l

+∞ if k > l and ak/bl > 0

−∞ if k > l and ak/bl < 0

0 if l > k.

3.6. Continuous functions defined on subsets of C

We have defined and studied functions on subsets of real numbers, because only in such
cases can be prove the intermediate value theorem or the extremum theorem. However,
the definition 3.2.1 can be extended to subsets of C: for I ⊂ C and f : I → C, one says
that f is continuous if for all x ∈ I, and for every ε > 0, there exists δ > 0 such that
|f(x)− f(y)| < ε for y ∈ I such that |x− y| < δ.

In other words, the intervals ]x0 − ε, x0 + ε[ around a real number x0 which describe
numbers “close to x0” are replaced by discs centered at x0 (which are the sets of complex
numbers defined by inequalities |x− x0| < ε).

The “local” results of Section 3.2 extend to continuous functions defined on subsets
of C, and we will use (for instance) Proposition 3.2.8 and Proposition 3.2.10 for functions
defined on subsets of C.

75



CHAPTER 4

Sequences and series of functions and elementary functions

4.1. Uniform convergence

Reference: [2, 15.1].
We have seen that any finite number of “usual” operations, including addition, mul-

tiplication, division (when it makes sense) and composition, transforms continuous func-
tions into continuous functions. We now discuss what happens when we attempt to
perform some of these operations infinitely many times. In other words, we look at the
possibility of defining the values of a function f(x) for x ∈ I as the limit of sequences
(fn(x)), which depend on x ∈ I.

Example 4.1.1. (1) The sum of the geometric series with parameter x such that
x ∈ I =]− 1, 1[ is of this form: we have

1

1− x
= lim

n→+∞
fn(x)

for any x ∈ I, where

fn(x) = 1 + · · ·+ xn.

In this case, the functions fn : I → R are continuous (they are polynomials), and the
limit is also continuous (since 1− x 6= 0).

(2) However the following example shows that even if all fn are continuous functions,
and if (fn(x)) converges for all x ∈ I, the values of the limit lim fn(x) = f(x) might not
define a continuous function.

Let I = [0, 1]. Define fn(x) = xn for x ∈ I; this is a continuous function. But note
that for 0 6 x < 1 we have

lim
n→+∞

xn = 0

(by (2.6)), while

lim
n→+∞

1n = 1.

Therefore fn(x) converges for all x to

f(x) =

{
1 if x = 1

0 if 0 6 x < 1.

This function f is not continuous at x0 = 1.

We will use the same notation (fn) for a sequence of functions as for a sequence of
numbers; note that we can add sequences of functions, multiply them, etc

The first thing to do is to find a condition on a sequence of functions that ensures
that, if they converge and are continuous, then so is the limit. It is not obvious that
a simple condition of this type should exist, but it turns out that there is one, which
intuitively is that the “speed of convergence” of fn(x) to the limit should be “the same”
for all x.
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Definition 4.1.2 (Uniform convergence). Let I ⊂ C be a set of complex numbers.
For n ∈ N, let fn : I → C be an arbitrary function. Let f : I → C be a function. One

says that the sequence (fn) converges uniformly42 to f on I if, for all ε > 0, there exists
N ∈ N, such that for all x ∈ I, we have |f(x)− fn(x)| < ε for n > N .

Remark 4.1.3. (1) The logical formula for uniform convergence is:

∀ε > 0, ∃N ∈ N, ∀x ∈ I, (n > N −→ |f(x)− fn(x)| < ε).

We should compare this to the formula that states that (fn(x)) converges for all x ∈ I,
which can be written

∀ε > 0, ∀x ∈ I, ∃N ∈ N, (n > N −→ |f(x)− fn(x)| < ε).

One sees that the only difference is the exchange of the location of ∃N ∈ N and ∀x ∈ I:
this has the effect that N only depends on ε, and not on the point x.

In particular, uniform convergence implies that fn(x) converges to f(x) for all x, but
it is a stronger condition.

(2) In practice, one attempts to prove that (fn) converges uniformly to f by compar-
ison: one tries to prove an inequality of the form

|f(x)− fn(x)| 6 bn

for all x ∈ I, where (bn) is a fixed sequence of non-negative real numbers (independent
of the choice of x) that converges to 0 . Then we get

|f(x)− fn(x)| < ε

for all x ∈ I as soon as bn < ε.

Theorem 4.1.4. Let I ⊂ C. Let (fn) be a sequence of continuous functions defined
on I and f a function f : I → C. Suppose that (fn) converges uniformly to f on I. Then
f is continuous on I.

Proof. Let x0 ∈ I. We check continuity at x0. Let x ∈ I. We need to bound
|f(x) − f(x0)| when x is close to x0. Since we only know that f(x) is approached by
fn(x) and f(x0) by fn(x0) for n large enough, we use the triangle inequality to write

|f(x)− f(x0)| 6 |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|
where n ∈ N can be chosen arbitrarily. Note that all three terms are small under suitable
conditions: the first and third, when n is large enough, because fn(x) → f(x) and
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fn(x0)→ f(x0), and the second when x is close enough to x0, because fn is continuous at
x0 for a fixed n. However, we need all three to be simultaneously small, which is where
uniform convergence is needed.

Precisely, let ε > 0 be given. Because of uniform convergence, we can find a single
integer n ∈ N such that

|f(x)− fn(x)| < ε

3
, |f(x0)− fn(x0)| <

ε

3
,

whatever the choice of x ∈ I is. The inequality above implies for this value of n that

|f(x)− f(x0)| 6
2ε

3
+ |fn(x)− fn(x0)|,

for all x ∈ I. Now, since the particular function fn is continuous, we obtain δ > 0 such
that |fn(x)− fn(x0)| < ε/3 whenever x ∈ I satisfies |x− x0| < δ. For all such x, we get

|f(x)− f(x0)| < ε,

and this proves the continuity of f at x0. �

Example 4.1.5. (1) We go back to the sequence (fn) defined on [0, 1] by fn(x) = xn.
According to the theorem, this cannot converge uniformly to the function f equal to 0
for x 6= 1 and to 1 for x = 1. Let us see this concretely.

We have

|f(x)− fn(x)| =

{
0 if x = 1

xn if 0 6 x < 1.

If we want this to be (say) < 1
2

for a given x < 1, we need xn < 1
2
, or n > 2/ log(1/x), and

this value of n increases when x is closer and closer to 1. This means that the convergence
is not uniform.

(2) Could we have deduced the continuity of the sum of the geometric series from
Theorem 4.1.4?

Here the functions fn are given for x ∈]− 1, 1[ by

fn(x) = 1 + · · ·+ xn =
1− xn+1

1− x
,

so that

|f(x)− fn(x)| = |x|
n+1

|1− x|
.

For the same reason as in (1), we see that there is no uniform convergence for x ∈]−1, 1[.
However, we can be more clever and still obtain the result. Let −1 < a < b < 1 be two
real numbers, and suppose that we consider only x ∈]a, b[. Then we obtain

|f(x)− fn(x)| = max(|a|, |b|)n+1

min(|1− a|, |1− b|
.

for x ∈]a, b[. The right-hand side converges to 0 as n→ +∞ (by (2.6)) so we deduce that
(fn) converges uniformly to f(x) = 1/(1 − x) on ]a, b[. In particular, by Theorem 4.1.4,
the limit f is a continuous function on ]a, b[. Since any x ∈] − 1, 1[ belongs to some
interval ]a, b[ with −1 < a < b < 1, and since continuity is a local property, this means
that the limit f is in fact continuous on all of I.

This example computation is very important, because it is very frequent that one
doesn’t prove uniform convergence over the whole definition set, but only over suitable
smaller subsets; this shows that this can be enough to deduce continuity everywhere.

There is also an analogue of the Cauchy Criterion for uniform convergence.
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Proposition 4.1.6. Let I ⊂ C and let (fn) be a sequence of functions on I.
Suppose that for every ε > 0, there exists N ∈ N, such that for all integers n > N

and m > N , and for all x ∈ I, we have

|fn(x)− fm(x)| < ε.

Then (fn) converges uniformly to some function f .

Proof. For any given x ∈ I, the usual Cauchy Criterion is satisfied for the sequence
(fn(x)), so there exists a limit

f(x) = lim
n→+∞

fn(x)

for all x ∈ I (Theorem 2.8.8). We now prove that (fn) converges uniformly to f .
Let ε > 0 and let x ∈ I. Let N ∈ N such that

|fn(x)− fm(x)| < ε

2
for all x ∈ I when n and m are > N . We keep n > N fixed, and view this inequality as a
property of the sequence (|fn(x)−fm(x)|)m∈N. This sequence converges to |fn(x)−f(x)|,
so these inequalities give∗

|fn(x)− f(x)| 6 ε

2
< ε

for all n > N and all x ∈ I, which gives the uniform convergence. �

Remark 4.1.7. As usual, we can prove the Cauchy Criterion for uniform convergence
of (fn) by proving, for m > n, an inequality

|fn(x)− fm(x)| 6 bn

for all x ∈ I, where (bn) is a fixed sequence converging to 0 (which is independent of x).

4.2. Normal convergence

Reference: [2, 7.3].
Consider now a series of functions, which means a sequence, denoted

+∞∑
n=1

fn

where each fn : I → C is a function, corresponding to the partial sums

sn(x) =
n∑
k=1

fk(x).

Supppose that each fn is bounded on I, say |fn(x)| 6 bn for all x ∈ I, where bn ∈ R+

is independent of x. Then for m > n, we obtain

|sn(x)− sm(x)| =
∣∣∣ m∑
k=n+1

sk(x)
∣∣∣ 6 m∑

k=n+1

bk

by the triangle inequality. If we assume that the series
∑
bn is convergent, then the

Cauchy Criterion for this series implies that the sequence (sn) converges uniformly on I
(by Remark 4.1.7).

Definition 4.2.1. A series of functions
∑
fn converges normally43 if each |fn| is

bounded on I by some bn ∈ R+ such that
∑
bn converges.

∗ By Remark 2.5.10, we cannot deduce |fn(x)− f(x)| < ε/2.
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We have therefore checked:

Theorem 4.2.2. Suppose that the series
∑
fn converges normally on I. Then it

converges uniformly on I.

Remark 4.2.3. (1) This concept is particularly useful when I = [a, b] for some real
numbers a < b, and if fn is continuous for each n, since then the Extremum Theorem 3.3.2
shows that each fn is indeed bounded.

(2) Normal convergence implies uniform convergence for series, but is not equivalent
to it.

Combined with Theorem 4.1.4, normal convergence leads to:

Corollary 4.2.4. Let (fn) be a sequence of continuous functions on I such that
∑
fn

converges normally on I. Then the series converges uniformly to a continuous function f
on I.

Example 4.2.5. The series
+∞∑
n=1

cos(nx)

n2

for x ∈ R converges normally, since the series
∑
n−2 is convergent. On the other hand,

the series
+∞∑
n=1

cos(nx)

n

doesn’t converge normally, since for x = 0 we have cos(nx) = 1, so we need to take bn = 1
and

∑
n−1 does not converge.

4.3. Power series

Reference: [2, 6.4, 7.3].
We now consider the simplest type of series of functions, which can be used to define

and study the most important elementary functions. These are the power series44, of the
form

+∞∑
n=0

anx
n = a0 + a1x+ · · ·+ anx

n + · · ·

(note that these can be interpreted as a natural attempt to generalize the notion of poly-
nomials when we allow infinitely many coefficients, and in particular that any polynomial
function is a power series, where the coefficients an vanish for n large enough).

The power series
∑
anx

n certainly converges for x = 0 (where the sum is equal to a0).
At other points, convergence is controlled by the following proposition:

Proposition 4.3.1. Let (an) be a sequence of complex numbers. Let x0 ∈ C be a
non-zero complex number such that the series

+∞∑
n=0

anx
n
0

converges.
(1) For any x ∈ C such that |x| < |x0|, the series

∑
anx

n converges absolutely.
(2) For any r < |x0|, the series

∑
anx

n converges normally on the closed disc D
centered at 0 with radius r, in other words on

Dr = {x ∈ C | |x| 6 r}.
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Proof. The convergence of the series
∑
anx

n
0 implies that anx

n
0 → 0 (see Proposi-

tion 2.10.3), and in particular the sequence (anx
n
0 ) is bounded (Lemma 2.5.7). Let M ∈

R+ be such that |anxn0 | 6M for all n ∈ N0.
Let x ∈ C be such that |x| < |x0|. Then for all n ∈ N0, we have

|anxn| = |(x/x0)|n|anx0|n 6M |(x/x0)|n,

and since |x/x0| < 1, the series
∑
anx

n converges absolutely by comparison with the
geometric series.

Moreover, if |x| 6 r < |x0|, then the inequality above gives

|anxn| = |(x/x0)|n|anx0|n 6M(r/|x0|)n,

and since the right-hand side is now a sequence independent of x ∈ D, which defines a
convergent series, this means that the power series converges normally on D. �

This suggests the following definition:

Definition 4.3.2. Let (an) be a sequence of complex numbers. The radius of conver-

gence45 of the series
∑
anx

n is defined to be R = +∞ if the series converges for all x ∈ C,
and otherwise

R = sup{r ∈ R+ |
∑

anx
n
0 converges for some x0 with |x0| = r}.

The previous proposition leads then to the following result:

Corollary 4.3.3. Let (an) be a sequence of complex numbers and R the convergence
radius of the power series

∑
anx

n.
(1) For any r such that 0 6 r < R, the series

∑
anx

n converges normally on

Dr = {x ∈ C | |x| 6 r}.
(2) For any x ∈ C such that |x| < R, the series

∑
anx

n converges absolutely, and its
sum is a continuous function on the open disc

D′R = {x ∈ C | |x| < R}.
(3) For any x ∈ C with |x| > R, the series

∑
anx

n diverges.

Remark 4.3.4. If R = +∞, then the condition 0 6 r < R is always satisfied.

Proof. (1) If 0 6 r < R, then r is not an upper-bound of the (non-empty) set

E = {r ∈ R+ |
∑

anx
n
0 converges for some x0 with |x0| = r}.
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So there exists s ∈ E such that r < s, and by definition there exists x0 ∈ C with
|x0| = s for which the series converges; the proposition then implies that the power series
converges normally on Dr.

(2) If |x| < R, then putting r = |x| in (1), we get the absolute convergence of the power
series at x. Moreover, since the functions fn(x) = anx

n are continuous, Corollary 4.2.4
implies that the sum of the series is continuous on Dr. Since continuity is a local property,
and any x ∈ D′R belongs to Dr for some r < R (namely, x ∈ D|x|), this means that the
sum of the series is continuous on D′R.

(3) Suppose that |x| > R. Then
∑
anx

n must diverge, since otherwise, Proposi-
tion 4.3.1 would imply that

∑
any

n converges for R 6 |y| < |x|, which is not the case by
definition. �

Remark 4.3.5. (1) We will see later that power series have much stronger regularity
properties than only continuity.

(2) This corollary gives no information about the convergence of the series
∑
anx

n on
the circle with radius equal to the radius of convergence (when R is finite and positive).
This is because there is no general result here: the series might converge on the whole
circle, at no point of the circle, or just at some points – we will see examples of all these
possibilities.

Example 4.3.6. (1) It can well happen that the radius of convergence is equal to 0,
so that the power series only converges when x = 0. For instance consider an = n!, so
that the power series is

+∞∑
n=0

n!xn.

For any non-zero complex number x, we have

lim
n→+∞

|n!xn| = +∞

by Example 2.11.5, (1), so that the series
∑
n!xn cannot be convergent.

(2) The most important power series with infinite radius of convergence is

+∞∑
n=0

xn

n!
.

Indeed, this series converges for all x ∈ C by Proposition 2.10.14, (3).
(3) The geometric series

+∞∑
n=0

xn =
1

1− x
has radius of convergence equal to 1. In this case, if |x| = 1, we have |xn| = 1 for
all n ∈ N0, so that the series diverges at all points of the circle with radius 1.

(4) The series
+∞∑
n=1

xn

n

has radius of convergence equal to 1. Indeed, since |xn/n| 6 |xn|, it converges absolutely
where the geometric series converges, and since

lim
n→+∞

xn

n
= +∞

for |x| > 1, it cannot converge at any x ∈ C with |x| > 1.
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Note here that the series diverges for x = 1 (it is the series
∑

1/n, which diverges by
Example 2.8.9, (2)), but converges (not absolutely) for x = −1 (it is then the alternating
series of Example 2.10.9, (2)).

(5) The series
+∞∑
n=1

xn

n2

has radius of convergence equal to 1, for similar reasons as in the previous example, but
the series converges absolutely (even normally) whenever |x| = 1 since then∣∣∣xn

n2

∣∣∣ 6 1

n2

and the series
∑

1/n2 is convergent (Proposition 2.10.14, (1)).

To determine, or at least estimate, the radius of convergence of a power series
∑
anx

n,
one can as usual attempt a comparison: if (bn) is a sequence of non-negative real numbers
such that

|an| 6 bn
for all n ∈ N0, then the radius of convergence for

∑
anx

n is at least that of
∑
bnxn.

Moreover, we have the following useful fact:

Lemma 4.3.7. Suppose that
∑
anx

n has radius of convergence equal to R. Then for
any k ∈ R, the power series

+∞∑
n=1

ann
kxn

has the same radius of convergence.

We start the series here at n = 1 because k may be negative.

Proof. It suffices to check that if ∑
anx

n
0

converges then for |x| < |x0| and |y| > |x0|, the series∑
ann

kxn and
∑

ann
kyn

are respectively convergent and divergent. The first property is proved as in Proposi-
tion 4.3.1, using Proposition 2.10.14, (2). The second is obtained by an argument like
that in Corollary 4.3.3, (3). �

Example 4.3.8. We give here an interesting example of application of power series,
which is one of the simplest cases of the idea of generating functions, first invented by
Euler.

Let (Fn)n∈N0 be the sequence defined inductively by F0 = F1 = 1 and Fn+2 = Fn+1+Fn
for all n ∈ N0 (this is just the Fibonacci sequence of Example 1.2.3, (2), renumbered to
start at F0). We consider the power series

+∞∑
n=0

Fnx
n.

First we check that this series has a positive radius of convergence R. Indeed, by induction
on n, we see that 0 6 Fn 6 2n for all n ∈ N0. Therefore the radius of convergence R is
at least that of

∑
2nxn, which is equal to 1/2, since this series converges for |2x| < 1,

and diverges for |2x| > 1. Let f(x) be the sum of the power series for |x| < R.
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We will now use the inductive definition of the sequence to compute the function f .
This will allow us to find a formula for the sequence.

We observe that

x2f(x) =
+∞∑
n=0

Fnx
n+2 =

+∞∑
n=2

Fn−2x
n, xf(x) =

+∞∑
n=1

Fn−1x
n.

Therefore we get

(x2 + x)f(x) =
+∞∑
n=2

Fn−2x
n +

+∞∑
n=1

Fn−1x
n = F0x+

+∞∑
n=2

(Fn−2 + Fn−1)x
n

= F0x+
+∞∑
n=2

Fnx
n

= f(x) + (F0 − F1)x− F0 = f(x)− 1.

It follows that

f(x) =
1

1− x− x2
.

In order to deduce a formula for Fn from this expression, we need a different way to
express it as a power series. For this, we observe that

1− x− x2 = (1− x/α)(1− x/β)

where

α =
−1 +

√
5

2
, β =

−1−
√

5

2

(these are the two roots of the equation x2 + x − 1 = 0). Then we find real numbers a
and b such that

1

1− x− x2
=

a

1− x/α
+

b

1− x/β
.

Indeed, this is true with

a =
β

α− β
, b = − α

α− β
Then by the geometric series, we deduce that for |x| < min(|α|, |β|), we have

+∞∑
n=0

Fnx
n = f(x) = a

+∞∑
n=0

xn

αn
+ b

∞∑
n=0

xn

βn
.

We will see later that two power series can only be equal as functions if all their coefficients
agree, and we conclude that

Fn =
a

αn
+

b

βn

for all n ∈ N0. (Once the formula is known, it can be checked by induction, as in
Example 1.2.3, (2), but the method that we have just described can lead to the discovery
of the formula.)
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4.4. The elementary functions, I: the exponential

In the next two sections, we will use power series to define the basic elementary
functions: the exponential function, the trigonometric functions, and we will establish
from scratch their basic properties, including the periodicity of the trigonometric func-
tions (thus defining the number π for which the smallest positive period is 2π). We can
also define the logarithm as reciprocal bijection of the exponential (and later the inverse
trigonometric functions).

Definition 4.4.1 (Exponential, cosine and sine). The (complex) exponential function
exp: C→ C is the function defined by

exp(x) =
+∞∑
n=0

xn

n!
.

We already know that the exponential power series has infinite radius of convergence,
so the function is indeed defined for all x ∈ C, and it is a continuous function on C.

Note that although we defined exp(x) for every x ∈ C, the exponential of a real
number is a real number. By looking at the constant term, we see that exp(0) = 1.

The next result is the most important property of the exponential function.

Theorem 4.4.2. For any x and y in C, we have

(4.1) exp(x) exp(y) = exp(x+ y).

Proof. This is an example of a general fact about multiplication of two absolutely
convergent series. The idea is to multiply∑

n

an, and
∑
n

bn

by taking all the products anbm and combining them according to the value of n+m.
If we assume that this “works” (in the sense that if we denote by ck the sum of the

anbm where n+m = k, the series
∑

k ck converges and that its sum is the product of the
two series), then we get the series

+∞∑
k=0

( k∑
n=0

xnyk−n

n!(k − n)!

)
,
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in the case of exp(x) exp(y). we recognize the terms of this series are

k∑
n=0

xnyk−n

n!(k − n)!
=

1

k!

k∑
n=0

k!

n!(k − n)!
xnyk−n =

1

k!

k∑
n=0

(
k

n

)
xnyk−n =

(x+ y)k

k!

by (1.38) and the binomial theorem (Theorem 1.6.10), so that the series is

+∞∑
k=0

(x+ y)k

k!
= exp(x+ y).

This explains why the statement of the theorem is to be expected; the proof that the
product of the series has the required property is explained below. �

Proposition 4.4.3. Let
∑
an and

∑
bn be absolutely convergent series with sums a

and b respectively. For k ∈ N0, let

ck =
n∑
k=0

akbn−k =
∑

n+m=k

anbm.

Then the series
∑
ck converges absolutely and its sum is ab.

Proof. We first assume that an > 0 and bm > 0 for all n and m. Then the point is
that the partial sum

N∑
k=0

ck

can be interpreted as the sum of the products anbm over the points (n,m) ∈ N0 ×N0

in the set CN defined by the condition n + m 6 k. On the other hand, the product of
partial sums ( N∑

n=0

an

)( N∑
m=0

bm

)
is the sum of the products anbm over the set QN of all points (n,m) with 0 6 n 6 N and
0 6 n 6 N . Now we observe that

QN/2 ⊂ CN ⊂ QN ,
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which because all coefficients anbm are non-negative implies that(N/2∑
n=0

an

)(N/2∑
m=0

bm

)
6

N∑
k=0

ck 6
( N∑
n=0

an

)( N∑
m=0

bm

)
.

Because the right-hand side is bounded by ab, it follows that the series
∑

k ck has bounded
partial sums, and therefore converges; then since both left and right-hand sides converge
to ab, we deduce that the sum of the series

∑
ck is also ab.

We now come back to the general case where an and bm are complex numbers. Note
that

|ck| 6
k∑

n=0

|an| |bk−n|

by the triangle inequality. Since we assumed that the series are absolutely convergent,
this implies that ∑

k

|ck| 6
(∑

n

|an|
)(∑

n

|bn|
)
,

which shows that the series
∑
ck is absolutely convergent. There only remains to check

that its sum c is equal to ab. For this, we write∣∣∣ N∑
k=0

ck −
( N∑
n=0

an

)( N∑
m=0

bm

)∣∣∣ 6 ( ∑
n>N/2

|an|
)( ∑

mn>N/2

|bm|
)
,

where the right-hand side is the product of two sequences that tend to 0 as N → +∞.
Since the left-hand side converges to |c− ab|, we get c = ab as claimed. �

This formula leads to many important consequences.

Corollary 4.4.4. (1) For any x ∈ C, we have exp(x) 6= 0 and exp(x)−1 = exp(−x).
(2) For any x ∈ R, we have exp(x) > 0, and the exponential on R is strictly increasing

with
lim

x→−∞
exp(x) = 0, lim

x→+∞
exp(x) = +∞.

(3) For any x ∈ C, we have exp(x̄) = exp(x).

Proof. Since exp(x) exp(−x) = exp(0) = 1, we get the first property.
Then we note that exp(x) > 1 for all x ∈ R+, because then all terms of the series

are > 0 and the first term is equal to 1. Since exp(−x) = 1/ exp(x), it follows that
exp(x) > 0 for all real x. If we then take x < y in R, then we get

exp(y)− exp(x) = exp(x)(exp(y − x)− 1) > 0

since exp(y − x) > 1 + (y − x) > 1 for y − x > 0. Similarly, for x > 0, we have
exp(x) > 1 + x, and therefore exp(x)→ +∞ when x→ +∞. For x < 0, we have

exp(x) =
1

exp(−x)
→ 0

since −x→ +∞ when x→ −∞. This proves (2).
For (3), since the conjugation function is continuous and since xnn = x̄n for all n ∈ N0,

we get

exp(x) =
+∞∑
n=0

xn

n!
=

+∞∑
n=0

x̄n

n!
= exp(x̄).

�
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This allows us to define the logarithm function on ]0,+∞[, and the general power
functions. Indeed, part (2) of the corollary implies that the continuous function exp is
injective on R, and that its image is the interval ]0,+∞[.

Definition 4.4.5 (Logarithm). The logarithm function is the function log : ]0,+∞[→
R which is the reciprocal bijection of the exponential.

According to Proposition 3.4.2, the logarithm is continuous and is a strictly increasing
bijection, with image R, so that

lim
x→+∞

log(x) = +∞, lim
x→0
x>0

log(x) = −∞.

We have log(1) = 0 since exp(0) = 1, and the formulas

exp(x+ y) = exp(x) exp(y), exp(−x) = 1/ exp(x)

implies that

log(ab) = log(a) + log(b), log(1/a) = − log(a)

for all a > 0 and b > 0 (because, for instance, the exponential of the left-hand side is
ab, and is equal to the exponential exp(log(a) + log(b)) = exp(log(a)) exp(log(b)) of the
right-hand side).

Definition 4.4.6 (Power functions). Let x > 0 and let a ∈ C. We define

xa = exp(a log(x)).

It follows that log(xa) = a log(x).
This new definition is compatible with the usual definition of xn if n ∈ Z, and moreover

leads to the usual notation ex for the exponential.

Proposition 4.4.7. Let x > 0, y > 0 and a ∈ R, b ∈ R.
(1) If a ∈ Z then xa as defined above corresponds to the usual definition as integral

power or inverse of an integral power; if k ∈ N, then x1/k is the unique positive real
number such that (x1/k)k = x, in particular x1/2 =

√
x.

(2) We have
(xy)a = xaya.

(3) We have
xa+b = xaxb, (xa)b = xab.

(4) Let e = exp(1) ∈ R+. For any x ∈ C, we have ex = exp(x).

Proof. (1) We note that according to the exponential definition, we have

x1 = exp(1 log(x)) = exp(log(x)) = x,

and

x−1 = exp(− log(x)) = exp(log(1/x)) =
1

x
.

The fact that xa has the usual meaning for a ∈ Z follows by induction using the property
(3) that we will prove soon. And if k ∈ N, then we get

(x1/k)k = x1 = x.

(2) We have

(xy)a = exp(a log(xy)) = exp(a(log(x) + log(y)))

= exp(a log(x)) exp(a log(y)) = xaya.
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(3) We have

xa+b = exp((a+ b) log(x)) = exp(a log(x) + b log(x))

= exp(a log(x)) exp(b log(x)) = xaxb,

and
(xa)b = exp(b log(xa)) = exp(ab log(x)) = xab.

(4) We have log(e) = 1, so that

exp(x) = exp(x log(e)) = ex.

�

Remark 4.4.8. The number e = exp(1) is by definition the real number given by

e = 1 +
1

2
+ · · ·+ 1

n!
+ · · ·

Note that this series converges very quickly; in fact the remainder after n > 1 terms is

1

n!
+

1

(n+ 1)!
+ · · · = 1

n!

(
1 +

1

n+ 1
+

1

(n+ 1)(n+ 2)
+ · · ·

)
.

For any integer j > 1, we have

(n+ 1) · · · (n+ j) > 2j,

so we obtain the upper-bound

0 6 e−
n−1∑
k=0

1

k!
6

1

n!

+∞∑
j=0

1

2j
=

2

n!
.

Computing a few terms, we find the decimal approximation

e = 2.718281828459045235360287471352 . . .

Proposition 4.4.9. For any real number r and any a > 0, we have

lim
x→+∞

xreax = +∞, lim
x→+∞

xre−ax = 0,

and if r > 0 and a > 0, then

lim
x→0
x>0

xr log(x)a = 0, lim
x→+∞

xr log(x)a = +∞.

One remembers this by saying that ex “grows much faster” than any power of x for
x→ +∞, and “goes to zero much faster than any power of x grows”, and conversely that
log(x) grows slower than any power of x at infinity.
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Proof. We have

xreax = (xr/aex)a,

so that it suffices to consider the case a = 1 of the first limit. Let m ∈ N be such that
r > −m; note that for x > 0, we get

ex >
xm+1

(m+ 1)!
,

hence

xrex >
x

(m+ 1)!
,

which tends to +∞ when x→ +∞. For the second limit, note that

xre−ax = (x−reax)−1,

which converges to 0 since x−reax → +∞ as x→ +∞.
For the other limits, write y = log(x) for x > 0; then x = ey and xr log(x)a = eryya;

since y → +∞ if x→ +∞, we get

xr log(x)a → +∞ as x→ +∞,

and since y → −∞ if x→ 0 (with x > 0), we get

xr log(x)a → 0 as x→ 0, x > 0.

�

4.5. The elementary functions, II: trigonometry

Definition 4.5.1 (Cosine and sine). The (complex) sine and cosine functions are
defined by

(4.2) cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
.

By addition and composition, the cosine and sine functions are continuous on C.
Since e0 = 1, we have

cos(0) = 1, sin(0) = 0.

Moreover, we see that

cos(−x) = cos(x), sin(−x) = − sin(x)

for x ∈ C.
By definition, we obtain the other key formula

(4.3) eix = cos(x) + i sin(x).

By taking the n-th power of (4.3) for n ∈ Z and using (4.2), we also get

(4.4) cos(nx) + i sin(nx) = einx = (eix)n = (cos(x) + i sin(x))n.

for any x ∈ R.
Before checking that these are the usual trigonometric functions, we first compute the

power series for these functions.
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Proposition 4.5.2. For any x ∈ C, we have

sin(x) =
+∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

6
+

x5

120
+ · · · ,

cos(x) =
+∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2
+
x4

24
+ · · · ,

and both power series have infinite radius of convergence. In particular, the cosine and
sine of a real number are both real, so that

cos(x) = Re(eix), sin(x) = Im(eix).

Proof. By definition of the exponential, we have

eix =
+∞∑
n=0

(ix)n

n!
=

+∞∑
n=0

inxn

n!
,

and since (in) is the repeating sequence

(1, i,−1,−i, 1, i,−1,−i, . . .),
this becomes

eix =
+∞∑
n=0

x4n

(4n!)
+ i

+∞∑
n=0

x4n+1

(4n+ 1)!)
−

+∞∑
n=0

x4n+2

(4n+ 2)!)
− i

+∞∑
n=0

x4n+3

(4n+ 3)!)
.

Similarly, replacing x by −ix, we get

e−ix =
+∞∑
n=0

x4n

(4n!)
− i

+∞∑
n=0

x4n+1

(4n+ 1)!)
−

+∞∑
n=0

x4n+2

(4n+ 2)!)
+ i

+∞∑
n=0

x4n+3

(4n+ 3)!)
.

Adding or subtracting eix and e−ix, we get the result.
Since the power series converge for all x ∈ C, we deduce that the radius of convergence

is +∞ (which one can also check directly). And the final part of the proposition is clear
since the coefficients of the power series are real numbers. �

Proposition 4.5.3. For any x ∈ R, we have |eix| = 1, and therefore

cos(x)2 + sin(x)2 = 1.

In particular, for x ∈ R, we have

| sin(x)| 6 1, | cos(x)| 6 1.

Proof. For x ∈ R, we have

|eix|2 = eixeix = eixe−ix = 1

by Corollary 4.4.4, and then

cos(x)2 + sin(x)2 = Re(eix)2 + Im(eix)2 = |eix|2 = 1.

�

Remark 4.5.4. Let x = a+ ib be a complex number with (a, b) ∈ R2. We have

ex = ea+ib = ea(cos(b) + i sin(b))

and in particular
|ex| = ea = eRe(x).
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Example 4.5.5. The property (4.1) and the relations (4.3) and (4.2) lead to a system-
atic way of proving the usual trigonometric identities, such that that relating cos(x+ y)
to cos(x), cos(y), sin(x) and sin(y), or the formula for sin(kx) in terms of powers of cos(x)
and sin(x), or the converse expressions for cos(x)k in terms of cos(mx) and sin(nx). We
illustrate the method with some basic examples of each – one should know the method,
but not try to remember the formulas themselves!

(1) How to compute cos(x+ y) and sin(x+ y)?

We can deal with both simultaneously (maybe faster than doing each individually)
using (4.3) followed by (4.1):

cos(x+ y) + i sin(x+ y) = ei(x+y) = eixeiy,

and then we use (4.3) again and multiply the complex numbers:

eixeiy = (cos(x) + i sin(x))(cos(y) + i sin(y))

= (cos(x) cos(y)− sin(x) sin(y)) + i(sin(x) cos(y) + cos(x) sin(y)).

Looking at the real and imaginary parts, we get

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)(4.5)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).(4.6)

(2) What is sin(x)4 in terms of cosine or sines of multiples of x?

Here we use (4.2), following by the binomial expansion for (a+ b)4 and various appli-
cations of (4.1):

sin(x)4 =
(eix − e−ix

2i

)4
=

1

16

(
e4ix − 4e2ix + 6− 4e−2ix + e−4ix

)
.

We then recombine and recognize that

sin(x)4 =
1

8
(cos(4x)− 4 cos(2x) + 3).

(3) What are cos(5x) and sin(5x) in terms of powers of cos(x) and sin(x)?

Here the basic formula is (4.4); for k = 5, using the binomial formula leads to

cos(5x) + i sin(5x) = (cos(x) + i sin(x))5 = cos(x)5 + 5i cos(x)4 sin(x)

− 10 cos(x)3 sin(x)2 − 10i cos(x)2 sin(x)3 + 5 cos(x) sin(x)4 + i sin(x)5.

Identifying again the real and imaginary parts, we deduce that

cos(5x) = cos(x)5 − 10 cos(x)3 sin(x)2 + 5 cos(x) sin(x)4

sin(5x) = 5 cos(x)4 sin(x)− 10 cos(x)2 sin(x)3 + sin(x)5.

Note that here also it is in fact faster to compute both cos(5x) and sin(5x) at the same
time.

The next step in order to understand the trigonometric functions is to determine
their exact image, and to prove that they are periodic (which leads to the definition of
the number π).
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Lemma 4.5.6. There exists a real number π ∈ [0, 4] such that cos(π/2) = 0, and such
that cos(x) > 0 for 0 6 x < π/2. Moreover, we have sin(π/2) = 1 and sin(x) > 0 for
0 < x 6 π/2.

Proof. We have cos(0) = 1 > 0. We claim that cos(2) < 0; using the intermediate
value theorem, this implies the existence of at least one x ∈]0, 2] such that cos(x) = 0.
We then define

π = 2 inf{x ∈ [0, 2] | cos(x) = 0}.
This has the required property: because the infimum of a set of real numbers is the limit
of a sequence (xn) in that set (see Example 2.8.4, (2)), the continuity of the cosine leads
to

cos(x) = lim
n→+∞

cos(xn) = 0,

and there can be no smaller solution to the equation cos(x) = 0.
To prove the claim, we use the fact that for 0 6 x 6 4, we can write

cos(x)−
(

1− x2

2

)
=
x4

24
− x6

760
+ · · ·

where the series on the right-hand side is alternating, as in Proposition 2.10.10, since (for
0 6 x 6 4) the ratio between the absolute value of consecutive terms is x2/((2n+2)(2n+
1)), with n > 2, which is 6 16/30 < 1.

It is then the case that the sum of the series is always located between the odd-index
partial sums and the even-index partial sums. In particular, we get

1− x2

2
6 cos(x) 6 1− x2

2
+
x4

24
for x > 0. For x = 2, this gives

cos(x) 6 1− 2 +
16

24
= −1

3
< 0.

We end by checking that sin(π/2) = 1. Since cos(π/2)2 + sin(π/2)2 = 1, the only
possibilities are that sin(π/2) = 1 or sin(π/2) = −1. But since we can also write

sin(x)−
(
x− x3

6

)
=

x5

120
− x7

7!
+ · · · ,

we have in the same way as above the inequality

sin(x) > x− x3

6

for 0 6 x 6 4, which implies sin(x) > 0 for x2 < 6, in particular for all x 6 2, including
x = π/2. �

Theorem 4.5.7. For any x ∈ R, we have

cos(x+ π) = − cos(x), sin(x+ π) = − sin(x)

cos(x+ 2π) = cos(x), sin(x+ 2π) = sin(x)

cos(x+ 1
2
π) = − sin(x), sin(x+ 1

2
π) = cos(x).

Proof. By (4.5), we get

cos(x+ 1
2
π) = cos(x) cos(1

2
π)− sin(x) sin(1

2
π) = − sin(x),

and
sin(x+ 1

2
π) = sin(x) cos(1

2
π) + cos(x) sin(1

2
π) = cos(x).
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For x = π/2, we deduce that cos(π) = −1 and sin(π) = 0. Then by the same formula
we get

cos(x+ π) = cos(x) cos(π)− sin(x) sin(π) = − cos(x),

and
sin(x+ π) = sin(x) cos(π) + cos(x) sin(π) = − sin(x).

With x = π, this gives cos(2π) = 1 and sin(2π) = 0, and then once more, we get

cos(x+ 2π) = cos(x) cos(2π)− sin(x) sin(2π) = cos(x),

and
sin(x+ 2π) = sin(x) cos(2π) + cos(x) sin(2π) = sin(x).

�

Remark 4.5.8. We repeat the important formulas for cosine and sine of special num-
bers:

cos(1
2
π) = 0, sin(1

2
π) = 1

cos(π) = −1, sin(π) = 0

cos(2π) = 1, sin(2π) = 0.

Because of the periodicity, we get more generally for k ∈ Z

cos(kπ) = (−1)k, sin(kπ) = 0.

These formulas can also be remembered in their exponential form

eiπ/2 = i, eiπ = −1, e2iπ = 1.

Lemma 4.5.9. For α ∈]0, 2π[, we have eiα 6= 1.

Proof. Consider the set X of α ∈]0, 2π[ such that eiα = 1. We want to prove that X
is empty. We assume that it isn’t and we will get a contradiction.

If X is not empty, then it has an infimum β, since X is bounded. We have β > 0:
indeed, for α ∈]0, π/2], we have sin(α) = Im(eiα) > 0 hence α /∈ X. Now β is the limit
of a sequence αn ∈ X, and since the exponential is continuous, we get eiβ = lim eiαn = 1.

Note that eiβ/4 is equal to either 1, −1, i or −i (since its fourth power is equal to 1,
so the square is 1 or −1). In the first two cases, either β/4 or β/2 are elements of X
smaller than β, which is impossible. If eiβ/4 = i or −1, then we get cos(β/4) = 0, which
contradicts the definition of π, since β/4 < π/2. This ends the proof of (1). �

Corollary 4.5.10. (1) For any pair (a, b) ∈ R2 such that a2 + b2 = 1, there exists a
unique θ ∈ [0, 2π[ such that

eiθ = a+ ib, or equivalently a = cos(θ) and b = sin(θ).

In other words, the function from [0, 2π[ to C which maps θ to eiθ is injective and its
image is equal to the circle with center 0 and radius 1.

(2) The function cosine is injective and strictly decreasing on [0, π], and the function
sine is injective and strictly increasing on [−1

2
π, 1

2
π].

Proof. We first show the existence of the real number θ. We may assume that a 6= 1
(in that case we can take θ = 0). We have then −1 6 a < 1. Because cos(0) = 1 and
cos(π) = −1, there exists θ ∈]0, π] such that cos(θ) = a. Then

sin(θ)2 = 1− a2 = b2,
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so either sin(θ) = b, in which case we are done, or sin(θ) = −b. In this second situation,
we observe that

cos(2π − θ) = cos(θ) = a, sin(2π − θ) = − sin(θ) = b,

so that 2π − θ ∈ [π, 2π[ is then a solution.
We now prove that the solution is unique. Suppose that a pair of numbers (θ1, θ2)

with 0 6 θ1 6 θ2 < 2π satisfy

eiθ1 = eiθ2 .

Then we get ei(θ2−θ1) = 1, with θ2 − θ1 ∈ [0, 2π[; by the previous lemma, this is only
possible if θ1 = θ2.

We now prove (2). Suppose that x and y in [0, π] satisfy cos(x) = cos(y). Since
cos(π− x) = − cos(x) and cos(x) > 0 for 0 6 x 6 π/2, either x and y are both 6 π/2, or
both larger. We assume the first case (the second is similar). Then we have

sin(x) > 0, sin(y) > 0

by the last part of Lemma 4.5.6. This implies that

sin(x) =
√

1− cos(x)2, sin(y) =
√

1− cos(y)2,

so that we get eix = eiy, hence x = y by (1).
So we have shown that cosine is injective on [0, π]; it must be strictly monotone by

Proposition 3.4.1, and since cos(0) = 1 and cos(π) = −1, it must be strictly decreasing.
Using the formula sin(x) = − cos(x + π/2) (see Theorem 4.5.7), we deduce that sine

is strictly increasing on [−π/2, π/2]. �

Remark 4.5.11. The graphs of cosine and sine have therefore the following shape:
Note however that to determine that the “slopes” of these curves at various points are
roughly correct, we will have to wait for the definition of the derivative, which will allow
us to know that sin(x) is “very close to x” when |x| is small.

Corollary 4.5.12. Let x be a complex number.
(1) There exists a real number θ ∈ [0, 2π[ such that

x = |x|eiθ,
and θ is unique if x is not zero.

(2) The image of the exponential function exp: C→ C is the set of non-zero complex
numbers, and ex = ey if and only if there exists k ∈ Z such that x− y = 2kπ.

Proof. (1) If x = 0, we can take any θ. Otherwise, we note that |x/|x|| = 1 so the
previous corollary implies that we can find a unique θ ∈ [0, 2π[ with x

|x| = eiθ.
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(2) If x 6= 0, then we get x = |x|eiθ = elog(|x|)eiθ = elog(|x|)+iθ, so that x is in the image
of the exponential. Since ex 6= 0 for all x, the set of non-zero complex numbers is indeed
the image of the exponential.

If ex = ey, then we get ex−y = 1. Taking the modulus, we deduce that eRe(x−y) = 1,
so that Re(x − y) = 0. Hence there exists α ∈ R such that x − y = iα. If we subtract
from α a suitable multiple 2kπ of 2π, with k ∈ Z, we can ensure that

0 6 α− 2kπ < 2π,

and then ei(α−2kπ) = 1 implies that α = 0 by Lemma 4.5.9. �

Remark 4.5.13. (1) Geometrically, the number θ is the angle between the positive
real-axis and the segment joining the origin to x. It is unique in [0, 2π[ (if x 6= 0), but
it is not unique as a real number: θ + 2kπ has the same property for all k ∈ Z. We say
that θ is the argument of x.

(2) The pair (|x|, θ) is called the polar coordinates of x. Note that it is not unique!
This representation is convenient for multiplication: if x and y are complex numbers,
with arguments θ and ϕ, then

xy = |xy|ei(θ+ϕ),
so the argument of the product is the sum of the argument of the factors (provided one
allows the argument to exceed 2π).

Here is an important application.

Proposition 4.5.14. Let k ∈ N. Let y ∈ C be a non-zero complex number. There
are k roots x in C of the equation xk = y, given by

xj = |y|1/keiθ/k+2πij/k, 0 6 j < k,

where θ ∈ [0, 2π[ is the argument of y.

Proof. For xj as above, we have xkj = |y|eiθ+2πij = |y|eiθ = y, so these numbers are
solutions of the equations. They are distinct, because if we assume that xj = xl, with
j 6 l, then we get

eiθ/k+2πij/k = eiθ/k+2πil/k

or

e2πi(j−l)/k = 1,

which cannot happen unless j = l, since 0 6 2π(j − l)/k < 2π.
So we have found k distinct solutions of an algebraic equation of degree k, and these

must be all the solutions (which is also easy to check directly in this case). �
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Remark 4.5.15. Geometrically, the solutions xj in the plane form the vertices of a
regular polygon with k sides (e.g., a square if k = 4).

We end this chapter by defining the inverse trigonometric functions using Corol-
lary 4.5.10.

Definition 4.5.16. The inverse cosine function is the reciprocal bijection
arccos : [−1, 1]→ [0, π] of the cosine function restricted to [0, π].

The inverse sine function is the reciprocal bijection arcsin : [−1, 1] → [−π/2, π/2] of
the sine function restricted to [−π/2, π/2].

These are indeed defined since cosine (resp. sine) is strictly decreasing (resp. strictly
increasing) on [0, π] (resp. on [−π/2, π/2]) with cos(0) = 1 and cos(π) = −1 (resp.
sin(−π/2) = −1 and sin(π/2) = 1). The inverse cosine is strictly decreasing, and the
inverse sine is strictly increasing.

Example 4.5.17. (1) We have cos(arccos(x)) = x and sin(arcsin(x)) = x for all
x ∈ [−1, 1], but be careful that that arccos(cos(x)) = x only holds if x ∈ [0, π], although
cosine is defined for all x ∈ R.

(2) There is a close relationship between arcsin and arccos, as between cosine and
sine. In fact, we have

arccos(x) =
π

2
− arcsin(x),
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for all x ∈ [−1, 1], since the number π/2 − arcsin(x) belongs to the interval [0, π] for
x ∈]− π/2, π/2[ and the right-hand side satisfies

cos(1
2
π − arcsin(x)) = sin(arcsin(x)) = x.

Moreover, we also have

sin(arccos(x)) =
√

1− x2, cos(arcsin(x)) =
√

1− x2

for all x ∈ [−1, 1]. Indeed, we have first

1 = cos(arccos(x))2 + sin(arccos(x))2 = x2 + sin(arccos(x))2,

so that sin(arccos(x)) can only be equal to
√

1− x2 or −
√

1− x2. Since arccos(x) ∈ [0, π],
and since sin(y) > 0 for y ∈ [0, π] (by Lemma 4.5.6 for 0 6 y 6 π/2, and then since
sin(π − y) = − sin(y − π) = sin(y + π) = sin(y)), this holds for π/2 6 y 6 π), the only
possibility is

√
1− x2.

Similarly, from

1 = cos(arcsin(x))2 + sin(arcsin(x))2 = cos(arcsin(x))2 + x2,

and from the fact that arcsin(x) ∈ [−π/2, π/2], where cosine is non-negative, we deduce
that cos(arcsin(x)) =

√
1− x2.
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CHAPTER 5

Differentiable functions

This chapter considers “better” regularity conditions on functions than their conti-
nuity, corresponding to the fact that, close a given point x0, we can approximate very
well a function f by the simplest non-constant function, that is, by a linear function
g(x) = ax + b. We will only consider here functions defined on intervals in R. The
parameter a that appears is the derivative of f at the point x0.

5.1. Definition and algebraic properties

Let I be an interval in R and f : I → R a function. Let x0 ∈ I. If we try to
approximate “as best as possible” the function f by g(x) = ax + b, then it is natural to
take b such that g(x0) = f(x0). This leads to

g(x) = ax+ f(x0)− ax0 = a(x− x0) + f(x0).

In order for g(x) to be “close to” f(x) when x is close to x0, we need (with ≈ to denote
a good approximation)

f(x) ≈ f(x0) + a(x− x0),

which suggests that the constant a should be “close to”

f(x)− f(x0)

x− x0
.

This suggests to take the limit of this last expression, if it exists, as defining a. This is
geometrically quite natural, since this ratio is simply the slope of the line in the plane
joining the two points

(x0, f(x0)), (x, f(x))

of the graph of f , so that to look at its limit means to look at points very close on the
graph, and asking if the slope tends to a fixed number.
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Definition 5.1.1. Let I ⊂ R be an interval and f : I → R a function. Let x0 be an
element of I.

If the limit

(5.1) lim
x→x0
x 6=x0

f(x)− f(x0)

x− x0
exists, then we say that f is differentiable at x0 with derivative equal to the limit, which
is denoted f ′(x0).

If f is differentiable at all x0 ∈ I, it is said to be differentiable on I, and the function
f ′ on I that maps x ∈ I to f ′(x) is called the derivative of f .

Remark 5.1.2. (1) If x0 is an endpoint of the interval I (say I = [a, b] and x0 = a),
then the limit in the definition is understood to have x restricted to lie in I. Because
this turns out to imply that the properties of the derivative at such a point are not the
same as “interior” points, we sometimes emphasize this by saying that when x0 is the
minimum (resp. maximum) of I, the limit (when it exists) is the right-derivative of f
at x0, denoted f ′r(x0) (resp. the left-derivative, denoted f ′l (x0)).

(2) If the limit (5.1) is +∞ or −∞, then one sometimes writes f ′(x0) = +∞ or
f ′(x0) = −∞.

(3) It is often useful to write the limit (5.1) in the form

lim
h→0
h6=0

f(x0 + h)− f(x0)

h
,

because the limit is then always as h→ 0.

The geometric interpretation is that the derivative (if it exists) is the slope of the
tangent line of f at a point x (defined, intuitively, as a line in the plane that “just
touches” the graph of f at the point (x, f(x))).

Note that since the definition is with a limit as x→ x0, the existence (and the value)
of the derivative are local properties of the function f , that only depend on its values on
a small interval containing x0.

Definition 5.1.3. Let I ⊂ R be an interval and f : I → R a function. Let x0 be an
element of I such that f is differentiable at x0. The line with equation

y − y0 = f ′(x0)(x− x0),
which has slope f ′(x0) and passes through (x0, f(x0)), is called the tangent line to the
graph of f at (x0, f(x0)).

If f ′(x0) = +∞ or f ′(x0) = −∞, then the vertical line with equation

x = x0

is called the tangent line to the graph of f at (x0, f(x0)).

Example 5.1.4. (1) Consider I = R and f(x) = x. Let x0 ∈ R and x 6= x0. Then
we get

f(x)− f(x0)

x− x0
= 1,

so that f is differentiable at x0 with derivative constant equal to 1.
(2) Consider I = R and f(x) = x2. Let x0 ∈ R and x 6= x0. Then we get

f(x)− f(x0)

x− x0
=

(x− x0)(x+ x0)

x− x0
= x+ x0,
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hence the limit as x → x0 exists and is equal to 2x0. Therefore the square function is
differentiable on R with derivative f ′(x) = 2x for all x.

(3) Consider I = R+ and g(x) =
√
x. For x0 = 0. Then for x > 0, we get

g(x)− g(x0)

x− x0
=

√
x

x
=

1√
x
,

and therefore the derivative on the right of g is equal to +∞. This corresponds to the
fact that the slope of the graph of g around 0 is vertical.

(4) Altough the most commonly used functions are differentiable, this is not always
the case. For instance, let I = R and f(x) = |x|. Then if we take x0 = 0, then the ratio

f(x)− f(0)

x
=
|x|
x

is equal to 1 if x < 0 and to −1 if x < 0, which means that there is no derivative at
x0 = 0.

In fact, one can show that in a certain precise sense “almost all” continuous functions
are not differentiable at any point (this is a consequence of the theory of Brownian
motion). A concrete example (not obvious; it was proposed by Weierstrass in 1872, but
only proved to be suitable by Hardy in 1916) is the function defined by

f(x) =
+∞∑
n=1

sin(3nx)

3n
.

The following fact is often useful, even as a way to prove continuity.

Proposition 5.1.5. Let I ⊂ R be an interval and let f : I → R be a function
differentiable on I. Then f is continuous on I.

Proof. Let x0 ∈ I. Define the function

g(x) =
f(x)− f(x0)

x− x0
for x 6= x0. From the existence of the limit (5.1), we deduce that there exists δ > 0 such
that

|g(x)| 6 |f ′(x0)|+ 1

when |x − x0| < δ and x 6= x0. Define g(x0) = 1, so that the inequality is also true for
x = x0. Since

f(x)− f(x0) = (x− x0)g(x),

for all x ∈ I, including x = x0, we deduce that for |x− x0| < δ, we have

|f(x)− f(x0)| 6M |x− x0|
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where M = 1 + |f ′(x0)|. Using Lemma 3.2.4 (or arguing directly), we deduce that f is
continuous at x0. �

As is the case of continuity, the property of differentiability is preserved under the
usual algebraic operations, and moreover there are easy formulas to compute the corre-
sponding derivatives.

Proposition 5.1.6. Let I ⊂ R be an interval and let f , g : I → R be functions
differentiable on I.

(1) The function f + g is differentiable on I and (f + g)′ = f ′ + g′.
(2)(Leibniz rule) The function fg is differentiable on I and (fg)′ = f ′g + g′f . In

particular, if f = a is a constant function, then (ag)′ = ag′.
(3) If g(x) 6= 0 for all x ∈ I, then the function f/g is differentiable on I and (f/g)′ =

(f ′g − fg′)/g2.
(4) (Chain rule) If J is an interval containing the image of f and f1 is a differentiable

function J → R, the the composition f1 ◦ f is differentiable on I and

(f1 ◦ f)′ = f ′(f ′1 ◦ f),

or in other words
(f1 ◦ f)′(x) = f ′(x)f ′1(f(x))

for all x ∈ I.
(5) (Reciprocal) If f is injective and J is its image, and if f ′ is non-zero on I, then

the reciprocal bijection function f−1 : J → I is differentiable with

(f−1)′ =
1

f ′ ◦ f−1
.

Proof. (1) We have

(f + g)(x)− (f + g)(x0)

x− x0
=
f(x)− f(x0)

x− x0
+
g(x)− g(x0)

x− x0
,

and the right-hand side converges to f ′(x0) + g′(x0) as x→ x0.
(2) We have

(fg)(x)− (fg)(x0)

x− x0
= g(x)

f(x)− f(x0)

x− x0
+ f(x0)

g(x)− g(x0)

x− x0
,

and the right-hand side converges to g(x0)f
′(x0) + f(x0)g

′(x0) as x → x0, since g is
continuous at x0, so that g(x) → g(x0) as x → x0 (Proposition 5.1.5). If f = a is
constant, then we get (af)′(x0) = af ′(x0).

(3) Using (2), it suffices to prove that the derivative of 1/g is −g′/g2. We have

1/g(x)− 1/g(x0)

x− x0
=

1

g(x)g(x0)

g(x0)− g(x)

x− x0
,

which converges to −g′(x0)/g(x0)
2 (again because g is continuous).

(4) Formally, we write

f1 ◦ f(x)− f1 ◦ f(x0)

x− x0
=
f1 ◦ f(x)− f1 ◦ f(x0)

f(x)− f(x0)

f(x)− f(x0)

x− x0
.

Since f is continuous, we have f(x)→ f(x0) as x→ x0, which implies that

f1 ◦ f(x)− f1 ◦ f(x0)

f(x)− f(x0)
→ f ′1(f(x0)).
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The second factor converges to f ′(x0), which gives the result. (This is not quite a rigorous
proof, because it could be that f(x) = f(x0) for many values of x when it approaches
x0, so that the expression above is not well-defined; however, one can use note that we
always have

f1 ◦ f(x)− f1 ◦ f(x0)

x− x0
= h(x)

f(x)− f(x0)

x− x0
where we put h(x) = f ′1(f(x0)) if f(x) = f(x0), and

h(x) =
f1 ◦ f(x)− f1 ◦ f(x0)

f(x)− f(x0)

otherwise; it is then easy to deduce, using sequences, that h(x)→ f ′1(f(x0)) as x→ x0.)
(5) Let y0 ∈ J , For all y ∈ J different from y0, we define have

f−1(y)− f−1(y0)
y − y0

=
f−1(y)− f−1(y0)

f(f−1(y))− f(f−1(y0))
.

As y → y0, we have f−1(y) → f−1(y0) since f−1 is continuous, hence this converges to
1/f ′(f−1(y)). �

We now prove that almost all elementary functions are differentiable, which implies
that all finite combinations of such functions are differentiable where they are defined
(and shows that their derivatives can be efficiently computed).

Proposition 5.1.7. (1) Any polymomial

p(x) = anx
n + · · ·+ a1x+ a0

is differentiable on R with

p′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

(2) The exponential and trigonometric functions are differentiable on R with

exp′ = exp, cos′ = − sin, sin′ = cos,

(3) The logarithm is differentiable on ]0,+∞[ with

log′(x) =
1

x
for all x > 0.

(4) For any a ∈ R, the function f(x) = xa is differentiable on ]0,+∞[ with f ′(x) =
axa−1.

(5) The functions arccos and arcsin are differentiable on ]− 1, 1[ with derivatives

arccos′(x) = − 1√
1− x2

, arcsin′(x) =
1√

1− x2
.

Proof. (1) Using Proposition 5.1.6, it is enough to consider the case of pn(x) = xn

for n ∈ N0, for which we need to prove that

p′n(x) = nxn−1 for n ∈ N, p′0(x) = 0.

This can be done by induction on n. If n = 0, then p0 = 1 is constant and has
derivative equal to 0. If n = 1, then p1(x) = x has derivative 1 by Example 5.1.4, (1).
Now assume that n ∈ N and that the result holds for pn and consider pn+1. We have
pn+1 = pnp1, so that by the Leibniz rule, the function pn+1 is differentiable and

p′n+1(x) = (pnp1)
′(x) = p′n(x)p1(x) + pn(x)p′1(x) = nxn−1 × x+ xn × 1 = (n+ 1)xn,

103



which concludes the proof.
(2) The derivatives of exp, sin and cos can be deduced from their power series expan-

sions; for example, treating the power series as if it were a polynomial and using (1), we
would get

exp′(x) = 1 + 2
x

2
+ 3

x2

6
+ · · ·+ n

xn−1

n!
+ · · · = exp(x).

This can be justified, as we will explain later, but we can also prove this in a more
elementary manner using the fundamental property (4.1). Precisely, let x0 ∈ R, and for
h ∈ R, write first

ex0+h − ex0
h

= ex0
eh − 1

h
.

As h → 0, this converges if and only if (eh − 1)/h converges, and the limit is then ex0

multiplied by that limit (this reduces the question to the differentiability at 0).
For h 6= 0, we get using the power series the formula

eh − 1

h
= 1 + hg(h),

where

g(h) =
1

2
+ · · ·+ hn

(n+ 2)!
+ · · ·

Observe that the coefficients of this series satisfy |hn/(n + 2)!| 6 hn for n ∈ N0, so that
if −1 < h < 1, we have

|g(h)| 6
+∞∑
n=0

|h|n =
1

1− |h|
.

It follows that ∣∣∣eh − 1

h
− 1
∣∣∣ 6 |h|

1− |h|
,

and since the right-hand side tends to 0 as h → 0, we conclude that (eh − 1)/h → 1 as
h→ 0, which leads to the formula for the derivative of the exponential.

For cosine and sine, we use the power series, which will be justified later on (see
Example 5.2.3): differentiating term by term from

cos(x) = 1− x2

2
+ · · ·+ (−1)nx2n

(2n)!
+ · · ·

as for a polynomial, we get

cos′(x) = −x+ · · ·+ (−1)n
x2n−1

(2n− 1)!
+ · · · = − sin(x),

and similarly with the sine.
(3) By definition, the logarithm is the reciprocal bijection of the exponential function

on R; since exp′ = exp which is never zero, so we get

log′(x) =
1

exp′(log(x))
=

1

exp(log(x))
=

1

x

for all x > 0 by Proposition 5.1.6, (5).
(4) We have by definition

xa = ea log(x) = f(g(x))
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where f(x) = exp(x) and g(x) = a log(x). By the Chain Rule, it follows that the power
function is differentiable, and that the value of its derivative at x0 > 0 is

g′(x0)f
′(g(x0)) =

a

x0
ea log(x0) = axa−10

by Proposition 4.4.7, (3).
(5) The function arccos is the reciprocal of the function cos : [0, π] → [−1, 1], which

has derivative − sin(x). We have sin(x) > 0 on ]0, π[. By Proposition 5.1.6, (5) again, we
get

arccos′(x) = − 1

sin(arccos(x))
.

for x ∈]−1, 1[ (which is the image of cos when restricted to ]0, π[), and by Example 4.5.17,
(2), we get

arccos′(x) = − 1√
1− x2

.

The case of arcsin is similar . �

Example 5.1.8. Let I = [1,+∞[ and

f(x) = log(x+
√
x2 − 1)

for x ∈ I. By composition and addition of differentiable functions (and the fact that
x2−1 > 0 and x+

√
x2 − 1 > 0 for x ∈ I), it follows that f is differentiable. We compute

its derivative using the chain rule: putting g(x) = x+
√
x2 − 1, which satisfies

g′(x) = 1 +
2x

2
√
x2 − 1

= 1 +
x√

x2 − 1
,

we get

f ′(x) =
g′(x)

x+
√
x2 − 1

=
(

1 +
x√

x2 − 1

) 1

x+
√
x2 − 1

.

Since derivatives are defined as limits, they can often be used themselves to compute
various limits that can be represented in terms of limits of (f(x)− f(x0))/(x− x0). Here
is a standard example:

Proposition 5.1.9 (L’Hospital’s Rule). Let f and g be functions defined and differ-
entiable on [a, b] with a < b. Suppose that f(a) = g(a) = 0. If g′(a) 6= 0, then

lim
x→a
x<a

f(x)

g(x)
=
f ′(a)

g′(a)
.

Similarly if f(b) = g(b) = 0 and g′(b) 6= 0, we have

lim
x→b
x<b

f(x)

g(x)
=
f ′(b)

g′(b)
.

Proof. For x > a, we note that

f(x)

g(x)
=
f(x)− f(a)

x− a
x− a

g(x)− g(a)

where the first factor converges to f ′(a) and the second to 1/g′(a). �
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Example 5.1.10. Consider

lim
x→0

cos(x)− 1

sin(x)
.

We can apply the L’Hospital Rule to compute both the limit as x → 0 with x > 0 or
x→ 0 with x < 0. We find

lim
x→0
x>0

cos(x)− 1

sin(x)
=
− sin(0)

cos(0)
= 0,

and the same value for the limit with x < 0. We conlude that the limit exists and is
equal to 0.

There exist generalizations of the L’Hospital Rule, but in many cases it is better to
use Taylor polynomials to compute such limits (see Example 5.7.10).

5.2. Derivative of functions defined as limits

Let I ⊂ R be an interval of real numbers. If we have a sequence of functions fn : I → R
that converges to a function f , and if all functions fn are differentiable, it is natural to ask
whether the limit f is also differentiable (and if Yes, one might hope that the derivative
of f is also the limit of the derivatives f ′n). Clearly, we need to assume at least that
the convergence is uniform, since otherwise the limit f might not even be continuous,
which is a necessary condition to be differentiable. But it is possible to find examples
where the uniform convergence is not sufficient; in fact, more generally, it is a result of
Weierstrass that any continuous function f : [0, 1]→ R, possibly nowhere differentiable,
can be expressed as the uniform limit of a sequence of polynomials (fn), which are of
course all differentiable functions.

Remark 5.2.1. Bernstein found a particulary simple example of such a sequence of
polynomials: for any continuous function f : [0, 1]→ R, he proved that the functions

fn(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(k
n

)
,

which are polynomials of degree at most n, converge uniformly to f on [0, 1] (this example
is actually very important in applications, in the theory of splines for computer-aided
design for instance).

However, we can obtain the result if we assume also that the sequence of derivatives
f ′n converges itself uniformly.

Theorem 5.2.2. Let I be an interval in R and for n ∈ N, let fn : I → R be a
differentiable function. Let f : I → R be a function. Assume that f ′n is continuous for
all n, and moreover that (fn) converges to f uniformly on I, and that (f ′n) converges
uniformly to some function g.

Then the function f is differentiable on I, and f ′ = g, which is a continuous function.

We will prove this theorem in the next chapter, since it is easiest to do it using the
properties of the integral of functions.

Example 5.2.3. (1) Let (an)n∈N0 be a sequence of real numbers such that the power
series

∑
anx

n has a positive radius of convergence R > 0. Let f be the continuous
function on ]−R,R[ defined by the sum of the series.
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We claim that we can apply Theorem 5.2.2 to the sequence of partial sums, and
conclude that the sum f of the power series is differentiable on ]−R,R[ and satisfies

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

+∞∑
n=0

(n+ 1)an+1x
n.

Precisely, we need as usual to first restrict the domain. The partial sums are the
polynomials

sn(x) = a0 + a1x+ · · ·+ anx
n,

which are therefore differentiable with a continuous derivative, given by the polynomials

s′n(x) = a1 + · · ·+ nanx
n−1.

These are the partial sums of the power series

+∞∑
n=0

(n+ 1)an+1x
n.

This power series has the same radius of convergence as the original series, by Lemma 4.3.7
applied to k = 1, and therefore it converges uniformly to some function g on any interval
]− r, r[ where r < R. By the theorem, we deduce that f is differentiable on ]− r, r[ with

f ′(x) =
+∞∑
n=0

(n+ 1)an+1x
n.

for −r < x < r. Taking a sequence of r that tends to R (for instance rn = R − 1/n),
we conclude (because the differentiability is a local property) that for any x such that
|x| < R, the function f has a derivative at x given be the sume of the series above.

(2) If we apply (1) to cases where we have a concrete expression for the sum of the
power series, then we obtain new identities. For instance, from the geometric series
expansion

+∞∑
n=0

xn =
1

1− x
,

we obtain
+∞∑
n=0

(n+ 1)xn =
1

(1− x)2
,

which implies also (by multiplying by x on both sides and renumbering) that

x+ 2x2 + 3x3 + · · · =
+∞∑
n=1

nxn =
x

(1− x)2
.

If we differentiate again, we get

1 + 4x+ 9x2 + · · · =
+∞∑
n=0

(n+ 1)2xn =
1 + x

(1− x)3
,

since the derivative of x/(1− x)2 is equal to

(1− x)2 − x(2x− 2)

(1− x)4
=

1− x2

(1− x)4
=

1 + x

(1− x)3
.
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Differentiating further, one can in principle get such formulas for

+∞∑
n=0

nkxn

for any k ∈ N0.

5.3. Derivatives of complex-valued functions

We add a few remarks on the generalization of the notion of derivative to functions
f : I → C, where I is still an interval in R.

This can be done by using the same definition:

f ′(x0) = lim
x→x0
x 6=x0

f(x)− f(x0)

x− x0

where the right-hand side is a limit of quantities in C. Alternatively, one can write

f = f1 + if2

where f1(x) = Re(f(x)) and f2(x) = Im(f(x)), and then (using Proposition 2.5.11 for
instance) it follows that f is differentiable at x0 with derivative f ′(x0) if and only if both
f1 and f2 are differentiable at x0 with

f ′(x0) = f ′1(x0) + if ′2(x0).

All the properties we have seen (Proposition 5.1.6 and Theorem 5.2.2, in particular)
hold for functions from I to C.

Example 5.3.1. Let f(x) = eax for x ∈ R, where a ∈ C. If a is not a real number
(for instance if a = i), then f is really a function from R to C. It is differentiable on R
with

f ′(x) = aeax

for all x ∈ R.
We can check this using the power series expansion and Theorem 5.2.2, or using the

second interpretation with real and imaginary parts. Indeed, write a = α + iβ with
α = Re(a) and β = Im(a). We have

f(x) = eαx cos(βx) + ieαx sin(βx).

The real and imaginary parts f1 and f − 2 are differentiable as products of differentiable
functions, so the function f is differentiable. Using the Leibniz rule and Proposition 5.1.7,
we compute

f ′1(x) = αeαx cos(βx)− βeαx sin(βx)

f ′2(x) = αeαx sin(βx) + βeαx cos(βx).

Hence

f ′(x) = f ′1(x) + if ′2(x)

=
(
αeαx cos(βx)− βeαx sin(βx)

)
+ i
(
αeαx sin(βx) + βeαx cos(βx)

)
= αeαx(cos(βx) + i sin(βx)) + iβeαx(cos(βx) + i sin(βx)) = aeax,

as claimed.
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Figure 5.1. Local Maximum and Local Minimum

Remark 5.3.2. One can also ask whether it makes sense to speak of the derivative
of a function f : C→ C, since the ratios

f(x)− f(x0)

x− x0
make sense as complex numbers for x 6= x0 (even if there is no interpretation as the slope
of a line).

Such a definition does make sense, but it turns out that, except for very simple formal
properties, the functions f : C→ C that are differentiable have very different properties
as functions of a real variable. The most striking is probably the following: any function
f : C→ C that is differentiable everywhere in the complex sense can be represented as a
power series with infinite radius of convergence.

5.4. Global properties of differentiable functions

As was the case for continuity, the power of having differentiable functions is revealed
in the global properties of the derivative. The two important statements are somewhat
related to the intermediate value theorem and the extremum theorem. Before we state
them, we need to generalize the notion of the maximum or minimum of a function.

Definition 5.4.1 (Local extremum). Let I ⊂ R be an interval and f : I → R a
function. Let x0 ∈ I.

(1) The function f has a local maximum at x0 if there exists δ > 0 such that

f(x) 6 f(x0)

for x ∈ I such that |x− x0| < δ.
(2) The function f has a local minimum at x0 if there exists δ > 0 such that

f(x) > f(x0)

for x ∈ I such that |x− x0| < δ.
(3) If f has either a local maximum or a local minimum at x0, then we say that f has

a local extremum at x0.

Remark 5.4.2. In other words, in comparison with a maximum or a minimum of
all values of a function (which we often call a global maximum or minimum, to avoid
any ambiguity), we only ask that, at a local maximum x0 for instance, the graph of the
function is below the horizontal line y = f(x0) when x is not too far from x0. Clearly, if
f has a maximum at x0, then it has a local maximum. An example of a local minimum
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Figure 5.2. Graph of f(x) = x sin(x)

Figure 5.3. Local Extremum Theorem

that is not a global minimum is given by the function

f(x) = x sin(x)

at x0 = 0. Indeed, since sin(−x) = − sin(x) and sin(x) > 0 for 0 6 x 6 π/2, we have

f(x) > 0 = f(0)

for −π/2 6 x 6 π/2, which shows that 0 is a local minimum. It is not a global minimum
because f is sometimes negative, for instance f(3π/2) = −3π/2 since sin(3π/2) = −1.

Theorem 5.4.3 (Local Extremum Theorem). Let I ⊂ R be an interval and f : I → R
a differentiable function. Let x0 ∈ I be such that f has a local extremum at x0, and such
that x0 is not either the minimum or maximum of I. Then f ′(x0) = 0.

Proof. Since x0 is not the minimum or maximum of I, there exists δ > 0 such that
the interval ]x0 − δ, x0 + δ[ is contained in I.

Assume that x0 is a local maximum, the other case being similar. We may then
assume that δ is small enough to satisfy

f(x) 6 f(x0)

for x ∈]x0 − δ, x0 + δ[. It follows that

f(x0 + h)− f(x0)

h
6 0
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for 0 < h < δ and
f(x0 + h)− f(x0)

h
> 0

for −δ < h < 0. From the first, letting h → 0, we deduce that f ′(x0) 6 0, and from the
second, that f ′(x0) > 0. Hence f ′(x0) = 0. �

Remark 5.4.4. (1) The statement means that, at a local extremum that is not an
endpoint of I, the tangent line to the graph of f is horizontal, which is something that is
intuitively clear.

(2) The theorem does not always hold for the endpoints. For instance, if I = [0, 1]
and f(x) = x, then x0 = 0 is a local minimum (even global minimum), but f ′(0) = 1.

(3) The condition that f ′(x0) = 0 is necessary, but not sufficient, to ensure that x0
is a local extremum. For instance, let I = R and f(x) = x3. Then f ′(x) = 3x2, so that
f ′(0) = 0, but x0 = 0 is not a local extremum since f(x) < 0 for x < 0 and f(x) > 0
for x > 0. In the next section, we will see how one can often determine if a zero of the
derivative really corresponds to a local extremum.

(4) Let f : [a, b] → R be continuous. We know, from the Extremum Theorem, that
there exists points x0 and x1 such that

f(x0) 6 f(x) 6 f(x1)

for all x ∈ [a, b]. The Local Extremum Theorem provides an approach to finding the
possible values of x0 and x1, if the function f is in addition differentiable on [a, b]:

• Find the set X of all solutions x of the equation f ′(x) = 0.
• Evaluate f at the endpoints (a and b) and at all points of X; then the possible

values of x0 (resp. x1) are those x ∈ X ∪{a, b} where f(x0) is the smallest (resp.
the largest).

This approach is often successful, especially when the set X is finite.

Theorem 5.4.5 (Mean-value Theorem). Let I ⊂ R be an interval and f : I → R a
differentiable function. Let a < b be elements of I. There exists a real number c ∈]a, b[
such that

f(b)− f(a)

b− a
= f ′(c).

Proof. Let

g(x) =
f(b)− f(a)

b− a
(x− a) + f(a),

which is the linear function such that the line in the plane joining (a, f(a)) to (b, f(b))
has equation y = g(x) (because g(a) = f(a) and g(b) = f(b)).
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Consider the differentiable function h(x) = f(x)− g(x). It satisfies h(a) = h(b) = 0.
If the function h is everywhere equal to 0, then f ′(x) = g′(x) = (f(b)− f(a))/(b− a) for
all x ∈]a, b[, and we are done.

If h is not the zero function, then either its maximum or its minimum (which exist
because h is continuous) is non-zero. Assume that maxh(x) 6= 0; let then c ∈ [a, b] be
such that

h(c) = max
x∈[a,b]

h(x).

Since h(c) 6= 0 by assumption, we deduce that c /∈ {a, b}, and by the Local Extremum
Theorem, we conclude that h′(c) = 0, which leads to

f ′(c)− f(b)− f(a)

b− a
= 0.

The case of a non-zero minimum is similar. �

Remark 5.4.6. (1) Sometimes we apply the mean-value theorem to two elements a
and b of the interval I without knowing if a < b or a > b. The conclusion is however
unchanged, if one states that c is between a and b. Indeed, if b < a, we have

f(a)− f(b)

a− b
=
f(b)− f(a)

b− a
(the slope of the line between two points does not depend on the order of the two points).

(2) It is essential for the Mean Value Theorem that f be differentiable everywhere.
Even a single point where it is not can lead to failure! For instance, let I = R and
f(x) = |x|, which is differentiable everywhere except at x = 0. If we take a = −1 and
b = 1, then the slope (f(b)−f(a))/(b−a) is zero, which is not the value of f ′(x) wherever
it exists (since f ′(x) = −1 if x < 0 and f ′(x) = 1 if x > 0).

Corollary 5.4.7. Let I ⊂ R be an interval and f : I → R a differentiable function.
(1) The function f is non-decreasing if and only if f ′(x) > 0 for all x ∈ I.
(2) If f ′(x) > 0 for all x ∈ I, then f is strictly increasing.
(3) The function f is non-increasing if and only if f ′(x) 6 0 for all x ∈ I.
(4) If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing.

Proof. (1) If f is non-decreasing on I, then for any x and x0 ∈ I, with x 6= x0, we
get

f(x)− f(x0)

x− x0
> 0,

and letting x→ x0, we deduce that f ′(x0) > 0 for all x0 ∈ I.
Conversely, suppose that f ′(x0) > 0 for all x0 ∈ I. Then if x < y are elements of I,

the Mean-Value Theorem implies that there exists x0 ∈]x, y[ such that

f(y)− f(x)

y − x
= f ′(x0) > 0,

so that f(y) > f(x). We also see that if f ′(x0) > 0 for all x0, then f is in fact strictly
increasing, proving (2).

The proofs of (3) and (4) are similar. �

Remark 5.4.8. The example of I = R and f(x) = x3, with f ′(0) = 0, shows that it is
not necessary to have f ′(x) > 0 for all x in order for a function to be strictly increasing.
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Corollary 5.4.9. Let I = [a, b] be an interval and f : I → R a differentiable function
such that f ′ is continuous. Then f is Lipschitz-continuous, and in fact

|f(x)− f(y)| 6M |x− y|
for all x and y in [a, b], where M = max |f ′(x)|.

Proof. For all x 6= y in I, we find by the Mean-Value Theorem a real numbers x0
in I such that

f(x)− f(y)

x− y
= f ′(x0),

so that
|f(x)− f(y)| = |f ′(x0)||x− y| 6M |x− y|.

�

Corollary 5.4.10. Let I ⊂ R be an interval and f : I → R a differentiable function.
The function f is constant on I if and only if f ′ = 0.

Proof. If f is constant then its derivative is everywhere 0. Conversely, suppose
f ′(x) = 0 for all x ∈ I. Let x0 ∈ I be fixed. For any x 6= x0, we find c ∈ I such that

f(x)− f(x0)

x− x0
= f ′(c) = 0,

so that f(x) = f(x0) for all x, and hence f is constant. �

Example 5.4.11. (1) Corollary 5.4.7, together with the computation of the derivatives
of cosine and sine, Lemma 4.5.6 and the symmetry properties of trigonometric functions,
allows us to sketch the graphs of these two functions. For instance, we recover the fact
that on the interval [0, π/2], the cosine function is decreasing, since cos′ = − sin 6 0,
and in fact strictly so since sin(x) > 0 outside of the endpoints. Moreover, cos′(0) =
− sin(0) = 0, so that the tangent line to the graph of the cosine at x = 0 is horizontal,
and cos′(π/2) = − sin(π/2) = −1 shows that the tangent line at x = π/2 has slope −1.

(2) Among many applications, we illustrate one use of the derivative to obtain a
very fast algorithm (due to Newton) to find the solutions of many equations involving
differentiable functions.

Let I ⊂ R be an interval of real numbers, and let f : I → R be a differentiable
function with continuous derivative, which we assume to satisfy f ′(x) > 0 for all x (in
particular, it is strictly increasing). If we know two values a < b such that

f(a) < 0 < f(b),

then the Intermediate Value Theorem, and the fact that f is injective, imply that there
exists a unique x0 ∈]a, b[ such that f(x0) = 0.

Newton’s Algorithm attempts to construct x0 as the limit of the sequence (xn)n∈N
defined inductively by choosing some value of x1, and defining

xn+1 = xn −
f(xn)

f ′(xn)
, for n > 1.

Why this formula? The idea is that, given an approximation xn of the root x, we
define xn+1 to be the intersection point of the horizontal axis with the tangent line to
the graph at the point (xn, f(xn)) (see Figure 5.4.11). This (usually) “leads in the right
direction”, so that should give a better approximation. Since the tangent has equation

y − f(xn) = f ′(xn)(x− xn),
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Figure 5.4. Newton’s Algorithm

we see that the value xn+1 of x where y = 0 is given precisely by the expression above.
Under our assumptions, the inductive definition can be expressed in the form xn+1 =

g(xn) where g(x) = x−f(x)/f ′(x) is continuous, so that the limit x of the sequence (xn),
if it exists satisfies x = g(x), which is equivalent to

x = x− f(x)

f ′(x)
, or f(x) = 0.

In practice, the sequence does not always converge (for instance, xn+1 might not
belong to the interval of definition of f anymore), but it often does very fast.

Consider for instance a real number c > 1 and put f(x) = x2− c on [1, c], so that the
zero of f in [1, c] is

√
c. Then if we take the starting point x1 = c, the inductive definition

becomes

x1 = c, xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − c
2xn

=
1

2

(
xn −

c

xn

)
,

which we recognize as the sequence that was used in Proposition 2.8.5 to construct the
square-root of c.

(3) With the help of the derivative and Corollary 5.4.7, it is possible to investigate the
basic properties of many simple differentiable function (e.g., where are they monotone,
the location of local extrema, etc).

For instance, define the tangent function by

tan(x) =
sin(x)

cos(x)

for all x where this makes sense, namely for x ∈ D, the set of real numbers x such
that x is not of the form 1

2
π + kπ for some k ∈ Z (for which the cosine would be zero).

Note that this set is not an interval, but a union of infinitely many intervals of the form
Ik =]1

2
π+ kπ, 1

2
π+ (k+ 1)π[, in particular on I = I−1 =]− π/2, π/2[. It is enough in fact

to study the function on that single interval because

tan(x+ π) =
sin(x+ π)

cos(x+ π)
=
− sin(x)

− cos(x)
= tan(x),

so the tangent function has period π. Morevoer, we have tan(−x) = − tan(x), so in
principle we can understand the function from its behavior on the interval [0, π/2[.
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As a ratio of two functions that are differentiable, the tangent function is differentiable
on any of those intervals, with derivative given by

tan′(x) =
sin′(x) cos(x)− sin(x) cos′(x)

cos(x)2
=

cos(x)2 + sin(x)2

cos(x)2
=

1

cos(x)2
.

In particular, the tangent function is strictly increasing on each of the intervals Ik. It
is therefore injective. To compute its image on I, we study the limit as x → −π/2 and
x→ +π/2. Since sin(π/2) = 1 and sin(−π/2) = −1, we get

lim
x→−π/2
x>−π/2

tan(x) = −∞, lim
x→π/2
x<π/2

tan(x) = +∞.

The image of tan is therefore an interval in R with no upper bound or lower bound,
which is only possible if the image is R. So the restriction of the tangent function is a
bijection

tan: ]− π/2, π/2[→ R.

The reciprocal bijection is denoted

arctan: R→]− π/2, π/2[.

It is strictly increasing and satisfies

lim
x→−∞

tan(x) = −π
2
, lim

x→+∞
tan(x) =

π

2
,

as well as arctan(−x) = − arctan(x). It is also differentiable since tan′(x) 6= 0 on I, and

arctan′(x) =
1

tan′(arctan(x))

for all x ∈ R. To simplify this, we use a different expression for the derivative of the
tangent, which is

tan′(x) =
1

cos(x)2
= 1 +

sin(x)2

cos(x)2
= 1 + tan(x)2.

This leads to
tan′(arctan(x)) = 1 + tan(arctan(x))2 = 1 + x2

for all x ∈ R. In other words, we have the simple expression

(5.2) arctan′(x) =
1

1 + x2

for all x ∈ R.
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The function arctan can be used sometimes to compute the argument of a complex
number. Indeed, if eiθ = x+ iy with −π/2 < θ < π/2 (which means that x > 0) then we
have y/x = sin(θ)/ cos(θ) = tan(θ), hence

(5.3) θ = arctan(y/x).

5.5. Higher derivatives

If a function f : I → R is differentiable on I, then its derivative f ′ is another function
f ′ : I → R, and one can ask whether it is also differentiable. This leads to the definition
of higher derivatives.

Definition 5.5.1. Let I ⊂ R be an interval and f : I → R a function.
Let k ∈ N. The k-th derivative f (k), if it exists, is the function f (k) : I → R defined

inductively as follows:

(1) If f is differentiable, then f (1) is the derivative f ′ on I.
(2) If f (k−1) exists and is differentiable on I, then f (k) = (f (k−1))′.

If f (k) exists, then we say also that f is k-times differentiable on I. We also denote
f ′′ = f (2) when it exists, and sometimes f ′′′ = f (3).

Remark 5.5.2. Note that f (k) exists, then so do the derivatives f (j) for 1 6 j 6 k.
Moreover, if 1 6 j < k, then f (j) is (k − j)-times differentiable, and we have

(f (j))(l) = f (j+l)

for 1 6 l 6 k − j.
If f and g are k-times differentiable on I, then for any real numbers a and b, the

function af + bg is also k-times differentiable, and

(af + bg)(j) = af (j) + bg(j)

for 1 6 j 6 k.

We have seen that it is often also useful to know that the derivative of a function is
continuous. We give a name to the set of functions with such properties (as well as for
higher derivative).

Definition 5.5.3. Let I ⊂ R be an interval. Let k ∈ N. The set Ck(I) is the set
of all functions f : I → R such that f is k-times differentiable on I and moreover f (k) is
continuous on I. An element of Ck(I) is called a function of class Ck on I.

If f ∈ Ck(I) for all k ∈ N, then we say that f is indefinitely differentiable on I; the
set of such functions is denoted C∞(I).

We denote also simply C0(I) or C(I) the set of continuous functions on I, and for
f ∈ C0(I), we write f (0) = f .

Remark 5.5.4. (1) We have Ck(I) ⊂ Ck−1(I) for all k ∈ N, and C∞(I) is the
intersection of all the spaces Ck(I) for k ∈ N.

(2) If f and g are in Ck(I), with k ∈ N or k =∞, then for any real numbers a and b
we have af + bg ∈ Ck(I), by Remark 5.5.2. So the set Ck(I) is a vector space. Moreover,
by Proposition 5.1.6, we see that the product of two functions f and g in Ck(I) is also
in Ck(I), as well as f/g if g(x) 6= 0 for all x ∈ I. Also, the composite of two functions of
class Ck is of class Ck by the Chain Rule.
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Example 5.5.5. The following is an example of a differentiable function f that is not
in C1(I), or in other words, such that the derivative f ′ is not continuous. A standard
example is the function f : R→ R defined by f(0) = 0 and

f(x) = x2 sin(1/x)

for x 6= 0. It is easy to see that f is differentiable on the negative and positive numbers,
with

f ′(x) = 2x sin(1/x)− cos(1/x)

for x 6= 0. Using the definition, one also sees that

f(x)− f(0)

x
= x sin(1/x)→ 0

as x→ 0, so that f is also differentiable at x = 0 with f ′(0) = 0. However, the derivative
f ′ is not continuous at x = 0, because this would imply that f ′(x) → 0 as x → 0, and
this would require the function g(x) = cos(1/x) to have a limit as x → 0, which is not
the case.

Concerning the product, we have a precise formula for the k-th derivative, generalizing
the Leibniz rule for the first derivative.

Lemma 5.5.6 (General Leibniz formula). Let k ∈ N. Let I ⊂ R be an interval and f ,
g : I → R functions that are k-times differentiable on I. Then fg is k-times differentiable
and we have

(fg)(k) =
k∑
j=0

(
k

j

)
f (j)g(k−j).

Proof. We proceed by induction on k ∈ N. For k = 1, the formula is

(fg)′ = fg′ + f ′g,

which is the Leibniz Rule of Proposition 5.1.6. If we assume that k ∈ N and that the
formula holds for functions that are k-times differentiable, then for f and g assumed to
be (k + 1)-times differentiable on I, we write

(fg)(k+1) = ((fg)(k))′.

The induction hypothesis means that

(fg)(k) =
k∑
j=0

(
k

j

)
f (j)g(k−j).

We compute its derivative using additivity and the Leibniz Rule for each term, and we
obtain

(fg)(k+1) =
k∑
j=0

(
k

j

)(
f (j+1)g(k−j) + f (j)g(k−j+1)

)
.

This is equal to

k+1∑
j=1

(
k

j − 1

)
f (j)g(k+1−j) +

k∑
j=0

(
k

j

)
f (j)g(k+1−j) =

f (k+1) +
k∑
j=1

(( k

j − 1

)
+

(
k

j

))
f (j)g(k+1−j) + g(k+1),
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and using the formula from Lemma 1.6.11, we obtain the formula for the (k + 1)-st
derivative. �

Example 5.5.7. (1) From Proposition 5.1.7, we see by induction that

(1) Any polynomial belongs to C∞(R);
(2) The exponential and cosine and sine belong to C∞(R);
(3) The function f(x) = log(x) and, for any a ∈ R, the function g(x) = xa belong

to C∞(]0,+∞[).
(4) The functions arccos and arcsin belong to C∞(]− 1, 1[).

In some cases, we can also compute all derivatives. For instance, we have

exp(k) = exp

for all k,x since exp′ = exp. For cosine and sine, we have a periodicity of order 4:

cos′ = − sin, cos′′ = − cos, cos(3) = sin, cos(4) = cos,

sin′ = cos, sin′′ = − sin, sin(3) = − cos, sin(4) = sin,

and then the pattern repeats.
For the logarithm, we get f ′(x) = 1/x, so f ′′(x) = −1/x2, and then by induction

log(k)(x) = (−1)k−1
(k − 1)!

xk
.

For the power function f(x) = xa, we get

f (k)(x) = a(a− 1) · · · (a− k + 1)xa−k

(noting that if a ∈ N, then the first factor will be zero for k > a + 1, in which case f (k)

is always zero).
(2) We can also sometimes use the higher derivatives to prove inequalities. For in-

stance, consider the function

f(x) = sin(x)−
(
x− x3

6

)
.

Using properties of alternating series, we could check earlier that f(x) > 0 for 0 6 x 6 4.
In fact, the inequality holds for all x ∈ R+.

To check this, we notice that f(0) = 0 and that

f ′(x) = cos(x)−
(

1− x2

2

)
.

We still have f ′(0) = 0, but the sign of the derivative is not yet obvious. However, we
can differentiate further and get

f ′′(x) = − sin(x) + x, f (3)(x) = − cos(x) + 1.

It follows that f (3)(x) > 0 for all x, so that f ′′ is non-decreasing, and since f ′′(0) = 0,
we get f ′(x) > 0 for x > 0, hence f is non-decreasing on R+, and since f(0) = 0, we get
finally

f(x) > 0

for all x > 0.
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Proposition 5.5.8. Let (an) be a sequence of real numbers such that the power series∑
anx

n has positive radius of convergence R, and let f : ]−R,R[→ C be the sum of the
power series.

We have f ∈ C∞(]−R,R[), and

f (k)(x) =
+∞∑
n=0

(n+ 1) · · · (n+ k)an+kx
n

for k ∈ N0 and |x| < R. In particular, we have

ak =
f (k)(0)

k!
for all k ∈ N0.

Proof. The first part follows quickly by induction on k from the differentiability of
power series in Example 5.2.3 (note that it is valid for k = 0, being just the power series
expansion of f). Looking at the constant term, we see that

f (k)(0) = (1 · 2 · · · k)ak = k!ak,

hence the last formula. �

Example 5.5.9. Let p(x) = anx
n + · · ·+ a1x+ a0 be a polynomial. Then it is also a

power series, and we get

p(x) =
n∑
k=0

p(k)(0)

k!
xk

for all x ∈ R.

Corollary 5.5.10. Let (an) and (bn) be sequences of complex numbers such that
the power series

∑
anx

n and
∑
bnx

n have positive radius of convergence R1 and R2,
respectively. If there exists R 6 min(R1, R2) such that the sums of the two series are
equal for |x| < R, then an = bn for all n ∈ N0.

Proof. let f be the common sum of the two series for |x| < r. Since the derivatives
are determined locally, we get

an =
f (n)(0)

n!
= bn

by the previous proposition. �

5.6. Convex functions

There are two further important applications of higher-derivatives. One is the geo-
metric interpretation of the sign of the second derivative, and the other is the definition
of polynomial approximations of higher-degree to a function that is k-times differentiable.
We begin with the first topic, and the second will be handled in the next section.

The second derivative is closely connected to convexity.
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Figure 5.5. Example of convex and non-convex sets

Definition 5.6.1. (1) A subset A ⊂ R2 is convex if it contains the line segment
joining any two of its points. In other words, if x1 and x2 are points of A, then all the
points of the form

tx1 + (1− t)x2, 0 6 t 6 1

belong to A.
(2) Let I ⊂ R be an interval. A function f : I → R is convex if the set

Af = {(x, y) ∈ R2 | y > f(x)} ⊂ R2

is convex.

In practice, we use the convexity of a function through the following other definition,
which implies a very useful type of inequalities:

Lemma 5.6.2. Let I ⊂ R be an interval.
(1) A function f : I → R is convex if and only if, for all x 6= y in I and for all

t ∈ [0, 1], we have

(5.4) f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y).

(2) If f : I → R is convex, then for any integer k ∈ N, any distinct elements
(x1, . . . , xk) of I and any non-negative real numbers (p1, . . . , pk) such that

p1 + · · ·+ pk = 1,

we have

(5.5) f(p1x+ · · · pkxk) 6 p1f(x1) + · · ·+ pkf(xk).
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Proof. (1) Suppose first that f is convex. Since the points (x, f(x)) and (y, f(y))
belong to the set Af of the definition, so do the points in the segment joining them, which
means that (tx+ (1− t)y, tf(x)(1− t)f(y)) ∈ Af , which translates to

tf(x) + (1− t)f(y) > f(tx+ (1− t)y).

Conversely, assume the inequality (5.4) is valid, and let (x1, y1) and (x2, y2) ∈ Af . We
have y1 > f(x1) and y2 > f(x2); for 0 6 t 6 1, we get

t(x1, y1) + (1− t)(x2, y2) = (tx1 + (1− t)x2, ty1 + (1− t)y2),
with

ty1 + (1− t)y2 > tf(x1) + (1− t)f(x2) > f(tx1 + (1− t)y1),
so that t(x1, y1) + (1− t)(x2, y2) ∈ Af .

(2) For k = 1, we must have p1 = 1 and the inequality is an equality. For k = 2, if we
put t = p1, then p2 = 1 − t, so the inequality is simply (5.4). So we argue by induction
on k > 2. We assume that (5.5) holds for an integer k, and that we have (x1, . . . , xk+1)
and (p1, . . . , pk+1) in R+ with sum equal to 1. If pk+1 = 1, then all other pi are zero, and
we are done. Otherwise, let

y =
p1

1− pk+1

x1 + · · ·+ pk
1− pp+1

xk,

and t = 1− pk+1. Then the left-hand side of (5.5) is

f(ty + (1− t)xk+1) 6 tf(y) + (1− t)f(xk+1) = tf(y) + pk+1f(xk+1).

Moreover, since
p1

1− pk+1

+ · · ·+ pk
1− pp+1

=
1− pk+1

1− pk+1

= 1,

the induction assumption gives

tf(y) = (1− pk+1)f
( k∑
i=1

pi
1− pk+1

xi

)
6

k∑
i=1

pif(xi),

and the result follows. �

Example 5.6.3. (1) The set Af is the set of points in the plane above the graph of
the function f . Looking at simple cases, we see that the function f(x) = |x| is convex
on R, as is the function f(x) = x2. The function f(x) = x3 is convex on R+, but not
on R (for instance the segment joining (−1, f(−1)) = (−1,−1) and (0, f(0)) = (0, 0) is
not contained in Af ).

(2) If f and g are convex and if a and b are non-negative real numbers, then the
function af + bg is convex: this follows easily by checking (5.4). Moreover, the function
max(f, g) is convex: here we can deduce this from

Amax(f,g) = Af ∩ Ag,
and the fact that the intersection of two convex sets is always convex.

(3) If (fn) is a sequence of functions on I, and if fn(x) converges for all x to a limit
f(x), then the limit function f is convex on I: this follows from (5.4).

The link with higher-derivatives is the following statement:

Theorem 5.6.4. Let I ⊂ R be an interval. Let f ∈ C2(I). The function f is convex
if and only if f ′′(x) > 0 for all x ∈ I, or in other words if and only if f ′ is non-decreasing
on I.
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Figure 5.6. First step of the proof of Theorem 5.6.4

Figure 5.7. Second step of the proof of Theorem 5.6.4

Proof. Suppose first that f is convex. Let a < b be elements of I. We consider
again the function

g(x) =
f(b)− f(a)

b− a
(x− a) + f(a)

describing the line from (a, f(a)) to (b, f(b)), and h = f−g; this is a function of class C2.
Since f is convex, it follows that h(x) 6 0 for all x ∈ [a, b]. But moreover h(a) = h(b) = 0.
This implies that h′(a) 6 0 6 h′(b) (for instance because if h′(a) > 0, then by continuity
we have h′(x) > 0 for x close to a, and then h would be strictly increasing close to a (by
Corollary 5.4.7, (2)), contradicting h(x) 6 0 = h(a)), which translates into

f ′(a)− f(b)− f(a)

b− a
6 0 6 f ′(b)− f(b)− f(a)

b− a
.

Therefore the derivative f ′ is non-decreasing on [a, b], and hence f ′′ > 0 on [a, b] (Corol-
lary 5.4.7, (1)). Since a and b are arbitrary, this means that f ′′ > 0 on I.

Conversely, we now assume that f ′′ > 0 on I, and therefore that f ′ is non-decreasing
on I.

Let a < b be elements of I, and construct the function h = f − g as in (1). We need
to check that h 6 0 on [a, b]. If this is not the case, then there exists x ∈]a, b[ such that
h(x) > 0. Hence

f(x) > g(x) =
f(b)− f(a)

b− a
(x− a) + f(a), or

f(x)− f(a)

x− a
>
f(b)− f(a)

b− a
.

Moreover, writing x− a = x− b+ a− b, we see that we can also write

g(x) =
f(b)− f(a)

b− a
(x− b) + f(b)
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for x ∈ I, so h(x) > 0 also implies

f(x) >
f(b)− f(a)

b− a
(x− b) + f(b), or

f(b)− f(a)

b− a
>
f(b)− f(x)

b− x
.

By the Mean-Value Theorem, we find c ∈]a, x[ and d ∈]x, b[ such that

f(x)− f(a)

x− a
= f ′(c),

f(b)− f(x)

b− x
= f ′(d),

and deduce that f ′(d) < f ′(c). Since c < d, this contradicts the fact that f ′ is non-
decreasing. �

Example 5.6.5. This criterion allows to check very easily that various functions are
convex (or not), and from (5.4), we can deduce a number of very useful (and non-obvious)
inequalities.

(1) First we note that we easily derive another consequence of the convexity for a C2

function f : I → R: the graph of f is above the tangent at any point x0. More precisely,
since the equation of the tangent at x0 is

y = f ′(x0)(x− x0) + f(x0),

the distance between the point (x, f(x)) and the tangent is

g(x) = f(x)− (f ′(x0)(x− x0) + f(x0)).

Our claim is that g(x) > 0 for all x ∈ I.
To see this, note that g(x0) = 0, and that g is differentiable with

g′(x) = f ′(x)− f ′(x0)

for x ∈ I. If f is convex, then f ′′ > 0, which means that f ′ is increasing. So:

• If x > x0, then g′(x) > 0, so g is non-decreasing for x > x0, which implies that
indeed g(x) > g(x0) = 0 for x > x0.
• If x 6 x0, then g′(x) 6 0, so g is non-increasing for x 6 x0, hence g(x) > g(x0) =

0 also for x 6 x0.

(2) Consider f(x) = ex. This satisfies f ′′ = f > 0, so that f is convex on R. We
deduce that for any x < y and 0 6 t 6 1, we have

etx+(1−t)y 6 tex + (1− t)ey.

(3) Let r ∈ R. Define f(x) = xr on I =]0,+∞[. Then f is in C2(I) and f ′′(x) =
r(r− 1)xr−2. It is therefore non-negative on I if either r > 1 or if r 6 0, and f is convex
in either of these cases, but not for 0 < r < 1.

Assume that r > 1. We deduce that

(tx+ (1− t)y)r 6 txr + (1− t)yr

(4) Let p > 1 and let q > 1 be the real number such that

1

p
+

1

q
= 1

(for instance q = 2 if p = 2, and q = 4/3 if p = 4). The function f(x) = − log(x) is
convex on ]0,+∞[, since

f ′(x) = −1

x
, f ′′(x) =

1

x2
,
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hence for x > 0 and y > 0, we have

− log
(x
p

+
y

q

)
6 −1

p
log(x)− 1

q
log(y).

We take the opposite (changing the direction of the inequality) and then compute the
exponential on both sides. This leads to

x1/py1/q 6
x

p
+
y

q
.

Replacing x by xp and y by yq, we obtain Young’s inequality

xy 6
xp

p
+
yq

q
.

Corollary 5.6.6 (Hölder’s inequality). Let p > 1 and let q > 1 be the real number
such that

1

p
+

1

q
= 1.

For any k ∈ N, and for any complex numbers (x1, . . . , xk) and (y1, . . . , yk), we have∣∣∣ k∑
i=

xiyi

∣∣∣ 6 ( k∑
i=1

|xi|p
)1/p( k∑

i=1

|yi|q
)1/q

.

For instance, when p = q = 2, we get the Cauchy–Schwarz inequality∣∣∣ k∑
i=

xiyi

∣∣∣ 6 ( k∑
i=1

|xi|2
)1/2( k∑

i=1

|yi|2
)1/2

.

Proof. Using the triangle inequality first, we see that it suffices the prove the in-
equality when xi > 0 and yi > 0. Removing any i where xiyi = 0, we can even assume
that xi > 0 and yi > 0. Let then

N =
( k∑
i=1

xpi

)1/p
, M =

( k∑
i=1

yqi

)1/q
.

These are positive real numbers; let

x̃i =
xi
N
, ỹi =

yi
M
.

We apply Young’s inequality to x̃i and ỹi, for each i, getting

x̃iỹi 6
x̃pi
p

+
ỹqi
q
.

Now summing over i, we deduce that

1

NM

k∑
i=1

xiyi 6
1

p

k∑
i=1

x̃pi +
1

q

k∑
i=1

ỹqi .

But note that
k∑
i=1

x̃pi =
1

Np

k∑
i=1

xpi = 1,
k∑
i=1

ỹpi =
1

M q

k∑
i=1

yqi = 1,

so the inequality becoms
k∑
i=1

xiyi 6 NM,
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which is precisely what we wanted to prove. �

Corollary 5.6.7 (Minkowski’s Inequality). Let p > 1. For any k ∈ N, and for any
complex numbers (x1, . . . , xk) and (y1, . . . , yk), we have( k∑

i=

|xi + yi|p
)1/p
6
( k∑
i=1

|xi|p
)1/p

+
( k∑
i=1

|yi|p
)1/p

.

Proof. We note first that
k∑
i=

|xi + yi|p =
k∑
i=1

|xi + yi| |xi + yi|p−1 6
k∑
i=1

|xi| |xi + yi|p−1 +
k∑
i=1

|yi| |xi + yi|p−1.

We apply Hölder’s inequality to both terms in this sum: we have

k∑
i=1

|xi| |xi + yi|p−1 6
( k∑
i=1

|xi|p
)1/p( k∑

i=1

|xi + yi|q(p−1)
)1/q

and similarly for (yi). Note that q(p− 1) = p, so that by adding the two terms we get

k∑
i=

|xi + yi|p 6
( k∑
i=

|xi + yi|p
)1/q(( k∑

i=1

|xi|p
)1/p

+
( k∑
i=1

|yi|p
)1/p)

.

Again since 1− 1/q = 1/p, we obtain the result (if the left-hand side is non-zero, but the
inequality is clear if it is equal to 0). �

5.7. Taylor polynomials

Reference: [2, 14.1].
We used the idea of linear approximation of a function to motivate the definition of

the derivative. For functions which are k-times differentiable, we can get approximations
by polynomials of higher degree. Which polynomials should be used is suggested by the
formula

p(x) =
k∑

n=0

p(n)(0)

n!
xn

valid for all x if p is a polynomial of degree k. More precisely:

Definition 5.7.1 (Taylor polynomials). Let k ∈ N. Let I ⊂ R be an interval and
f : I → R a function that is k-times differentiable on I. Let x0 ∈ I. The polynomial

Tkf(x;x0) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (k)(x0)

k!
(x− x0)k =

k∑
n=0

f (n)(x0)

n!
(x− x0)n

is called the k-th Taylor polynomial of f at x0.

Remark 5.7.2. (1) The function Tkf(x;x0) is a polynomial of degree at most k; it
can be of smaller degree (if f (k)(x0) = 0).

(2) If f is a polynomial of degree d ∈ N, then we have

Tkf(x;x0) = f(x)

for all x if k > d. (However, if k < d, then the k-th Taylor polynomial is not equal to f ,
since not all derivatives are used.)

(3) The Taylor polynomials are constructed so that the relation (Tkf)′ = Tk−1(f
′)

holds (we omit the point x0, which is the same on both sides).
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Figure 5.8. Taylor polynomials of cosine

Example 5.7.3. (1) Let f(x) = ex; then f (k) = f for all k. Taking x0 = 0, we get
the Taylor polynomials

Tk exp(x; 0) = 1 + x+ · · ·+ xk

k!
.

These are the partial sums of the power series defining the exponential; in particular, in
that case, they converge to the function f .

Take now instead x0 = 1. Then f (k)(1) = e1 = e for all k, so that

Tk exp(x; 1) = e+ e(x− 1) + · · ·+ e(x− 1)k

k!
.

Here we get also

lim
k→+∞

Tk exp(x; 1) = e
+∞∑
n=0

(x− 1)k

k!
= e · ex−1 = ex.

(2) If f(x) = 1/(1− x) for x ∈]− 2, 1[, then for x0 = 1, we easily obtain

Tkf(x; 0) = 1 + x+ · · ·+ xk.

Note that, in this case, we do not have Tkf(x; 0) → f(x) for all x (for instance for
x = −1).

(3) We present in Figure 5.7.3 a graph of cos(x) (in blue) and of the first Taylor
polynomials for x0 = 0, evaluated for −5 6 x 6 5.

How good the Taylor polynomials approximates f is described by the next theorem
(another version of which, with a better estimate of the error, will be proved later).

Theorem 5.7.4. Let k ∈ N0. Let I ⊂ R be an interval and let f : I → R be a
function that is (k + 1)-times differentiable on I. Let x0 ∈ I. For any x ∈ I, there exists
c ∈ I between x and x0 such that

f(x) = Tkf(x;x0) +
f (k+1)(c)

(k + 1)!
(x− x0)k+1

or in other words

f(x) =
k∑

n=0

f (n)(x0)

n!
(x− x0)n +

f (k+1)(c)

(k + 1)!
(x− x0)k+1.

Example 5.7.5. For k = 1 and x0 = 0, this means that

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(c).
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Proof. We prove the result under the assumption that f (k+1) is continuous, although
that is not necessary for the validity of the theorem; we will obtain in the next chapter
a different, and more powerful, form of this expression.

We note first that if x = x0, then we can take c = x0 indeed. Assuming that x 6= x0,
there exists a unique real number a such that

f(x) =
k∑

n=0

f (n)(x0)

n!
(x− x0)n +

a

(k + 1)!
(x− x0)k+1.

We define a function g on I by

g(y) = f(y)−
k∑

n=0

f (n)(x0)

n!
(y − x0)n −

a

(k + 1)!
(y − x0)k+1.

for y ∈ I, so that the condition on a becomes g(x) = 0.
The function g is (k + 1)-times differentiable on I. Computing its j-th derivative for

0 6 j 6 k, we obtain

g(j)(y) = f (j)(y)−
k∑
n=j

f (n)(x0)

(n− j)!
(y − x0)n−j −

a

(k + 1)!
(y − x0)k+1,

for y ∈ I and
g(k+1)(y) = f (k+1)(y)− a.

In particular, this leads to

g(x0) = · · · = g(k)(x0) = 0, g(k+1)(x0) = f (k+1)(x0)− a.
Now suppose first that g(k+1)(x0) > 0. We claim that there must exist some c be-
tween x and x0 such that g(k+1)(c) = 0. Indeed, otherwise, by continuity of g(k+1), we
get g(k+1)(y) > 0 between x and x0, so that g(k) is strictly increasing, hence g(k)(y) >
g(k)(x0) = 0 between x0 and x; by induction we would deduce that g is strictly increasing
between x0 and x which contradicts the fact that g(x0) = g(x) = 0.

Now the number c satisfies

0 = g(k+1)(c) = f (k+1)(c)− a,
and the relation g(x) = 0 leads to the conclusion. We argue similarly if g(k+1)(x0) < 0,
and if g(k+1)(x0) = 0, then we are also done. �

Corollary 5.7.6. Let k ∈ N. Let I ⊂ R be an interval and let f : I → R be a
function that is (k + 1)-times differentiable on I. Let x0 ∈ I. Assume that m 6 M are
real numbers such that

m 6 |f (k+1)(x)| 6M

for all x ∈ I. Then we have

m

(k + 1)!
|x− x0|k+1 6

∣∣∣f(x)− Tkf(x;x0)
∣∣∣ 6 M

(k + 1)!
|x− x0|k+1

for all x ∈ I.

Example 5.7.7. Let f(x) = log(1 + x) on I =]1
2
, 1[. We will use the Taylor formula

to prove that

f(x) = log(1 + x) = x− x2

2
+
x3

3
− · · · =

+∞∑
n=1

(−1)n−1

n
xn.
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In particular, the logarithm has a power series expansion on this interval (we will
later see that the formula also holds for −1 < x 6 0, but that’s not obvious from the
theorem). Note that, in any case, the radius of convergence of this series is equal to 1 (like
the geometric series), so that one cannot use the power series to compute (for instance)
log(1 + 2) = log(3).

We first compute the derivatives of f , with is of class C∞ on I. We have

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f (3)(x) =

2

(1 + x)3
,

and more generally by induction

(5.6) f (n)(x) = (−1)n−1
(n− 1)!

(1 + x)n
.

Since f(0) = 0, it follows that the Taylor polynomial of f of degree n is

f ′(0)x+
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
xn = x− x2

2
+ · · ·+ (−1)n−1

xn

n
.

There exists therefore c between 0 and x such that∣∣∣log(x)−
(
x− x2

2
+ · · ·+ (−1)n−1

xn

n

)∣∣∣ =
n!

(n+ 1)!

|x|n

(1 + c)n
.

If 0 6 x < 1, then the right-hand side is 6 |x|n/(n+1), which converges to 0 as n→ +∞.
If −1/2 < x 6 0, then we have x 6 c 6 0, so that |x/(1 + c)| 6 |x/(1 + x)| < 1, and we
get the same conclusion.

The next corollary explains how the Taylor polynomials can provide better and better
approximation of a function.

Corollary 5.7.8. Let k ∈ N. Let I ⊂ R be an interval and let f : I → R be a
function of class Ck+1. Let x0 ∈ I. We have

f(x) = Tkf(x;x0) + (x− x0)kr(x)

where
lim
x→x0

r(x) = 0,

or in other words

lim
x→x0

1

(x− x0)k
(
f(x)− Tkf(x;x0)

)
= 0.

Proof. Since f (k+1) is continuous, there exists M ∈ R+ such that |f (k+1)(x)| 6 M
for all x ∈ I such that |x − x0| 6 1. Then by the theorem, for any x 6= x0 in I with
|x− x0| 6 1, there exists c between x and x0 such that∣∣∣ 1

(x− x0)k
(
f(x)− Tkf(x;x0)

)∣∣∣ =
|f (k+1)(c)|
(k + 1)!

|x− x0| 6
M

(k + 1)!
|x− x0|,

which tends to 0 as x→ x0. �

Remark 5.7.9. (1) Concretely, assume that x is an approximation of x0 with m > 1
digits of precision. Then the limit above shows that for m large enough, the difference

f(x)− Tkf(x;x0)

is “much smaller” than |x − x0|k, which means that the approximation of f(x) by
Tkf(x;x0) has roughly km digits of precision.
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(2) Given an interval I and a function f ∈ C∞(I), we can consider the power series

+∞∑
n=0

f (n)(0)

n!
xn.

One might expect that there is some relation between this power series and the function f .
However, this is not at all the case in general! Almost the only thing that can be said is
that, if this power series has a positive radius of convergence, then its sum g satisfies

g(n)(0) = f (n)(0)

for all n ∈ N0.
More precisely, the following can happen:

• It may be that f is defined on R, but the power series has zero radius of conver-
gence (for instance, there is a function f ∈ C∞(R) with f (n)(0) = (n!)2 for all n,
which implies that the power series is the power series

+∞∑
n=0

n!xn,

whose radius of convergence is zero.
• It may be that the radius of convergence of the power series is +∞, and yet its

sum g only satisfies f(x) = g(x) for x = 0. An example is the function f defined
by f(0) = 0 and f(x) = exp(1/x2) for x 6= 0. It needs to be checked using the
definition that f is indeed in C∞(R) (the issue is at 0, of course), but one can
do this and prove that

f (n)(0) = 0

for all n ∈ N0. So the power series has all coefficients 0, hence converge at all
points to 0, whereas f(x) = 0 is only true for x = 0.

Another basic application of Taylor polynomials is as a way to study certain limits.
The idea is to reduce complicated limits as x → x0 of ratios f(x)/g(x) to that of ratios
of polynomials, by showing that one can replace the numerator and denominator with
Taylor polynomials for f and g of suitable order. We illustrate this with an example.

Example 5.7.10. Does the limit

lim
x→0

cos(x)− 1 + x2/2

sin(x4)

exist? If Yes, what is its value? Since numerator and denominator tend to 0 as x → 0,
we can be tempted to use L’Hospital’s Rule (Proposition 5.1.9). But the derivative of the
denominator is 4x3 cos(x4), which also vanishes at 0, so we would have to do it iteratively.

It is simpler to use the Taylor polynomials around 0. Using the polynomial of degree 4
for cos(x), we find that the denominator is of the form

cos(x)− 1 +
x2

2
=
x4

24
+ x4r1(x)

where r1(x) → 0 as x → 0 by Corollary 5.7.8. Similarly, (but using simply the Taylor
polynomial of degree 1 of sin(y), and replacing y = x4) we have

sin(x4) = x4 + x4r2(x
4)
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with r2(y)→ 0 as y → 0. So

cos(x)− 1 + x2/2

sin(x4)
=
x4/24 + x4r1(x)

x4 + x4r2(x4)
=

1/24 + r1(x)

1 + r2(x4)
→ 1

24

as x→ 0.

As a final application of higher derivatives, we can find a criterion to determine
whether a point where f ′(x0) = 0 is a local extremum, or not.

Theorem 5.7.11. Let k ∈ N. Let I be an interval and let f : I → R be of class Ck

on I. Let x0 ∈ I, neither the maximum nor the minimum of I, if these exist. Suppose
that f ′(x0) = 0, and that there exists j 6 k such that

f ′(x0) = f ′′(x0) = · · · = f (j−1)(x0) = 0,

and f (j)(x0) 6= 0.
(1) If j is odd, then x0 is not a local extremum of f .
(1) If j is even, then the point x0 is a local minimum of f if and only if f (j)(x0) > 0.
(2) If j is even, then the point x0 is a local maximum of f if and only if f (j)(x0) < 0.

Proof. Note first that since f (j)(x0) 6= 0, and f is of class Cj, so that the j-th
derivative is continuous, we know that there exists δ > 0 such that f (j)(x) is of the same
sign as f (j)(x0) if |x− x0| < δ, by Lemma 3.2.7, (2).

Under the given assumptions, the (j−1)-st Taylor polynomial of f at x0 is the constant
f(x0). So Theorem 5.7.4 states that for any x 6= x0 in I, there exists c between x and x0
such that

f(x) = f(x0) +
(x− x0)j

j!
f (j)(c), or f(x)− f(x0) =

(x− x0)j

j!
f (j)(c).

If |x − x0| < δ, then we also have |c − x0| < δ, since c is between x and x0, so the sign
of f (j)(c) is the same as the sign of f (j)(x0). So this formula allows us to see what is the
sign of f(x)− f(x0) when |x− x0| < δ, and all the statements follow.

For instance, if j is odd, then (x− x0)j changes sign when x moves from being < x0
to being > x0, so the sign of f(x) − f(x0) is not constant on any small interval around
x0, which means that f does not have a local extremum at x0.

On the other hand, if j is even, then (x − x0)
j > 0 for all x, so that the sign of

f(x)− f(x0) is the same as that of f (j)(x0), which gives the last two statements. �

The most important special case is the following:

Corollary 5.7.12. Let I be an interval and let f : I → R be of class C2 on I. Let
x0 ∈ I, neither the maximum nor the minimum of I, if these exist. Suppose that f ′(x0) =
0, and that f ′′(x0) 6= 0.

(1) The point x0 is a local minimum of f if and only if f ′′(x0) > 0.
(2) The point x0 is a local maximum of f if and only if f ′′(x0) < 0.

Note that, as usual, when using these results to locate the local extrema, one has to
consider separately the possible maximum or minimum of the interval I.

Example 5.7.13. (1) Let n ∈ N and f(x) = xne−x on R+. We attempt to find if f
has a maximum or a minimum on R+. For the minimum, the answer is easy to see: we
have f(x) > 0 for all x, and f(0) = 0, so the minimum of f is 0, achieved at 0.

Now to find local extrema, we compute

f ′(x) = nxn−1e−x − xne−x = xn−1e−x(n− x).
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Figure 5.9. Graph of f(x) = x4e−x

Figure 5.10. Graph of f(x) = cos(x)e−x

We have f ′d(0) = 0 if n > 2, and otherwise the only possible local extremum is x = n.
We now check first that x = n is a local maximum. Indeed, differentiating a second

time f ′, or using the Leibniz formula for the second derivative of a product with xn and
e−x (see Lemma 5.5.6), we get

f ′′(x) = n(n− 1)xn−2e−x − 2nxn−1e−x + xne−x = xn−2e−x(n(n− 1)− 2nx+ x2).

In particular, taking x = n, we get

f ′′(n) = nn−2e−n(n2 − n− 2n2 + n2) = −nn−1e−n < 0.

According to the corollary, this means that f has a local maximum at x = n.
We now check that x = n is a global maximum. For this purpose, observe that

f ′(x) < 0 for x > n, by the formula above, so that f is strictly decreasing for x > n, in
particular f(x) 6 f(n) for x > n. Moreover f ′(x) > 0 for 0 6 x < n, so the function is
strictly increasing on [0, n], and f(x) 6 f(n) for 0 6 x 6 n also.

We conclude that f(n) = (n/e)n is the maximum of f for x > 0.
(2) Let f(x) = cos(x)e−x on R. What are the local extrema of f (if any)?
We compute first the derivative

f ′(x) = − sin(x)e−x − cos(x)e−x = −e−x(cos(x) + sin(x)).

So we need to find the solutions of the equation

cos(x) + sin(x) = 0.
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For such a value of x, we get 1 = cos(x)2 +sin(x)2 = 2 cos(x)2, so that the possible values
of (cos(x), sin(x)) are ( 1√

2
,− 1√

2

)
,
(
− 1√

2
,

1√
2

)
.

These correspond to the points
e−iπ/4, e3iπ/4

on the unit circle. The corresponding values of x are 3π/4 or −π/4, but only up to
addition of a multiple of 2π. These can be summarized with the formula

xk =
3π

4
+ kπ,

where k ∈ Z (because x−1 = −π/4, we recover all the values this way).
Now to identify whether these are really local extrema, we compute

f ′′(x) = − cos(x)e−x + 2 sin(x)e−x + cos(x)e−x = 2 sin(x)e−x,

hence

f ′′(xk) = 2e−xk sin
(3π

4
+ kπ

)
.

If k is even, this gives

f ′′(xk) = 2e−xk sin
(3π

4

)
=
√

2e−xk > 0,

and if k is odd then

f ′′(xk) = 2e−xk sin
(
−π

4

)
= −
√

2e−xk < 0.

So for x2k, we have a local minimum, and for x2k+1, we have a local maximum.
Since e−x → +∞ as x→ −∞, and cos(x) can be either 1 or −1 with x more and more

negative, it follows from the continuity of f that its image is equal to R. This means
that none of the local extrema that we have found is a global maximum or minimum.
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CHAPTER 6

Integration

In this chapter, we define another essential process of analysis, that of integration.
This has many extremely varied applications, among which:

• It “reverses” the process of differentiation: given a continuous function g, it gives
a function f with f ′ = g.
• It can be used to compute, and even to define rigorously, the area of subsets

of R2 (such as a disc).
• It can be used to compute the length of a curve in the plane, for instance the

perimeter of a circle.
• It can be used to define completely new functions, some of which are very im-

portant in analysis (for instance, the Gamma function of Euler, which “extends”
the factorial to all real numbers).
• It provides the tool to find the decomposition of a periodic signal in a sum of

“pure” waves (in other words, it gives the values of the numbers an when a
function f is defined as a sum, possibly infinite, of the form

f(x) =
∑
n

an cos(nx), or f(x) =
∑
n

an sin(nx).

• It leads to the correct mathematical concepts of probability and to the whole
theory of probability and all its applications.
• It can be used to define “Hilbert spaces”, which are the natural infinite-dimensional

analogues of the euclidean plane and 3-dimensional space; these spaces provide
the right setting for Quantum Mechanics and are therefore essential to much of
modern technology.

6.1. Primitives

We begin with the simplest approach, by attempting to reverse the differentiation
process. This is not theoretically satisfactory, because (in contrast to computing the
derivative) there is no good algorithm to do this in general.

Definition 6.1.1. Let I be an interval of R and g : I ⊂ R an arbitrary function. A

primitive46 of g is a function f : I → R such that f is differentiable on I and f ′ = g on I.

Proposition 6.1.2. Let I be an interval of R and g : I ⊂ R an arbitrary function.
If there exists a primitive f of g, then:

(1) All primitives of g are of the form f + c for some constant c ∈ R, and all such
functions are primitives of g.

(2) For any x0 ∈ I, there exists a unique primitive f̃ of g such that f̃(x0) = 0.

When g has a primitive, we will use the notation∫ x

x0

g(t)dt
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for the value at x of the unique primitive of g that is zero at x0. This is called “the
integral of g between x0 and x”.

We sometimes write ∫
g(t)dt

for an arbitrary primitive of g (this is therefore not a well-defined function).

Proof. (1) Since (f + c)′ = f ′ = g, adding a constant to a primitive f of g gives
another primitive. Conversely, if f1 : I → R is a primitive of g, then f ′ = f ′1, which
means that (f1 − f)′ = 0. By Corollary 5.4.10, this means that f1 − f is a constant, say
equal to c, so that f1 = f + c.

(2) Let f̃ = f − f(x0); then f̃ is a primitive of g with f̃(x0) = f(x0)− f(x0) = 0. It is
the only one, since a primitive f1 of g with this property must be of the form f1 = f + c,
and evaluating at x0, we get 0 = f1(x0) = f(x0) + c, so that c = −f(x0). �

This proposition is not very useful unless one has a way of knowing that one primitive
exists. For the moment, we can only “observe” that some functions do, but in Section 6.2,
we will show that any continuous function as a primitive.

Example 6.1.3. (1) Just by looking at the derivatives of any known function, we get
a list of primitives. For instance, we get∫ x

0

tndt =
1

n+ 1
tn+1 if n ∈ N0,

∫ x

1

1

t
dt = log(x),∫ x

0

etdt = ex − 1,

∫ x

0

1

1 + t2
dt = arctan(x).

Note that ex is a primitive of ex that does not vanish at any point, so it is not of the form∫ x
x0
etdt.

(2) If f is differentiable on I, then f ′ has f as primitive, and we get∫ x

x0

f ′(t)dt = f(x)− f(x0)

for any x0 and any x in I. Indeed, the right-hand, as a function of x, is a primitive of f ′

and takes the value 0 at x = x0.

Similarly, any rule for differentiating functions leads to a rule for computing primitives.
But these are, except for addition, rather more complicated than for the derivatives.

Proposition 6.1.4. Let I ⊂ R be an interval, and let g1, g2 be real-valued functions
on I.

(1) If g1 and g2 have primitives, then for any real numbers a and b, the function
ag1 + bg2 has primitives. Moreover, for any x0 ∈ I, we have

(6.1)

∫ x

x0

(ag1(t) + bg2(t))dt = a

∫ x

x0

g1(t)dt+ b

∫ x

x0

g2(t)dt,

for all x ∈ I.
(2) If g1 and g2 are differentiable on I, then g1g

′
2 has a primitive if and only if g′1g2

does, and

(6.2)

∫ x

x0

g′1(t)g2(t)dt = g1(x)g2(x)− g1(x0)g2(x0)−
∫ x

x0

g1(t)g
′
2(t)dt

for any x0 ∈ I and x ∈ I.
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The formula (6.2) is called integration by parts.47 It should be noted that it does not
compute directly any primitive, but it reduces the computation for one function to that
for another, which might be simpler.

Proof. (1) This is very simple since, if f ′1 = g1 and f ′2 = g2, then the derivative of
af1 + bf2 is af ′1 + bf ′2 = ag1 + bg2, so that af1 + bf2 is a primitive of ag1 + bg2; then (6.1)
is valid because both sides are primitives that take the value 0 at x0.

(2) Here we have a form of the Leibniz formula, although this might not be clear: the
function g1g2 has derivative g′1g2 + g1g

′
2 by Proposition 5.1.6, (2). Looking at the value

at x0, this means that∫ x

x0

(g′1(t)g2(t) + g1(t)g
′
2(t))dt = g1(x)g2(x)− g1(x0)g2(x0).

Using the additivity property from (1), we obtain (6.2) by subtracting the second
part. �

Remark 6.1.5. If g : [a, b]→ R is an arbitrary function, one sometimes writes

[g(t)]ba = g(b)− g(a).

So for instance the formula (6.2) can be written∫ x

x0

g′1(t)g2(t)dt = [g1(t)g2(t)]
x
x0
−
∫ x

x0

g1(t)g
′
2(t)dt.

Example 6.1.6. (1) Since any power function f(x) = xn with n ∈ N0 has a primitive,
the first property implies that any polynomial

p(x) = anx
n + · · ·+ a1x+ a0

has a primitive, and that, for instance∫ x

0

p(t)dt =
1

n+ 1
anx

n+1 +
1

n
an−1x

n + · · ·+ 1

2
a1x

2 + a0x.

(2) The function f(x) = xex on R has a primitive. Indeed, we can write f = g1g
′
2

with g1(x) = x and g2(x) = ex. Then g′1g2 = exp has the primitive exp, so that (6.2)
implies that f has a primitive, and that (for instance)∫ x

0

tetdt = xex −
∫ x

0

etdt = xex − ex.

(3) The function f(x) = log(x) on ]0,+∞[ has a primitive. Here, we use a trick and
write f(x) = g′1g2 with g1(x) = x and g2(x) = log(x). Then g1(x)g′2(x) = x · x−1 = 1,
which has a primitive, equal to x, so we can deduce by (6.2) that

(6.3)

∫ x

1

log(t)dt = x log(x)−
∫ x

1

dt = x log(x)− (x− 1).

We then have the application of the chain rule to primitives.

Proposition 6.1.7. Let I and J be intervals of R and let h : I → J and g : J → R
be functions such that h is differentiable. If g has a primitive, then the function h′ · (g ◦h)
has a primitive on I, and for any x0 ∈ I and x ∈ I, we have

(6.4)

∫ x

x0

h′(t)g(h(t))dt =

∫ h(x)

h(x0)

g(t)dt.
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Proof. Let f be a primitive of g. Then we have by the Chain Rule

(f ◦ h)′ = h′ (f ′ ◦ h) = h′ (g ◦ h),

so that h′ (g ◦ h) has a primitive, namely f ◦ h. This means also that∫ x

x0

h′(t)g(h(t))dt = f(h(x))− f(h(x0)) =

∫ h(x)

h(x0)

g(t)dt.

�

Example 6.1.8. (1) Let f(x) = xex
2

for x ∈ R. Then f has a primitive, because we
can write f(x) = 1

2
h′(x)g(h(x)), where h(x) = x2 and g(x) = ex; since g has the primitive

exp, then we get by (6.4) the formula∫ x

0

tet
2

dt =
1

2

∫ x2

02
etdt =

1

2
(ex

2 − 1).

(2) The formula (6.4) is called “change of variable formula”48. It is usually applied
by starting from the left-hand side ∫ x

x0

h′(t)g(h(t))dt,

and saying “we make the change of variable u = h(t), with du = h′(t)dt” (which is a
formal way to remember the procedure), and then∫ x

x0

h′(t)g(h(t))dt =

∫ h(x)

h(x0)

g(u)du.

The factor h′(t) might not be obvious, and one might need to perform some computations
to see it.

The formula is often applied “starting from the right-hand side”, namely from∫ y

y0

g(t)dt

for some y0 and y. If we put t = h(u) where h is bijective, then∫ y

y0

g(t)dt =

∫ x

x0

g(h(u))h′(u)du

with x0 such that h(x0) = y0 and h(x) = y.
(3) Consider ∫ x

x0

1

t(log(t))
dt

with 1 < x0 < x. We put u = log(t), do that du = t−1dt, and the integral becomes∫ x

x0

1

t(log(t))
dt =

∫ log(x)

log(x0)

1

u
du = log(log(x))− log(log(x0)).

(4) Consider ∫ x

x0

√
1− t2dt
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where −1 6 x0 6 x 6 1. It is natural to want to see t as the cosine of some angle
θ. So we put t = cos(θ) with 0 6 θ 6 π; then

√
1− t2 =

√
1− cos(θ)2 = sin(θ) and

dt = − sin(θ)dθ, which gives∫ x

x0

√
1− t2dt = −

∫ arccos(x)

arccos(x0)

sin(θ)2dθ.

The primitive of sin(θ)2 can be computed by reducing to cosine and sine of multiples
of θ, as in Example 4.5.5, (2). We find

sin(θ)2 =
1− cos(2θ)

2
,

which has primitive θ/2− sin(2θ)/4, so that∫ x

x0

√
1− t2dt = −1

2

∫ arccos(x)

arccos(x0)

(1− 2 cos(2θ))dθ = −
[θ

2
− sin(2θ)

4

]arccos(x)
arccos(x0)

.

(5) An important case of the change of variable formula is

(6.5)

∫ x

x0

g(at+ b)dt =
1

a

∫ ax+b

ax0+b

g(t)dt

for a 6= 0 and b ∈ R; here u = at+ b with du = adt.

Among the properties of primitives, we highlight one in particular:

Proposition 6.1.9. Let I be an interval and g : I → R a bounded function which has
a primitive on I. Then for any x0 and x in I, we have∣∣∣∫ x

x0

g(t)dt
∣∣∣ 6M |x− x0|

where M is such that |g(t)| 6M for all t between x0 and x.

Proof. We can assume that x 6= x0, since otherwise both sides of the inequality are
equal to 0. Let f be a primitive of g. Then∫ x

x0

g(t)dt = f(x)− f(x0).

Since f is differentiable on I, the Mean-Value Theorem implies that there exists c between
x and x0 such that

f(x)− f(x0)

x− x0
= f ′(c) = g(c),

and therefore ∣∣∣∫ x

x0

g(t)dt
∣∣∣ = |f(x)− f(x0)| = |g(c)| |x− x0| 6M |x− x0|.

�

6.2. The Riemann Integral

Reference: [2, 11.1, 11.2, 11.3, 11.4, 11.5].
In Section 6.1, we have formally defined the integral or primitives, but we can only

compute these using fairly constrained rules. It turns out, by experience, that for many
functions, even simple ones like f(x) = ex

2
or f(x) = e−x

2
, one never seems to be able

to find a primitive of f . This is not a sign of a lack of imagination: one can actually
prove that a primitive of f(x) = ex

2
cannot be expressed as an “elementary” function.
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Figure 6.1. A step-function and its integral

Nevertheless, this function, and in fact any continuous function, has a primitive. This
must however be constructed in a completely different manner than by applying simple
rules, similar to those for computing derivatives.

One motivation for the construction can be described as follows: one can deduce from
Proposition 6.1.9 that if we have a sequence of functions (gn) which converge uniformly
on I to a function g, and which all have primitives fn, then the limit function g also
has a primitive, and moreover the fn (normalized to take value 0 at some x0) converge
uniformly to the primitive of g with value 0 at x0. So it suffices to find “sufficiently
many” functions with primitives to approximate arbitrarily a given function in order to
obtain its primitives.

One could work with polynomials, which have primitives and can approach any con-
tinuous function on a compact interval [a, b] (as we mentioned before see Remark 5.2.1),
but it is more customary to use even simpler function to define the Riemann integral.

Definition 6.2.1 (Step-function). Let I = [a, b] be a compact interval with a < b.

A function s : I → R is a step-function49 on I if there exist k ∈ N and numbers

a = x0 < x1 < · · · < xk = b

such that s is constant, equal to some σi ∈ R, on ]xi, xi+1[ for all i.
The integral of s over [a, b] is the real number∫ b

a

s(t)dt =
k−1∑
i=0

σi(xi+1 − xi).

Example 6.2.2. (1) If s : I → R is constant, equal to c ∈ R, then it is a step-function
and ∫ b

a

s(t)dt = c(b− a).

Note that this is compatible with the previous notation since s has the function f(x) = cx
as primitive. Note also, however, that a step-function is in general not continuous on [a, b].

(2) One should check that the value of the integral does not depend on the choice of
the points xi used to see that s is a step-function. However, this is elementary, and can
be seen in the case of (1), where the computation does not require knowing that x0 = a
and x1 = b: for any

a = x0 < x1 < · · · < xk = b
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we have s(x) = c on ]xi, xi+1[ and

k−1∑
i=0

si(xi+1 − xi) = c(x1 − x0 + x2 − x1 + · · ·+ xk − xk−1) = c(xk − x0) = c(b− a).

In the general case, one can also observe that the set X of values of a step function s
is finite. For each σ ∈ X, the set of x ∈ I where s(x) = σ is a finite union of intervals. If
we denote by Lσ the sum of the lengths of these intervals, then∫ b

a

s(t)dt =
∑
σ∈X

σLσ,

and since the right-hand side does not depend on the points (xi), the same is true for the
left-hand side.

Remark 6.2.3. A very important remark for the applications of the integral is that
if s is a non-negative step-function on I, then the integral defined above has a geometric
interpretation: it is the area of the subset of the plane defined by

Cs = {(x, y) ∈ R2 | a 6 x 6 b, 0 6 y 6 s(x)},
which is the part of the plane between the x-axis and the graph of s. Indeed, the graph
of s is a sequence of horizontal segments, and the set Cs is a union of rectangles with the
horizontal side of length xi+1 − xi and the vertical side of length σi. So σi(xi+1 − xi) is
the area of ach individual rectangle, and the sum is the total area of Cs.

Proposition 6.2.4. Let I = [a, b] with a < b.
(1) If s1 and s2 are step-functions on I then so is s1 + s2 and∫ b

a

(s1(t) + s2(t))dt =

∫ b

a

s1(t)dt+

∫ b

a

s2(t)dt.

(2) If s is a step-function on I, then it is bounded, the function |s| is a step-function
and ∣∣∣∫ b

a

s(t)dt
∣∣∣ 6 ∫ b

a

|s(t)|dt 6M(b− a),

where M is such that |s(t)| 6M for all t ∈ I.
(3) Let c ∈ I. For any step-function s on I, the restriction of s to [a, c] and [c, b] are

step-functions on these intervals and

(6.6)

∫ b

a

s(t)dt =

∫ c

a

s(t)dt+

∫ b

c

s(t)dt.

Proof. (1) is clear if s1 and s2 are constant on the same intervals, and we can
reduce to this case by taking the subdivision of [a, b] given by ordering the union of the
subdivision points for both functions.

(2) With the notation of the definition of step-functions, we get first∣∣∣∫ b

a

s(t)dt
∣∣∣ =

∣∣∣k−1∑
i=0

σi(xi+1 − xi)
∣∣∣ 6 k−1∑

i=0

|σi|(xi+1 − xi) =

∫ b

a

|s(t)|dt,

and then ∫ b

a

|s(t)|dt =
k−1∑
i=0

|σi|(xi+1 − xi) 6M

k−1∑
i=0

(xi+1 − xi) = M(b− a).
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(3) This is again straightforward, because we can always use a decomposition (xi)
of [a, b] adapted to s such that c = xj for some j (by adding this point in any given
decomposition). �

As we will show, and as we suggested, we can then obtain the integral of any function
that can be uniformly approached by a sequence of step-functions. We first name such
functions to avoid repeating frequently this condition.

Definition 6.2.5 (Ruled functions). Let I = [a, b] with a < b. A function g : I → R

is called a ruled function50 on I if there exists a sequence (sn) of step-functions on I that
converges uniformly to g on I.

In order to see that this is a useful notion, we immediately show that continuous
functions are ruled functions (but not conversely); this will imply that all results below
that assume that a function is ruled apply to continuous functions in particular.

Theorem 6.2.6. Let I = [a, b] with a < b. Let g : I → R be a continuous function.
For any x ∈ [a, b], the restriction of g to [a, x] is a uniform limit of step-functions.

In order to prove this result, we need a property of continuous functions on compact
intervals that is called uniform continuity: it states that in Definition 3.2.1 of a continuous
function, we can take the δ that ensures that |f(x) − f(y)| < ε when |x − y| < δ to be
independent of x.

Theorem 6.2.7 (Uniform continuity). Let I = [a, b] with a < b. Let g : I → C be a
continuous function. Then g is uniformly continuous, in the sense that for any ε > 0,
there exists δ > 0 such that |x− y| < δ implies |g(x)− g(y)| < ε.

Proof. We will use an argument by contradiction. So suppose that g is not uniformly
continuous. This means that there exists a fixed ε > 0 such that, for any δ > 0, we can
find two elements x and y of I such that |x− y| < δ but |g(x)− g(y)| > ε. We apply this
with δ = 1/n for n ∈ N, and denote by xn and yn two elements of I that satisfy these
conditions.

Since (xn) is bounded, there exists a subsequence (xnk
)k that converges to some x ∈ I

(Theorem 2.9.3). The inequalities |xn − yn| < 1/n imply that ynk
→ x. Since g is

continuous, we deduce that

|g(xnk
)− g(ynk

)| → |f(x)− f(x)| = 0.

But this contradicts the lower bounds

|g(xnk
)− g(ynk

)| > ε > 0

for all k. �

Proof of Theorem 6.2.6. We can assume that x = b. We construct the sequence
(sn) as follows.

According to the uniform continuity (Theorem 6.2.7 applied with ε = 1/n, and taking
m so that 1/m < δ), for any n ∈ N, there exists m ∈ N such that

|g(x)− g(y)| < 1

n

if |x− y| < 1/m. We efine a step-function sn using the subdivision

x0 = a < x1 = a+
b− a
k

< · · · < xk−1 = a+ (k − 1)
b− a
k

< xk = b,
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Figure 6.2. Approximation of a continuous function

and the values

σi = g
(xi + xi+1

2

)
,

and we specify furthermore that sn(xi) = g(xi).
Then by construction, we get for x ∈ [xi, xi+1] that

|g(x)− sn(x)| 6
∣∣∣g(x)− g

(xi + xi+1

2

)∣∣∣ < 1

n
,

and this implies that (sn) converges uniformly to g on I. �

Now we construct the integral of ruled functions.

Corollary 6.2.8. Let I = [a, b] with a < b. Let g : I → R be a ruled function, and
(sn) a sequence of step-functions on I that converges uniformly to g.

(1) The sequence (xn) defined by

xn =

∫ b

a

sn(t)dt

converges to a real number x.
(2) The real number x does not depend on the choice of the sequence (sn) of step-

functions that converges uniformly to g on I.
(3) If |g(x)| 6M for all x in [a, b], then the limit satisfies

x 6M(b− a).

Proof. (1) We check that the sequence (xn) is a Cauchy sequence. Indeed, for n and
m in N, we have

|xn − xm| =
∣∣∣∫ b

a

(sn(t)− sm(t))dt
∣∣∣ 6 (b− a)Mn,m

where Mn,m is the supremum of |sn−sm| on I. But the definition of uniform convergence,
and the Cauchy Crtierion for uniform convergence precisely imply that Mn,m is smaller
than any given ε > 0 when n and m are both suitably large. So the sequence (xn) is a
Cauchy sequence of real numbers, which therefore converges.

(2) We use a common trick: if (tn) is another sequence of step-functions that converges
uniformly to g, then the sequence (un) defined by

u2n = sn, u2n+1 = tn,
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Figure 6.3. Definition of the area

is a third such sequence. According to (1), the corresponding integrals converge to
some x ∈ R; but we have subsequences∫ b

a

u2n(t)dt) =

∫ b

a

sn(t)dt,

∫ b

a

u2n+1(t)dt) =

∫ b

a

tn(t)dt,

and both must converge also to the same limit x, which implies the result.
(3) Let k ∈ N. Since (sn) converges to g uniformly on I, there exists N ∈ N such

that |sn(t)− g(t)| 6 1/k for all t ∈ I and all n > N . Then we get

|sn(t)| 6M +
1

k

by the triangle inequality, so that by Proposition 6.2.4, we get∣∣∣∫ b

a

sn(t)dt
∣∣∣ 6 ∫ b

a

|sn(t)|dt 6M(b− a) +
b− a
k

for all n > N . Since the left-hand side converges to |x| as n → +∞, this implies that
|x| 6 M(b − a) + (b − a)/k. But then, since k is arbitrary, letting k → +∞, we deduce
that |x| 6M . �

Definition 6.2.9. Let I = [a, b] with a < b. Let g : I → R be a ruled function. The
number x defined in the corollary is called the integral of g from a to b, and denoted∫ b

a

g(t)dt.

With this notation, the third part of the corollary becomes the fundamental inequality

(6.7)
∣∣∣∫ b

a

g(t)dt
∣∣∣ 6M(b− a)

for any ruled function g on [a, b] such that |g| 6M on [a, b].
Remark 6.2.3 gives the motivation for the next definition:

Definition 6.2.10 (Area). Let I = [a, b] with a < b and g : I → R a non-negative
ruled function. The area of the set

Cg = {(x, y) ∈ R2 | a 6 x 6 b, 0 6 y 6 g(x)},
is defined to be equal to the integral of g over I.
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Moreover, we also obtain the linearity properties of the integral:

Proposition 6.2.11. Let I = [a, b] with a < b.
(1) If g1, g2 : I → R are ruled functions, then for any real numbers c and d, the

function cg1 + dg2 is ruled, and we have∫ b

a

(cg1(t) + dg2(t))dt = c

∫ b

a

g1(t)dt+ d

∫ b

a

g2(t)dt.

(2) If c ∈ [a, b] and if g is a ruled function on I, then the restrictions of g to [a, c] and
[c, b] are ruled and

(6.8)

∫ b

a

g(t)dt =

∫ c

a

g(t)dt+

∫ b

c

g(t)dt.

Proof. If g1 is the limit of the sequence (s1,n) of step-functions, and s2 is the limit
of the sequence (s2,n) of step-functions, then the function cg1 + dg2 is the uniform limit
of the step-functions cs1,n + ds2,n, so it is a ruled function. Using Proposition 6.2.4, we
know that ∫ b

a

(cs1,n(t) + ds2,n(t))dt = c

∫ b

a

s1,n(t)dt+ d

∫ b

a

s2,n(t)dt

for all n; then the left-hand side converges to∫ b

a

(cg1(t) + dg2(t))dt

and the right-hand side to

c

∫ b

a

g1(t)dt+ d

∫ b

a

g2(t)dt.

The result follows.
To prove (2), note that if (sn) is a sequence of step0functions which converges uni-

formly to g on [a, b], then the sequence of the restrictions of sn to [a, c] and [c, b] converge
uniformly to g on these intervals, and the formula∫ b

a

sn(t)dt =

∫ c

a

sn(t)dt+

∫ b

c

sn(t)dt

for any n (see (6.6)) leads to the statement. �

The crucial theorem is the following:

Theorem 6.2.12 (Fundamental theorem of calculus). Let I = [a, b] with a < b. Let
g : I → R be a continuous function. The function f defined on [a, b] by

f(x) =

∫ x

a

g(t)dt

is differentiable on [a, b] and is a primitive of g with f(a) = 0.

This theorem shows that the integral notation from Definition 6.2.9 is compatible
with that of Section 6.1 whenever we have a function g with a known primitive.

Proof. This is simpler than it looks. For x0 < x in I, we get by (6.8) the relation

f(x)− f(x0) =

∫ x

x0

g(t)dt =

∫ x

x0

g(x0)dt+

∫ x

x0

(g(t)− g(x0))dt.
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The first term is equal to (x−x0)g(x0). The second is small when x is close to x0, because
g is continuous. Precisely, for ε > 0, let δ > 0 be such that

|g(x)− g(x0)| < ε

when |x− x0| < δ. Then for all such x, we get∣∣∣∫ x

x0

(g(t)− g(x0))dt
∣∣∣ 6 ε|x− x0|

by (6.7), and therefore∣∣∣f(x)− f(x0)

x− x0
− g(x0)

∣∣∣ =
∣∣∣ 1

x− x0

∫ x

x0

(g(t)− g(x0))dt
∣∣∣ 6 ε.

This shows that f has right-derivative g(x0), and a similar argument proves that the
left-derivative exists and is also equal to g(x0). �

The proof has the following corollaries:

Corollary 6.2.13. Let I = [a, b] with a < b. Let g : I → R be continuous. We have∫ b

a

g(t)dt = lim
n→+∞

1

n

n−1∑
k=0

g
(
a+ k

b− a
n

)
= lim

n→+∞

1

n

n∑
k=0

g
(
a+ k

b− a
n

)
.

The sums of the type

1

n

n−1∑
k=0

g
(
a+ k

b− a
n

)
are called Riemann sums for the function g. This corollary shows that they provide an
approximation to the integral of g.

Proof. Since

1

n

n∑
k=0

g
(
a+ k

b− a
n

)
=

1

n

n−1∑
k=0

g
(
a+ k

b− a
n

)
+
g(b)

n
,

and g(b)/n→ 0 as n→ +∞, the existence of either limit implies that both exist and are
equal. So it suffices to check that∫ b

a

g(t)dt = lim
n→+∞

1

n

n−1∑
k=0

g
(
a+ k

b− a
n

)
.

But, for a given n ∈ N, the right-hand side is the integral of a step-function sn such that

sn(x) = g
(
a+ k

b− a
n

)
for a + k(b − a)/n 6 x < a + (k + 1)(b − a)/n, where 0 6 k 6 n − 1. We then see that
for any x ∈ I, we have

|g(x)− sn(x)| 6 bn,

where
bn = sup{|f(s)− f(t)| | |s− t| 6 1/n}.

Theorem 6.2.7 (the uniform continuity of g) implies that bn → 0 as n→ +∞, which
means that (sn) converges uniformly to g on I. By Corollary 6.2.8, (2), we have

lim
n→+∞

∫ b

a

sn(t)dt =

∫ b

a

g(t)dt
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which gives the result. �

Example 6.2.14. Consider the sequence defined by

an =
1

n

(
cos(0) + cos(π/n) + · · ·+ cos((n− 1)π/n)

)
for n ∈ N. By the corollary applied to f(x) = cos(πx) on [0, 1], we have

lim
n→+∞

an =

∫ 1

0

cos(πt)dt =
1

π
(sin(π)− sin(0)) = 0.

Corollary 6.2.15. Let I = [a, b] with a < b. Let (gn) be a sequence of ruled functions
on I that converges uniformly to g, and such that g is ruled. Then∫ b

a

g(t)dt = lim
n→+∞

∫ b

a

gn(t)dt.

Proof. We have, by (6.7) and linearity, the bound∣∣∣∫ b

a

g(t)dt−
∫ b

a

gn(t)dt
∣∣∣ =

∣∣∣∫ b

a

(g(t)− gn(t))dt
∣∣∣leqbn(b− a)

where bn is the supremum of the numbers |g(t) − gn(t)| for t ∈ [a, b]. The uniform
convergence means that bn → 0 as n→ +∞, and the conclusion follows. �

Example 6.2.16. Let (an) be a sequence of real numbers such that the power series∑
anx

n has positive radius of convergence R. Then for x ∈]−R,R[, we have∫ x

0

(+∞∑
n=0

ant
n
)
dt =

+∞∑
n=0

an
n+ 1

xn+1.

(1) For instance, consider the geometric series

1

1− x
=

+∞∑
n=0

xn

for |x| < 1. We deduce that for |x| < 1, we have∫ x

0

1

1− t
dt =

+∞∑
n=0

xn+1

n+ 1
.

But the left-hand side, by the change of variable u = 1 − t (see (6.5)), or by computing
the derivative, is equal to − log(1− x). So we have

log(1− x) = −
+∞∑
n=0

xn+1

n+ 1
= −

+∞∑
n=1

xn

n

for |x| < 1. This is more precise than the result previously obtained in Example 5.7.7
using Taylor polynomials.

(2) As another example, from the geometric series applied to −x2 with |x| < 1, we
get

1

1 + x2
= 1− x2 + x4 + · · ·+ (−1)nx2n + · · ·

for |x| < 1. Integrating, and using (5.2) and arctan(0) = 0, we conclude that

arctan(x) = x− x3

3
+ · · ·+ (−1)nx2n+1

2n+ 1
−
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for |x| < 1. In fact, one can prove that this formally is still valid for x = 1, where the
series converges (it is an alternating series). From arctan(1) = π/4, we deduce a series
representation for π:

π = 4
(

1− 1

3
+

1

5
− · · ·

)
= 4

+∞∑
n=0

(−1)n

2n+ 1
.

Note however that this series converges very slowly; for instance the sum of the 10000
first terms is

3.1414926535900432384595183833748153781 . . .

which is only correct up to about 10−4. But one can get many better formulas; for
instance, arctan(1/

√
3) = π/6 (because sin(π/6) = 1/2 and cos(π/2) =

√
3/2), and

therefore

π

6
=

+∞∑
n=0

(−1)n
3−(2n+1)/2

2n+ 1
=

1√
3

+∞∑
n=0

(−1)n

3n(2n+ 1)
.

The series converges now much faster since its terms go to 0 faster than 1/3n. Just the
first ten terms give the approximation

3.1415905109380800996427542299442550437 . . .

of π, which is correct up to approximately 2 · 10−6.
One can find even better formulas (involved smaller numbers that 1/

√
3, so that the

power series has even smaller coefficients). For instance, Machin noticed in 1706 that

π

4
= 4 arctan

(1

5

)
− arctan

( 1

239

)
,

which he used to compute (by hand) the first hundred decimal digits of π. The formula
itself can be obtained from the computation

(5 + i)4(−239 + i) = −4 · 134 · (1 + i),

by observing that using (5.3) and arctan(−x) = − arctan(x), we have

5 + i = (26)1/2 ei arctan(1/5), −239 + i = (2392 + 1)1/2 e−i arctan(1/239)

1 + i = 21/2 eiπ/4.

As another application Corollary 6.2.15, we now prove Theorem 5.2.2 about the dif-
ferentiability of functions obtained as limits of functions.

Proof of Theorem 5.2.2. The assumption is that we have an interval I in R and
a sequence (fn) of functions of class C1 on I which converge uniformly to a function f ,
and for which (f ′n) converges uniformly to a function g. We want to deduce that f is
differentiable with derivative f ′ = g.

Because this is a local question, we can assume that I = [a, b] for some a < b in I.
Then we note that since (f ′n) converges uniformly to g, Corollary 6.2.15 shows that∫ x

a

f ′n(t)dt = fn(x)− fn(a)

converges uniformly on I to ∫ x

a

g(t)dt.
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On the other hand, fn(x)−fn(a) converges uniformly, by assumption, to f(x)−f(a).
So we get

f(x)− f(a) =

∫ x

a

g(t)dt

for x ∈ [a, b]. The right-hand side function is differentiable on I with derivative g by the
Fundamental Theorem of Calculus, and the result follows. �

Finally, it is convenient to define as follows the integral from a to b even if a > b.

Definition 6.2.17. Let I be an interval and let g : I → R be a function. Let a and
b be elements of I with a > b. If g is ruled on [b, a], then we define∫ b

a

g(t)dt = −
∫ a

b

g(t)dt.

We also define ∫ a

a

g(t)dt = 0.

With this definition one sees that∫ b

a

g(t)dt =

∫ c

a

g(t)dt+

∫ b

c

g(t)dt

holds for all a, b, c in I, if g is ruled on the corresponding intervals (for instance, if g is
continuous on I). And if g is continuous and f is a primitive of g, then we have∫ b

a

g(t)dt = f(b)− f(a)

in all cases.

6.3. Properties and applications of the integral

First, Theorem 6.2.12 means that in Propositions 6.1.2, 6.1.4 and 6.1.7, whenever
there is an assumption that a function g has a primitive, we can apply the result if g
is continuous. We state the formulas for integration by parts and change of variable for
ease of reference:

• (Integration by parts) If g1 and g2 are in C1(I), then

(6.9)

∫ x

x0

g′1(t)g2(t)dt = g1(x)g2(x)− g1(x0)g2(x0)−
∫ x

x0

g1(t)g
′
2(t)dt

for any x0 ∈ I and x ∈ I. (The assumption implies that both integrals exist, as
integrals of continuous functions.)
• (Change of variable) If g is continuous and h ∈ C1(I), then for any x0 ∈ I

and x ∈ I, we have

(6.10)

∫ x

x0

h′(t)g(h(t))dt =

∫ h(x)

h(x0)

g(t)dt.

Example 6.3.1. We compute now the area A(R) of a disc DR of radius R > 0 centered
at 0 in the plane. This is twice the area of the half-disc D+

R with the same radius and
center, which contains the points of the disc with non-negative y-coordinate. Then D+

R

is also the set

D+
R = {(x, y) ∈ R2 | y > 0 and

√
x2 + y2 6 R},
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which can be described also as

D+
R = {(x, y) ∈ R2 | 0 6 y 6 g(x)}

where g : [−R,R] → R is defined by g(x) =
√
R2 − x2. By the Definition 6.2.10, this

means that

A(R) = 2

∫ R

−R

√
R2 − t2dt.

We simplify the integral by making the change of variable t = Ru, so that dt = Rdu, and

A(R) = 2R2

∫ 1

−1

√
1− u2du = R2A(1).

Applying Example 6.1.8, (4), with arccos(−1) = π and arccos(0) = 1, we get

A(R) = R2A(1) = πR2.

We next obtain some consequences of the definition that result easily from the corre-
sponding properties for step-functions.

Proposition 6.3.2. Let I = [a, b] with a < b.
(1) If g1, g2 : I → R are continuous functions on I and g1 6 g2, then

(6.11)

∫ b

a

g1(t)dt 6
∫ b

a

g2(t)dt

(2) If g > 0 is continuous on I, then for a 6 c 6 d 6 b, we have∫ d

c

g(t)dt 6
∫ b

a

g(t)dt

(3) If g > 0 is continuous on I, then∫ b

a

g(t)dt > 0,

with equality if and only if g(x) = 0 for all x.

Proof. (1) is a consequence, for instance, of Corollary 6.2.13. It implies the first
part of (3) by taking g1 = 0, with integral 0, and g2 = g.

To prove (2), we note that∫ b

a

g(t)dt =

∫ c

a

g(t)dt+

∫ d

c

g(t)dt+

∫ b

d

g(t)dt

by (6.8), and the first and third terms are non-negative by (1).
To prove the last part of (3), we assume that there exists x0 ∈ [a, b] such that g(x0) >

0. Then by Lemma 3.2.7, (2), there exists an interval [c, d] with c < d containing x0 such
that g(x) > 1

2
g(x0) for x ∈ [c, d]. Then by (2), and then by (1) applied with the constant

function 1
2
g(x0) on [c, d], we get∫ b

a

g(t)dt >
∫ d

c

g(t)dt > (d− c)g(x0)

2
> 0.

�

A common application of integrals is to obtain estimates for series, or their partial
sums, as the following examples illustrates.
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Example 6.3.3. (1) Let (an)n∈N be a sequence of real numbers. Suppose that there
exists a continuous function g : [1,+∞[→ R such that an = g(n) for n ∈ N, and suppose
that g is non-increasing and non-negative (for instance, this applies to an = 1/nk where
k > 0).

For k ∈ N and t ∈ [k, k + 1], we have then

ak+1 = g(k + 1) 6 g(t) 6 ak = g(k).

Integrating from k to k + 1 (using (6.11)), this gives∫ k+1

k

ak+1dt = ak+1 6
∫ k+1

k

g(t)dt 6 ak.

Let n ∈ N. Summing these inequalities from k = 1 to k = n, and using (6.6), we get

a2 + · · ·+ an+1 6
∫ n+1

1

g(t)dt 6 a1 + · · ·+ an.

Take for instance g(x) = 1/nc where c > 1. We obtain

1 +
1

2c
+ · · ·+ 1

nc
6 1 +

∫ n+1

1

1

tc
dt

and

1 +
1

2c
+ · · ·+ 1

nc
>
∫ n+1

1

1

tc
dt.

Since f(x) = x1−c/(1− c) is a primitive of g, this leads to the inequalities

1

c− 1

(
1− 1

nc−1

)
6 1 +

1

2c
+ · · ·+ 1

nc
6 1 +

1

c− 1

(
1− 1

nc−1

)
for any n ∈ N.

(2) Suppose now, in the opposite direction, that an = g(n) where g : [1,+∞[→ R+ is
continuous and non-decreasing. Then we can still estimate sums like

sn = a1 + · · ·+ an.

Indeed, for k ∈ N and t ∈ [k, k + 1], we now have

ak = g(k) 6 g(t) 6 ak+1,

so

ak 6
∫ k+1

k

g(t)dt 6 ak+1,
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and therefore, summing for k from 1 to n, we deduce that

sn 6
∫ n+1

1

g(t)dt 6 sn+1 − a1.

As an illustration, let g(x) = log(x). A primitive is computed in (6.3), and since
an = log(n) implies that sn = log(n!), we get

log(n!) 6
∫ n+1

1

log(t)dt = (n+ 1) log(n+ 1)− n 6 log((n+ 1)!),

or equivalently

n log(n)− n+ 1 6 log(n!) 6 (n+ 1) log(n+ 1)− n.

This is quite a decent approximation since it is not very difficult to check that

lim
n→+∞

(n+ 1) log(n+ 1)− n
n log(n)− n+ 1

= 1.

Another application of the integral is a different form of the Taylor formula of Theo-
rem 5.7.4.

Theorem 6.3.4. Let k ∈ N0. Let I ⊂ R be an interval and let f : I → R be a
function that is in Ck+1(I). Let x0 ∈ I. For any x ∈ I, we have

f(x) = Tkf(x;x0) +
1

k!

∫ x

x0

f (k+1)(t)(x− t)kdt.

Note that the integral exists since the function f (k+1) is continuous.

Proof. For k = 0, this formula becomes

f(x) = f(x0) +

∫ x

x0

f ′(t)dt,

which is correct since the integral is equal to f(x)− f(x0).
In order to finish the proof, we can therefore proceed by induction. We assume that

the result holds for the (k − 1)-st Taylor polynomial, so that

f(x) = Tk−1f(x;x0) +
1

(k − 1)!

∫ x

x0

f (k)(t)(x− t)k−1dt.

We evaluate the integral using (6.9): we write

f (k)(t)(x− t)k−1 = g1(t)g
′
2(t)

where g1 = f (k) and g2 = −(x− t)k/k, so that

1

(k − 1)!

∫ x

x0

f (k)(t)(x− t)k−1dt =
1

k!
f (k)(x0)(x− x0)k +

1

k!

∫ x

x0

f (k+1)(t)(x− t)kdt,

since g′1(x)g2(x) = 0. Since

Tk−1f(x;x0) +
1

k!
f (k)(x0)(x− x0)k = Tkf(x;x0),

we obtain the stated formula. �
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Example 6.3.5. Combined with inequalities like (6.7), this form of the Taylor formula
is often more useful than Theorem 5.7.4. For instance, consider f(x) = log(1 + x) as in
Example 5.7.7. Taking x0 = 0, we get

log(1 + x) = x− x2

2
+ · · ·+ (−1)k−1

xk

k
+

(−1)k

k!

∫ x

0

k!

(1 + t)k+1
(x− t)kdt

for any k ∈ N, using the formula (5.6). We consider only x = 1; then the remainder is

(−1)k
∫ 1

0

(1− t)k

(1 + t)k+1
dt.

Since |1− t| 6 1 for 0 6 t 6 1, and moreover −(1 + t)−k/k is a primitive of (1 + t)−k−1,
we deduce that the size of the remainder is at most 1/k. Consequently, we have

f(1) = log(2) =
+∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

6.4. Some standard integrals

We summarize some basic integrals that are often useful. When we give a primitive,
we just write

∫
g(t)dt for a particular primitive of g.

1. An important change of variable We have∫ x

x0

f(at+ b)dt =
1

a

∫ ax+b

ax0+b

f(u)du

for a 6= 0 and b ∈ R. This is used very often to simplify certain computations (for
instance, to replace an eat by et, where the primitive is more obvious).

2. Elementary functions. We have∫
etdt = et,

∫
tadt =

1

1 + a
ta+1 (a 6= −1),

∫
1

t
dt = log(t)∫

cos(t)dt = sin(t),

∫
sin(t)dt = − cos(t).

3. Reciprocal functions. We have∫
1√

1− t2
dt = arcsin(t), −

∫
1√

1− t2
dt = arccos(t),∫

1

1 + t2
dt = arctan(t).

We also explain a few standard integration techniques.

4. Powers times exponential or trigonometric functions. Integrals of the form∫ b

a

tk cos(ct)dt,

∫ b

a

tk sin(ct)dt,

∫ b

a

tkectdt,

with k ∈ N0 and c ∈ R can be computed by induction using integration by parts, where
one differentiates tk and integrates the trigonometric or exponential function. This needs
to be repeated until the integral only involves the exponential or trigonometric function,
at which point we know a primitive.
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Example 6.4.1. To compute ∫ x

0

t2e3tdt,

we integrate by parts twice:∫ x

0

t2e3tdt =
1

3
x2e3x − 2

3

∫ x

0

te3tdt

=
1

3
x2e3x − 2

3

(1

3
xe3x − 1

3

∫ x

0

e3tdt
)

= e3x
(x2

3
− 2x

9
+

2

27

)
.

5. Trigonometric and exponential functions. Integrals of the form∫ b

a

cos(rt)estdt,

∫ b

a

sin(rt)estdt

with r and s ∈ R can be computed by doing two integration by parts to obtain a linear
equation for the integral.

Example 6.4.2. Let s 6= 0 and

I =

∫ x

0

cos(rt)estdt.

By integrating by parts one, differentiating the cosine, we get

I =
cos(rx)esx − 1

s
+
r

s

∫ x

0

sin(rt)estdt.

We integrate by parts the second integral, differentiating the sine, and get

I =
cos(rx)esx − 1

s
+
r sin(rx)esx

s2
− r2

s2

∫ x

0

cos(rt)estdt.

The integral is the same as I, so that(
1 +

r2

s2

)
I =

cos(rx)esx − 1

s
+
r sin(rx)esx

s2
.

6. Products of trigonometric functions. Integrals of the form∫ b

a

cos(rt) cos(st)dt,

∫ b

a

cos(rt) sin(st)dt,

∫ b

a

sin(rt) sin(st)dt,

with r and s in R can also be computed by two integration by parts.

Example 6.4.3. Let s 6= 0 and

I =

∫ x

0

cos(rt) sin(st)dt.

By integrating by parts one, differentiating the cosine, we get

I =
− cos(rx) cos(sx) + 1

s
− r

s

∫ x

0

sin(rt) cos(st)dt.

We integrate by parts the second integral, differentiating the sine, and get

I =
− cos(rx) cos(sx) + 1

s
− r sin(rx) sin(sx)

s2
+
r2

s2

∫ x

0

cos(rt) sin(st)dt,
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so (
1− r2

s2

)
I =

1− cos(rx) cos(sx)

s
− r sin(rx) sin(sx)

s2
.

7. Powers of trigonometric functions. Integrals of the form∫ b

a

cos(rt)kdt,

∫ b

a

sin(rt)kdt,

with k ∈ N0 and r ∈ R can be computed expressing cos(x)k as linear combination of
cos(mx) and sin(nx) for suitable integers m and n (see Example 4.5.5, (2) for the basic
method).

Example 6.4.4. We compute
∫ x
0

sin(t)3dt by writing

sin(t)3 =
(eit − e−it

2i

)3
= −1

4
(sin(3t)− 3 sin(t)),

getting ∫ x

0

sin(t)3dt =
1

12
(cos(3x)− 1)− 3

4
(cos(x)− 1).

8. Orthogonality relations. Let n and m be in Z. We can then compute using the
previous examples that ∫ 2π

0

cos(nt) sin(mt)dt = 0,∫ 2π

0

cos(nt) cos(mt)dt = 0 if n 6= m,∫ 2π

0

sin(nt) sin(mt)dt = 0 if n 6= m,∫ 2π

0

cos(nt)2dt = π if n 6= 0,∫ 2π

0

sin(nt)2dt = π if n 6= 0.

These formulas are fundamental in Fourier analysis.

9. Rational functions. If

g(x) =
p(x)

q(x)
where p and q are polynomials, then one can always compute a primitive of g in terms
of rational functions, polynomials, logarithms of polynomials and arctan of polynomials.
Note that conversely each of these functions have indeed derivatives that are rational
functions; for instance

arctan(x3 + 2)′ =
3x2 + 1

1 + (x3 + 2)2
, log(x4 + 2x+ 1) =

4x3 + 2

x4 + 2x+ 1
.

The method uses two steps:

• (Reduction to simple terms) One expresses the rational function as a sum of
simpler functions of the following forms

(polynomials),
ax+ b

(αx2 + βx+ γ)k
,

a

(αx+ β)k
,
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where k ∈ N and, in the first case, β2 − 4αγ < 0, and α 6= 0 in the second case.
The fact that this reduction is always possible is really part of linear algebra.

In simple cases, one can find the corresponding simple expressions by trial and
error using “unknown coefficients”.
• (Integration of simple terms) There remains to integrate each of the special

rational functions. For polynomials, this is of course elementary. For∫
1

(αt+ β)k
dt

one performs the change of variable u = αt + β to reduce to
∫
u−kdu, which is

known.
For the second, we have two basic cases∫

t

(αt2 + βt+ γ)k
dt,

∫
1

(αt2 + βt+ γ)k
dt.

Since

αx2 + βx+ γ = α
((
x+

β

2α

)2
+
γ

α
− β2

4α2

)
we can use substitutions to reduce to∫

at

(t2 + 1)k
dx,

∫
b

(t2 + 1)k
dt.

The first of these can be computed by the substitution u = t2 + 1, du = 2tdt:∫ b

a

t

(t2 + 1)k
dt =

1

2

∫ b2

a2

1

uk
du =

{
1
2

log(b2/a2) if k = 1
1

2(k+1)
(b−2(k+1) − a−2(k+1)) if k 6= 1.

There remains to deal with

Ik =

∫ b

a

1

(t2 + 1)k
dt.

Since we can compute I1 = arctan(b) − arctan(a), it suffices to find a relation
between Ik and Ik+1. Using integration by parts, we get

Ik =
b

(b2 + 1)k
− a

(a2 + 1)k
+ 2k

∫ b

a

t2

(t2 + 1)k+1
dt.

Since ∫ b

a

t2

(t2 + 1)k+1
dt = Ik − Ik+1,

we get

Ik =
b

(b2 + 1)k
− a

(a2 + 1)k
+ 2kIk − 2kIk+1,

or

Ik+1 =
(

1− 1

2k

)
Ik +

b

(b2 + 1)k
− a

(a2 + 1)k
.

Here is an example done in detail to see these steps implemented.
We want to compute

f(x) =

∫ x

1

t2 + t

6t3 − t2 + t− 1
dt.
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To determine which values of x are allowed, and to implement the first step, we need to
factor the denominator to see where it vanishes. It turns out that

6t3 − t2 + t− 1 = (2t− 1)(3t2 + t+ 1),

and since the discriminant of the quadratic polynomial 3t2 + t + 1 is 1 − 4 · 3 = −11, it
has no real roots. So the rational function

g(x) =
x2 + x

6x3 − x2 + x− 1

is continuous on the intervals ]1/2,+∞[ and ] −∞, 1/2[. We can then define f by the
integral above for x > 1 for instance.

Next, the decomposition of g should be of the form

g(x) =
α

2x− 1
+

βx+ γ

3x2 + x+ 1
.

We can find the coefficent α easily by multiplying both sides by 2x − 1 and taking
the limit as x→ 1/2: the right-hand side converges to α, and so

α = lim
x→1/2

(2x− 1)(x2 + x)

6x3 − x2 + x− 1
= lim

x→1/2

x2 + x

3x2 + x+ 1
=

3/4

9/4
=

1

3
.

We can find γ for instance by putting x = 0: we get

0 = g(0) = −α + γ so γ = α = 1/3.

To compute β, we could evaluate the value at (say) x = 1, for we can compute the limit
of xg(x) as x→ +∞: we find

1

6
= lim

x→+∞
xg(x) = lim

x→+∞

( αx

2x− 1
+

βx2 + γx

3x2 + x+ 1

)
=
α

2
+
β

3
=

1

6
+
γ

3
,

so that γ = 0. We therefore get

g(x) =
1

3

( 1

2x− 1
+

1

3x2 + x+ 1

)
(which can be checked to be correct by reducing the same denominator), so that

f(x) =
1

3

∫ x

1

1

2t− 1
dt+

1

3

∫ x

1

1

3t2 + t+ 1
dt

for x > 1.
In the first integral, we make the substitution u = 2t − 1, so t = (u + 1)/2 and

dt = 1
2
du, and (since u = 1 for t = 1) we get

1

3

∫ x

1

1

2t− 1
dt =

1

6

∫ 2x−1

1

1

u
du =

1

6
log(2x− 1).

In the second integral, we know that we want to reduce to an arctangent integral. We
“complete the square” in the denominator:

3t2 + t+ 1 = 3
(
t2 +

1

3
t+

1

3

)
= 3
((
t+

1

6

)2
+

1

3
− 1

62

)
= 3
((
t+

1

6

)2
+

11

36

)
.

If we make first the substitution u = t+ 1/6, do du = dt, we get

1

3

∫ x

1

1

3t2 + t+ 1
dt =

1

9

∫ x+1/6

7/6

1

u2 + 11/36
du.
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In order to reach finally the proper form to get an arctangent, we write the denomi-
nator in the form

u2 +
11

36
=

11

36

(36u2

11
+ 1
)

=
11

36

(( 6u√
11

)2
+ 1
)
.

So if we make the subsitution v = 6cu with c = 1/
√

11, so that du = 1
6c
dv, we get

1

9

∫ x+1/6

7/6

1

u2 + 11/36
du =

1

9
× 36

11
× 1

6c

∫ (6x+1)c

7c

1

v2 + 1
dv

=
2

3
√

11

(
arctan( 6√

11
x+ 1√

11
)− arctan( 7√

11
)
)
.

Finally, combining everything, we deduce that

f(x) =
1

6
log(2x− 1) +

2

3
√

11

(
arctan( 6√

11
x+ 1√

11
)− arctan( 7√

11
)
)

for x > 1.

6.5. Improper integrals

In many applications, one is interested in a generalization of the integral where the
interval of integration is not necessarily compact. Examples are∫ +∞

0

e−ttndt,

∫ 1

−1

1√
1− t2

dt

where, in the first case, the interval is unbounded, and in the second, it is really ]− 1, 1[
that is involved since the function that one integrates is not defined at −1 and 1.

Such integrals are called improper integrals.51 They are defined, as one might expect,
using limits.

Definition 6.5.1. Let a ∈ R and let I = [a,+∞[. Let g : I → R be a continuous
function. We say that g has an (improper) integral over I if the limit

lim
x→+∞

∫ x

a

g(t)dt

exists. Its value is called the integal of g over I, and is denoted∫ +∞

a

g(t)dt.

A similar definition applies to improper integrals on ]−∞, b], namely∫ b

−∞
g(t)dt = lim

x→−∞

∫ b

x

g(t)dt,

and, if g is continuous on ]a, b] or [a, b[, but not defined at a or b, we define∫ b

a

g(t)dt = lim
x→a
x>a

∫ b

x

g(t)dt,

∫ b

a

g(t)dt = lim
x→b
x<b

∫ x

a

g(t)dt.

On the other hand, for improper integrals over R, or with g undefined at both end-
points, one must be careful. The correct definition is∫ +∞

−∞
g(t)dt =

∫ 0

−∞
g(t)dt+

∫ +∞

0

g(t)dt,
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or in other words, the improper integral over R exists if and only if the improper integrals
over ]−∞, 0] and over [0,∞[ exist, and is then the sum of these two integrals. Similarly,
if g is defined on ]a, b[, but not at the endpoints, we pick any x0 ∈]a, b[ and define∫ b

a

g(t)dt =

∫ x0

a

g(t)dt+

∫ b

x0

g(t)dt,

when both integrals on the right-hand side exist (the value of the sum does not depend
on the choice of x0).

When they exist, improper integrals satisfy some of the basic properties of usual
integrals. For instance, if the improper integrals of g1 and g2 exist, and if c, d are real
numbers, then we have the linearity property∫ +∞

a

(cg1(t) + dg2(t))dt = c

∫ +∞

a

g1(t)dt+ d

∫ +∞

a

g2(t)dt,

and in particular the left-hand side integral also exists. This is also the case for the other
types of improper integrals.

Similarly, for any b > a, we have∫ +∞

a

g(t)dt =

∫ b

a

g(t)dt+

∫ +∞

b

g(t)dt,

if either of the improper integrals exists (then the other does).
In order to prove the existence of improper integrals, the use of comparison principles

is the most useful.

Proposition 6.5.2. Let g : [a, b[→ R be a continuous function, where b = +∞ is
allowed.

(1) If there exists h : [a, b[→ R such that

|g(x)| 6 h(x)

for all x ∈ [a, b[ and such that ∫ b

a

h(t)dt

exists, then the improper integral of g on [a, b[ exists, and

(6.12)
∣∣∣∫ b

a

g(t)dt
∣∣∣ 6 ∫ b

a

h(t)dt.

(2) If g > 0, then the improper integral of g over [a, b[ exists if and only if there
exists M such that ∫ x

a

g(t)dt 6M

for all x ∈ [a, b[.
(3) If there exists h : [a, b[→ R such that

g(x) > h(x)

for all x > a and such that ∫ b

a

h(t)dt

does not exists, then the improper integral of g on [a, b[ does not exist.
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Note that the first part is very similar to the fact that an absolutely convergent series
is convergent, whereas the second corresponds to the convergence of monotone bounded
sequence. Indeed, the proofs will use the same ideas.

Proof. (1) We write the argument for b = +∞. First we show that, for any sequence
(xn) tending to +∞, the sequence

In =

∫ xn

a

g(t)dt

is convergent. We use the Cauchy Criterion: let n ∈ N and m > n; then

|Im − In| =
∣∣∣∫ xm

xn

g(t)dt
∣∣∣ 6 ∫ xm

xn

|g(t)|dt 6
∫ xm

xn

h(t)dt = Jm − Jn

where

Jn =

∫ xn

a

h(t)dt.

By assumption, the sequence (Jn) converges to the improper integral of h, hence by the
Cauchy Criterion for (Jn), we deduce that (In) is also a Cauchy sequence, and therefore
converges.

It now remains to prove that the limit of the sequence (In) does not depend on
the choice of the sequence (xn). This is done with the same trick as in the proof of
Corollary 6.2.8: if (yn) is another sequence tending to +∞, we define a third sequence
(zn) by

z2n = xn, z2n+1 = yn,

and the fact that (zn) converges, by the first step, implies that (xn) and (yn) have the
same limit.

Finally, from ∣∣∣∫ x

a

g(t)dt
∣∣∣ 6 ∫ x

a

h(t)dt

for x > a, we deduce that (6.12) holds.
(2) Again we consider b = +∞. Define

f(x) =

∫ x

a

g(t)dt

for x > a. Since g > 0, the function f is non-decreasing; by definition, the improper
integral of f over [a,+∞[ exists if and only if the function f has a limit as x→ +∞.

So, if we assume first that the improper integral of g exists, then the function f has
some limit M as x→ +∞, and therefore f(x) 6M for all x.

Conversely, assume that f is bounded by some real number M . Let I be the supremum
of the set X of values of f(x) for x > a, which exists since X is non-empty and bounded
from above. For any ε > 0, since I − ε is not an upper-bound of X, there exists x0 > a
such that f(x0) > I − ε. We then get

I − ε 6 f(x0) 6 f(x) 6 I

for all x > x0. This implies that the function f converges to I as x→ +∞.
(3) This is easy using (2): again writing the proof of b = +∞, we have∫ x

a

g(t)dt >
∫ x

a

h(t)dt
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for all x > a; the assumption implies that the right-hand side tends to +∞ when x →
+∞, and therefore so does the left-hand side, and hence the improper integral doesn’t
exist. �

Remark 6.5.3. It might seem more natural to define

(6.13)

∫ +∞

−∞
g(t)dt = lim

x→+∞

∫ x

−x
g(t)dt,

but this leads to paradoxical results. For instance, we may expect that∫ +∞

−∞
g(t)dt =

∫ 0

−∞
g(t)dt+

∫ +∞

0

g(t)dt

holds for improper integrals, and (6.13) does not satisfy this natural condition. For
instance, if g is any odd, which means that g(−t) = −g(t) for all t, then we get by the
substitution u = −t the relation∫ x

−x
g(t)dt =

∫ −x
x

g(u)du = −
∫ x

−x
g(t)dt,

which means that the limit of the integral over [−x, x] is always equal to 0. So, if we take
g(x) = x, then (6.13) would lead to ∫ +∞

−∞
tdt = 0,

whereas the improper integrals of g over [0,+∞[ or ]−∞, 0] do not exist.

Example 6.5.4. (1) For any a > 0, the improper integral∫ +∞

0

e−atdt

exists, and is equal to 1/a. Indeed, for x > 0, we have∫ x

0

e−atdt = −1

a
e−ax +

1

a
,

which converges to 1/a as x→ +∞.
So if g is any function such that |g(t)| 6 e−at for some a > 0 and t > 0, then the

improper integral of g also exists.
(2) Let c ∈ R. For c > 1, the improper integral∫ +∞

1

1

tc
dt

exists and is equal to 1/(c− 1), while if c 6 1, then the improper integral does not exist.
Indeed, we have ∫ x

1

1

tc
dt =

1

1− c

( 1

xc−1
− 1
)

if c 6= −1,∫ x

1

1

t
dt = log(x),

for x > 1, and this converges if and only if c > 1. Hence, for instance, the improper
integral ∫ +∞

1

1

tc
dt
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exists, but ∫ +∞

1

2 + cos(t)

t
dt

doesn’t exist.
Simiarly, we consider the improper integral

(6.14)

∫ 1

0

1

tc
dt

for c > 0 (the integral is not an improper integral when c 6 0). For y > 0, we get∫ 1

y

1

tc
dt =

1

1− c
(1− y1−c)

if c 6= 1 and ∫ 1

y

1

t
dt = − log(y).

This means that the improper integral (6.14) exists if and only if c < 1; in that case, we
have ∫ 1

0

1

tc
dt =

1

1− c
.

In particular, putting both parts of this example together, the improper integral∫ +∞

0

1

tc
dt

does not exist for any c > 0.
(3) There are many analogies between improper integrals and series, but there are

also significant differences. For instance, it is not necessary that g(t)→ 0 as t→ +∞ for
the improper integral ∫ +∞

a

g(t)dt

to exist. An example is given by g(t) = cos(t2): although there are infinitely many

t → +∞ with g(t) = 1 (namely t =
√

2kπ with k ∈ N), the improper integral of g over
[1,+∞[ (for instance) exists.

We can see this as follows: for x > 1, we first use the change of variable u = t2 to get∫ x

1

cos(t2)dt = 2

∫ x2

1

cos(u)√
u

du.

Now we integrate by parts:∫ x2

1

cos(u)√
u

du =
sin(x2)

x
+

1

2

∫ x2

1

sin(u)

u3/2
du.

The first term tends to 0 as x→ +∞, while for the second, we note that∣∣∣sin(u)

u3/2

∣∣∣ 6 1

u3/2

for all u > 1, and since the improper integral of u−3/2 exists on [1,+∞[ (see (2) above),
we conclude by comparison that the improper integral of sin(u)/u3/2 also exists.

(4) For c > 0, we consider the existence of the improper integral

Γ(c) =

∫ +∞

0

tc−1e−tdt.
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There are two cases. If c > 1, then the function

g(x) = xc−1e−x

is continuous on [0,+∞[, so the improper integral only involves the limit “at infinity”.
We use comparison. The function

h(x) = e−x/2

is also continuous on R+, and since

lim
x→+∞

g(x)

h(x)
= lim

x→+∞
xc−1e−x/2 = 0,

there exists M > 0 such that

0 6 g(x) 6Mh(x) = Me−x/2

for all x ∈ R+. By comparison and Example (1), we conclude that the improper integral
Γ(c) exists for c > 1.

If 0 6 c < 1, then the function g is only continuous on ]0,+∞[, so that the improper
integral Γ(c) involves two limits. We split the integral at t = 1 in order to understand
what happens.

Arguing exactly as before by comparing with e−x/2, we can see that the improper
integral ∫ +∞

1

g(t)dt

does exist. On the other hand, for 0 < t 6 1, we have

g(t) = tc−1e−t 6 tc−1.

Again by comparison and the second part of Example (2), the improper integral from 0
to 1 also exists.

We conclude that Γ(c) is well-defined for all c > 0.
We now claim that the following properties are true: first, Γ(1) = 1, and Γ(c + 1) =

cΓ(c) for all c > 0. Once this is done we can use induction to conclude that for n ∈ N,
we have

Γ(n) = (n− 1)!.

First, we get

Γ(1) =

∫ +∞

0

e−tdt = 1.

Next, fix c > 0. For x > 1 and 0 < y < 1, we observe that integration by parts leads to∫ x

1

tce−tdt = xce−x − e−1 + c

∫ x

1

tc−1e−tdt∫ 1

y

tce−tdt = e−1 − yce−y + c

∫ 1

y

tc−1e−tdt.

Letting x→ +∞ in the first formula and y → 0 in the second, we deduce that∫ +∞

1

tce−tdt = −e−1 + c

∫ +∞

1

tc−1e−tdt∫ 1

0

tce−tdt = e−1 + c

∫ 1

0

tc−1e−tdt.
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Adding up, this means that
Γ(c+ 1) = cΓ(c).

6.6. A short introduction to Fourier series

We conclude with a very brief discussion of one of the fundamental application of
analysis, especially of differential and integral calculs: the theory of Fourier series.

The motivation is the following: we are given a periodic signal (which could be a
sound wave, a light signal, etc), that is represented by a function f : R → R, which
satisfies

f(x+ 2π) = f(x)

for all x ∈ R.

Remark 6.6.1. The choice of the period 2π is not essential, but is convenient because
this means that the functions sine and cosine are examples. If we have instead f(x+T ) =
f(x), for some other fixed number T , then the basic examples are f(x) = cos(2πx/T )
and f(x) = sin(2πx/T ), since for instance

cos
(2π

T
(x+ T )

)
= cos

(2πx

T
+ 2π

)
= cos

(2πx

T

)
.

Further examples of 2π-periodic functions are

ck(x) = cos(kx), sk(x) = sin(kx)

for all k ∈ N0. Note that c0 is the constant function 1, whereas s0 is the constant function
zero.

The graphs of these functions are sometimes called “pure waves”; their graphs are
similar, except that ck has k-complete oscillations in the basic period interval [0, 2π].

Fourier’s idea and insight, that is now one of the most important in both pure and
applied mathematics, is that any periodic signal (with maybe some regularity condition),
should be represented as a superposition of these basic “pure” waves, or in other words,
that f(x) should be sum of a series

f(x) = a0 +
+∞∑
k=1

(akck(x) + bksk(x)),

or equivalently

f(x) = a0 +
+∞∑
k=1

(ak cos(kx) + bk sin(kx)),

for suitable coefficients (ak)k∈N0 and (bk)k∈N, now called Fourier coefficients.

Example 6.6.2. A finite sum of the type

a0 +
K∑
k=1

(ak cos(kx) + bk sin(kx))

for K ∈ N is called a trigonometric polynomial.
To illustrate that even finite sums of pure waves quickly achieve complicated shapes,

Figure 6.4 is the graph over [0, 2π] of the trigonometric polynomial

f(x) = cos(x)− sin(x) +
1

2
cos(2x) +

3

5
sin(2x)− 3 cos(3x) + sin(9x).

Trigonometric polynomials have good properties. For instance:
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Figure 6.4. A trigonometric polynomial

• The product of two trigonometric polynomials is also a trigonometric polynomial.
This results from formulas such as

cos(m1x) sin(m2x) =
1

2
(sin((m1 +m2)x) + sin((m2 −m1)x))

for m1 and m2 ∈ N0, which can be checked from (4.5), or proved as follows:

cos(m1x) sin(m2x) =
1

4i
(eim1x + e−im1x)(eim2x − e−im2x)

=
1

4i

(
ei(m1+m2)x − e−i(m1+m2)x + ei(m2−m1)x − ei(m1−m2)x

)
=

1

2
(sin((m1 +m2)x) + sin((m2 −m1)x)).

• If f is a trigonometric polynomial, then for any x0 ∈ R, the function g(x) =
f(x + x0) is a trigonometric polynomial. This follows from the formulas (4.5),
which imply that the functions f(x) = cos(k(x + x0)) or f(x) = sin(k(x + x0))
are trigonometric polynomials for all k ∈ N0 and x0 ∈ R.

Fourier realized that, if f is a superposition of pure waves, then (at least if f is
continuous) the coefficients can be computed quite simply:

Theorem 6.6.3. Let f : R → R be a 2π-periodic continuous function which has a
representation

f(x) = a0 +
+∞∑
k=1

(ak cos(kx) + bk sin(kx)),

where the series on the right converges uniformly on [0, 2π]. Then we have

a0 =
1

2π

∫ 2π

0

f(t)dt,

am =
1

π

∫ 2π

0

f(t) cos(mt)dt, bm =
1

π

∫ 2π

0

f(t) sin(mt)dt, for m ∈ N.

Proof. Let m ∈ N. By assumption, the trigonometric series converges uniformly
to f on [0, 2π], and it follows that

a0 cos(mx) +
+∞∑
k=1

(ak cos(kx) cos(mx) + bk sin(kx) cos(mx)),
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converges uniformly to f(x) cos(mx), simply because the partial sums satisfy∣∣∣f(x) cos(mx)−
(
a0 cos(mx) +

K∑
k=1

(ak cos(kx) cos(mx) + bk sin(kx) cos(mx))
)∣∣∣ 6

∣∣∣f(x)−
(
a0 +

K∑
k=1

(ak cos(kx) + bk sin(kx))
)∣∣∣,

so the uniform convergence follows from the assumption.
Consequently, by Corollary 6.2.15, we have∫ 2π

0

f(t) cos(mt)dt = a0

∫ 2π

0

cos(mt)dt+

+∞∑
k=1

(
ak

∫ 2π

0

cos(kt) cos(mt)dt+ bk

∫ 2π

0

sin(kt) cos(mt)dt
)
.

But from the orthogonality relations (Section 6.4, example 8), we have∫ 2π

0

cos(mt)dt = 0,

∫ 2π

0

sin(kt) cos(mt)dt = 0

and ∫ 2π

0

cos(kt) cos(mt)dt = 0

if k 6= m. So the result is that∫ 2π

0

f(t) cos(mt)dt = am

∫ 2π

0

cos(mt)2dt.

By the last of the orthogonality relations, the last integral is equal to π, and hence

1

π

∫ 2π

0

f(t) cos(mt)dt = am,

as claimed.
The other formulas are proved similarly. �

These formulas are quite remarkable since they give a direct unique formula for the
representation of f as a trigonometric series. But they do not tell us if, conversely, the
series formed with these coefficients converges, or if it does, if its sum is equal to f .

Among many statements in this direction, the simplest is the following:

Theorem 6.6.4. Suppose that f ∈ C2(R) has period 2π. Define

a0 =
1

2π

∫ 2π

0

f(t)dt,

am =
1

π

∫ 2π

0

f(t) cos(mt)dt, bm =
1

π

∫ 2π

0

f(t) sin(mt)dt, for m ∈ N.

Then the series

a0 +
+∞∑
k=1

(ak cos(kx) + bk sin(kx))

converges uniformly on R, and its sum is equal to f .
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Proof. Step 1. We will prove that there exists a real number c > 0 such that

|am| 6
c

m2
, |bm| 6

c

m2

for all m ∈ N. Since | cos(mx)| 6 1 and | sin(mx)| 6 1, it follows that

|am cos(mx) + bm sin(mx)| 6 2c

m2

for all x ∈ R and all m ∈ N. The trigonometric series is therefore normally convergent,
and in particular uniformly convergent (Theorem 4.2.2).

Let m ∈ N. To prove the inequality for am (the one for bm is similar), we use the
assumption that f ∈ C2(R) to integrate by parts twice, integrating the cosine term: we
get

πam =

∫ 2π

0

f(t) cos(mt)dt

= f(2π) cos(2πm)− f(0) cos(0)− 1

m

∫ 2π

0

f ′(t) sin(mt)dt

= − 1

m

(
f ′(2π) sin(2πm)− f ′(0) sin(0) +

1

m

∫ 2π

0

f ′′(t) cos(mt)dt
)

= − 1

m2

∫ 2π

0

f ′′(t) cos(mt)dt,

where we have also used the periodicity of f and f ′, and of cosine and sine to see that
the first part of the integration by parts are zero.

Since f ′′ is continuous, there exists M such that |f ′′(t)| 6 M for all t ∈ [0, 2π], and
using the triangle inequality, we conclude that

|am| 6
2πM

πm2
=

2M

m2
.

Step 2. Let g be the sum of the series

g(x) = a0 +
+∞∑
k=1

(ak cos(kx)− bk sin(kx))

which exists and is continuous by Step 1. By Theorem 6.6.3, its Fourier coefficients are

ak(g) = ak, bk(g) = bk

for k ∈ N0.
Let ϕ = f − g; this is a continuous periodic function and its Fourier coefficients are

ak(ϕ) =
1

π

∫ 2π

0

ϕ(t)dt = ak − ak(g) = 0, bk(ϕ) = bk − bk(g) = 0.

So we have to show that a continuous function whose Fourier coefficients are all zero
is everywhere zero. We use an idea of Lebesgue to do this.

If ϕ is not everywhere zero, then up to changing its sign and multiplying ϕ by a
sufficiently large number, we can find x0 such that ϕ(x0) > 1. It follows by continuity
that there exists δ > 0 such that ϕ(x) > 1 for x in the interval I = [x0 − δ, x0 + δ]. We
can assume that 0 < x0 < 2π, and that δ < 1/2. We denote then J = [x0−δ/2, x0 +δ/2],
a slightly smaller subinterval.
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Figure 6.5. The function k1 with δ = 1/2 and x0 = 1

Step 3. We construct a special trigonometric polynomial that will “test” the vanish-
ing of the Fourier coefficients. Let n ∈ N and

kn(x) = (1− cos(δ) + cos(x− x0))n.
By Example 6.6.2, the function k1(x) is a trigonometric polynomials, and therefore the
function kn is also one, as a product of finitely many trigonometric polynomials. Now
writing kn as a trigonometric polynomial, we observe that the linearity of the integral
combined with the vanishing of the Fourier coefficients of ϕ imply that

(6.15)

∫ 2π

0

ϕ(t)kn(t)dt = 0.

We will obtain a contradiction by proving that, in fact, this integral tends to +∞ as
n→ +∞.

Step 4. Observe first that

1− cos(δ) + cos(x− x0) > 1 if x ∈ I,(6.16)

1− cos(δ) + cos(x− x0) > 1 + cos(δ/2)− cos(δ) > 1 if x ∈ J,(6.17)

|1− cos(δ) + cos(x− x0)| 6 1 if x /∈ I.(6.18)

These properties are illustrated in Figure 6.5.
The first and second inequalities come from the fact that cosine is strictly decreasing

on [−δ, δ]; for the third, we use

1− cos(δ) + cos(x− x0) > − cos(δ) > −1,

for all x, and
cos(x− x0) 6 cos(δ)

if either δ 6 x− x0 6 π or −π 6 x− x0 6 −δ (which is easier to verify on a graph).
We now write∫ 2π

0

ϕ(t)kn(t)dt =

∫
I

ϕ(t)kn(t)dt+

∫ x0−δ

0

ϕ(t)kn(t)dt+

∫ 2π

x0+δ

ϕ(t)kn(t)dt

>
∫
J

ϕ(t)kn(t)dt+

∫ x0−δ

0

ϕ(t)kn(t)dt+

∫ 2π

x0+δ

ϕ(t)kn(t)dt,

because kn > 0 on I (see (6.16)).
By (6.17), we have ∫

J

ϕ(t)kn(t)dt > δ(1 + cos(δ/2)− cos(δ))n,
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which tends to +∞. On the other hand, because of (6.18) and the triangle inequality, we
get ∣∣∣∫ x0−δ

0

ϕ(t)kn(t)dt
∣∣∣ 6 (x0 − δ) 6 2π∣∣∣∫ x0−δ

0

ϕ(t)kn(t)dt
∣∣∣ 6 (2π − (x0 + δ)) 6 2π

for all n ∈ N.
So we get ∫ 2π

0

ϕ(t)kn(t)dt > δ(1 + cos(δ/2)− cos(δ))n − 4π,

which tends to +∞ as n→ +∞, and therefore contradicts (6.15). �

Remark 6.6.5. (1) We mentioned that this is not best possible, and for instance
Dirichlet proved the uniform convergence of Fourier series for periodic functions in C1(R).
However, it cannot be extended to all continuous functions: there exist continuous peri-
odic functions f and x0 ∈ R such that the Fourier series for f does not converge at x0.

(2) A remarkable “numerical” consequence of Theorem 6.6.4, and of its generaliza-
tions, is the Parseval formula

2a20 +
+∞∑
k=1

(a2k + b2k) =
1

π

∫ 2π

0

|f(t)|2dt,

valid for any 2π-periodic function f ∈ C2(R), and in fact in much greater generality: it
holds for any continuous function, for instance. Applied to suitable functions, this leads
for instance to a proof of the formula

+∞∑
k=1

1

k2
=
π2

6

(mentioned in (2.16)).
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Greek

We list here the greek letters often used in mathematics with their names.

α alpha
β beta
γ, Γ gamma, capital gamma
δ delta
η eta
ε epsilon

ϕ, Φ phi, capital phi
κ kappa
χ chi

π, Π pi, capital pi
ψ, Ψ psi, capital psi
% rho

σ, Σ sigma, capital sigma
θ theta
ξ xi
ζ zeta

ω, Ω omega, capital omega
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Dictionary

1. Natural numbers=Natürliche Zahlen

2. Integers=ganze Zahlen

3. Induction principle=Induktionsprinzip

4. Factorial=Fakultät

5. Set=Menge

6. Union=Vereinigung

7. Intersection=Durchschnitt

8. Empty set=Leermenge

9. Product=Produkt

10. Subset=Teilmenge

11. Cardinality=Kardinalität

12. Map=Abbildung

13. Definition set=Definitionsmenge

14. Target set=Zielmenge

15. Function=Funktion

16. Image of x=Bild von x

17. Surjective=Surjektiv

18. Injective=Injektiv

19. Bijective=Bijektiv

20. Identity map=Identitätsabbildung

21. Composition=Verknüpfung

22. Inverse of f=Umkehrabbildung von f

23. Completeness=Vollständigkeit

24. Conjugate=Konjugierte Zahl

25. Modulus=Absolutbetrag

26. Binomial coefficients=Binomialkoeffizienten

27. n choose k=k aus n

28. Binomial formula=Binomialentwicklung

29. Sequence=Folge

169



30. Arithmetic progression=arithmetische Folge

31. Common difference=Differenz

32. Geometric progression=geometrische Folge

33. Limit=Grenzwert=Limes

34. Subsequence=Teilfolge

35. Accumulation point=Häufungswert

36. Series=Reihe

37. Converges absolutely=konvergiert absolut

38. Polynomial=Polynom

39. Continuity=Stetigkeit

40. Continuous=Stetig

41. Compact interval=Kompaktes Intervall

42. Converges Uniformly=konvergiert gleichmässig

43. Converges normally=konvergiert normal

44. Power series=Potenzreihe

45. Radius of convergence=Konvergenzradius

46. Primitive=Stammfunktion

47. Integration by parts=Partielle Integration

48. Change of variable=Substitutionsregel

49. Step-function=Treppenfunktion

50. Ruled function=Regelfunktion

51. Improper integrals=Uneigentliche Integrale

170



Bibliography

[1] M. Burger: Skript Analysis I für INFK.
[2] K. Königsberger: Analysis I, Springer.

171


	Chapter 1. Preliminaries: logic, numbers, sets, maps
	1.1. Logic
	1.2. Numbers and induction
	1.3. Sets
	1.4. Maps
	1.5. The real numbers
	1.6. Complex numbers

	Chapter 2. Constructing real numbers
	2.1. Intervals
	2.2. Upper and lower bounds, minimum and maximum
	2.3. Infimum, supremum and completeness
	2.4. Sequences
	2.5. Convergence of sequences of complex numbers
	2.6. Some basic limits
	2.7. The decimal expansion of a real number
	2.8. Proving convergence without knowing the limit
	2.9. Subsequences
	2.10. Series
	2.11. Convergence to infinity

	Chapter 3. Continuous functions
	3.1. Functions and graphs
	3.2. Continuous functions
	3.3. Global properties of continuous functions
	3.4. Injective continuous functions
	3.5. Other limits of functions
	3.6. Continuous functions defined on subsets of C

	Chapter 4. Sequences and series of functions and elementary functions
	4.1. Uniform convergence
	4.2. Normal convergence
	4.3. Power series
	4.4. The elementary functions, I: the exponential
	4.5. The elementary functions, II: trigonometry

	Chapter 5. Differentiable functions
	5.1. Definition and algebraic properties
	5.2. Derivative of functions defined as limits
	5.3. Derivatives of complex-valued functions
	5.4. Global properties of differentiable functions
	5.5. Higher derivatives
	5.6. Convex functions
	5.7. Taylor polynomials

	Chapter 6. Integration
	6.1. Primitives
	6.2. The Riemann Integral
	6.3. Properties and applications of the integral
	6.4. Some standard integrals
	6.5. Improper integrals
	6.6. A short introduction to Fourier series

	Greek
	Dictionary
	Bibliography

