Musterlösung Serie 4

LINEARE GLEICHUNGSSYSTEME, DETERMINANTEN, EIGENWERTE UND EIGENVEKTOREN

17. Invertieren Sie die Matrix

$$\begin{pmatrix}
3 & 2 & 1 \\
3 & -2 & 1 \\
3 & -2 & -1
\end{pmatrix}$$

und lösen Sie damit das Gleichungssystem

$$3x_1 + 2x_2 + x_3 = b_1$$

 $3x_1 - 2x_2 + x_3 = b_2$
 $3x_1 - 2x_2 - x_3 = b_3$

für

(a)
$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix}$

Lösung: Seien

$$A := \begin{pmatrix} 3 & 2 & 1 \\ 3 & -2 & 1 \\ 3 & -2 & -1 \end{pmatrix}, \quad x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

so sehen wir, dass das obige Gleichungssystem äquivalent ist zu $A \cdot x = b$. Wir suchen nun die reelle (3×3) -Matrix C mit $x = C \cdot b$. Denn dann gilt $b = A \cdot x = A \cdot C \cdot b$ und $x = C \cdot b = C \cdot A \cdot x$ für beliebige Vektoren x und b, also ist C invers zu A. Um C zu berechnen, lösen wir das obige Gleichungssystem nach x auf. Dabei addieren wir das -1-fache der zweiten Zeile zur dritten Zeile und das -1-fache der ersten Zeile zur zweiten Zeile. Wir erhalten

$$3x_1 + 2x_2 + x_3 = b_1$$
 $-4x_2 = -b_1 + b_2$
 $-2x_3 = -b_2 + b_3.$

Wir können nun das $\frac{1}{2}$ -fache der zweiten und dritten Zeile zur ersten Zeile addieren und erhalten das folgende Resultat:

Multiplizieren wir nun die erste Zeile mit $\frac{1}{3}$, die zweite mit $-\frac{1}{4}$ und die dritte mit $-\frac{1}{2}$, so erhalten wir schliesslich

$$x_1 = \frac{1}{6}b_1 + \frac{1}{6}b_3$$

$$x_2 = \frac{1}{4}b_1 - \frac{1}{4}b_2$$

$$x_3 = \frac{1}{2}b_2 - \frac{1}{2}b_3.$$

Definieren wir nun

$$C := \frac{1}{12} \cdot \begin{pmatrix} 2 & 0 & 2\\ 3 & -3 & 0\\ 0 & 6 & -6 \end{pmatrix},$$

so sehen wir, dass das obige Gleichungssystem äquivalent ist zu $x=C\cdot b$ und nach den Argumenten von oben ist C somit die gesuchte Inverse der Matrix A. Wegen $x=C\cdot b$ können wir das ursprüngliche Gleichungssystem durch Einsetzten der verschiedenen b's nach x auflösen:

(a) $x = C \cdot b = \frac{1}{12} \cdot \begin{pmatrix} 2 & 0 & 2 \\ 3 & -3 & 0 \\ 0 & 6 & -6 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

und daraus können wir ablesen, dass gilt $x_1 = \frac{1}{3}$ sowie $x_2 = 0 = x_3$.

(b) $x = C \cdot b = \frac{1}{12} \cdot \begin{pmatrix} 2 & 0 & 2 \\ 3 & -3 & 0 \\ 0 & 6 & -6 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix} = \frac{1}{6} \cdot \begin{pmatrix} -1 \\ -12 \\ 15 \end{pmatrix}$

und deshalb gilt $x_1 = -\frac{1}{6}$, $x_2 = -2$ sowie $x_3 = \frac{5}{2}$.

(c) $x = C \cdot b = \frac{1}{12} \cdot \begin{pmatrix} 2 & 0 & 2 \\ 3 & -3 & 0 \\ 0 & 6 & -6 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

und somit erhalten wir $x_1 = 0$, $x_2 = 1$ sowie $x_3 = 2$.

18. Berechnen Sie die Determinante der folgenden beiden Matrizen:

(a)
$$\begin{pmatrix} 2 & 3 & 0 & 3 \\ 8 & 7 & 3 & 5 \\ 7 & 6 & 0 & 1 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$
 (b)
$$\begin{pmatrix} 2 & 3 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 4 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

Lösung:

(a) Für die Berechnung der Determinante entwickeln wir zuerst nach der dritten Spalte und verwenden anschliessend die Formel für die Berechnung der Determinante von (3 × 3)-Matrizen:

$$\det\begin{pmatrix} 2 & 3 & 0 & 3 \\ 8 & 7 & 3 & 5 \\ 7 & 6 & 0 & 1 \\ 0 & 2 & 0 & 4 \end{pmatrix} = (-1)^{2+3} \cdot 3 \det\begin{pmatrix} 2 & 3 & 3 \\ 7 & 6 & 1 \\ 0 & 2 & 4 \end{pmatrix}$$
$$= -3 \cdot (2 \cdot 6 \cdot 4 + 3 \cdot 1 \cdot 0 + 3 \cdot 7 \cdot 2 - 0 \cdot 6 \cdot 3 - 2 \cdot 1 \cdot 2 - 4 \cdot 7 \cdot 3)$$
$$= -3 \cdot (48 + 0 + 42 - 0 - 4 - 84)$$
$$= -3 \cdot 2$$
$$= -6$$

(b) Für die Berechnung der Determinante entwickeln wir zuerst nach der zweiten Zeile und verwenden anschliessend die Formel für die Berechnung der Determinante von (3 × 3)-Matrizen:

$$\det\begin{pmatrix} 2 & 3 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 4 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (-1)^{2+2} \cdot \det\begin{pmatrix} 3 & 3 & 2 \\ 4 & 4 & 1 \\ 2 & 3 & 4 \end{pmatrix} + (-1)^{2+4} \cdot \det\begin{pmatrix} 2 & 3 & 2 \\ 1 & 4 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$
$$= (3 \cdot 4 \cdot 4 + 3 \cdot 1 \cdot 2 + 2 \cdot 4 \cdot 3 - 2 \cdot 4 \cdot 2 - 3 \cdot 1 \cdot 3 - 4 \cdot 4 \cdot 3)$$
$$+ (2 \cdot 4 \cdot 4 + 3 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 2 - 1 \cdot 4 \cdot 2 - 2 \cdot 1 \cdot 2 - 4 \cdot 1 \cdot 3)$$
$$= (48 + 6 + 24 - 16 - 9 - 48) + (32 + 3 + 4 - 8 - 4 - 12)$$
$$= 5 + 15$$
$$= 20$$

19. Berechnen Sie jeweils die Eigenwerte und Eigenvektoren der folgenden (2×2) -Matrizen.

(a)
$$\begin{pmatrix} 8 & -1 \\ -2 & 7 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & -2 \\ -4 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}$

Hinweis: Jede der drei Matrizen hat zwei verschiedene Eigenwerte.

Lösung: Wir wissen, dass die Eigenwerte λ einer Matrix M die folgende Gleichung

$$\det\left(M - \lambda I\right) = 0$$

erfüllt, wobei I der 2×2 -Einheitsmatrix entspricht. Wir können somit nach λ auflösen. Für einen Eigenvektor v zum Eigenwert λ gilt dann

$$(M - \lambda I) \cdot \vec{v} = \vec{0},$$

wobei die obere Gleichung eigentlich zwei linear abhängigen Gleichungen entspricht und darum reicht es, wenn wir nur eine Nichtnullzeile davon betrachten und eine einzige Lösung für die beiden Komponenten von \vec{v} bestimmen (alle Vielfachen des Vektors \vec{v} sind ja ebenfalls Eigenvektoren zum Eigenwert λ). Konkret bedeutet das:

(a)

$$\det\left(\begin{pmatrix}8 & -1\\ -2 & 7\end{pmatrix} - \lambda \cdot \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}\right) = \det\begin{pmatrix}8 - \lambda & -1\\ -2 & 7 - \lambda\end{pmatrix}$$
$$= (8 - \lambda) \cdot (7 - \lambda) - (-2) \cdot (-1)$$
$$= \lambda^2 - 15\lambda + 54$$
$$= (\lambda - 9) \cdot (\lambda - 6) \stackrel{!}{=} 0$$

Wir sehen sofort, dass es für λ die folgenden beiden Lösungen $\lambda_1=6$ und $\lambda_2=9$ die Gleichung lösen und somit die Eigenwerte der obigen Gleichung sind. Nun müssen wir noch die zugehörigen Eigenvektoren \vec{v}_1 und \vec{v}_2 berechnen. Seien $\vec{v}_k=(x_k,y_k)^T$ für k=1,2, dann muss also gelten

$$(8 - \lambda_1) \cdot x_1 - y_1 = 2x_1 - y_1 = 0$$

und

$$(8 - \lambda_2) \cdot x_2 - y_2 = -x_2 - y_2 = 0.$$

Beispielsweise können wir $x_1 = 1$ und $y_1 = 2$ sowie $x_2 = 1$ und $y_2 = -1$ wählen und die beiden Gleichungen sind erfüllt. Wir haben also die Eigenvektoren $\vec{v}_1 = (1,2)^T$ und $\vec{v}_2 = (1,-1)^T$.

(b)

$$\det\left(\begin{pmatrix} 4 & -2 \\ -4 & 2 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\left(\begin{array}{cc} 4 - \lambda & -2 \\ -4 & 2 - \lambda \end{array}\right)$$
$$= (4 - \lambda) \cdot (2 - \lambda) - (-4) \cdot (-2)$$
$$= \lambda^2 - 6\lambda$$
$$= \lambda \cdot (\lambda - 6) \stackrel{!}{=} 0$$

Also sind $\lambda_1 = 0$ und $\lambda_2 = 6$ die Eigenwerte der oberen Matrix. Nun müssen wir noch die zugehörigen Eigenvektoren \vec{v}_1 und \vec{v}_2 berechnen. Seien wieder $\vec{v}_k = (x_k, y_k)^T$ für k = 1, 2, dann muss gelten

$$(4 - \lambda_1) \cdot x_1 - 2y_1 = 4x_1 - 2y_1 = 0$$

und

$$(4 - \lambda_2) \cdot x_2 - 2y_2 = -2x_2 - 2y_2 = 0.$$

Beispielsweise können wir $x_1 = 1$ und $y_1 = 2$ sowie $x_2 = 1$ und $y_2 = -1$ wählen und die beiden Gleichungen sind erfüllt. Wir haben dann die Eigenvektoren $\vec{v}_1 = (1,2)^T$ und $\vec{v}_2 = (1,-1)^T$.

(c)

$$\det\left(\begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\begin{pmatrix} 1 - \lambda & 4 \\ -1 & 1 - \lambda \end{pmatrix}$$
$$= (1 - \lambda) \cdot (1 - \lambda) - (-1) \cdot 4$$
$$= \lambda^2 - 2\lambda + 5 \stackrel{!}{=} 0$$

Anhand der Mitternachtsformel bekommen wir die komplexen Eigenwerte

$$\lambda = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 5}}{2} = \frac{2 \pm \sqrt{-16}}{2} = \frac{2 \pm 4i}{2} = 1 \pm 2i.$$

Seinen $\lambda_1=1+2i$ und $\lambda_2=1-2i$. Nun müssen wir noch die zugehörigen Eigenvektoren \vec{v}_1 und \vec{v}_2 berechnen. Seien $\vec{v}_k=(x_k,y_k)^T$ für k=1,2, dann muss also gelten

$$(1 - \lambda_1) \cdot x_1 + 4y_1 = -2ix_1 + 4y_1 = 0$$

und

$$(1 - \lambda_2) \cdot x_2 + 4y_2 = 2ix_2 + 4y_2 = 0.$$

Beispielsweise können wir $x_1=2$ und $y_1=i$ sowie $x_2=2$ und $y_2=-i$ wählen und die beiden Gleichungen sind erfüllt. Wir haben somit die Eigenvektoren $\vec{v}_1=\left(2,i\right)^T$ und $\vec{v}_2=\left(2,-i\right)^T$.