Serie 19

1. Aufgabe (Prüfung FS 2022)

Betrachten Sie folgende Matrizen A und B sowie den Vektor b:

$$A = \begin{pmatrix} \mu & 0 & 1 \\ 1 & 1 & -2 \\ 2 & 1 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 4 & 2 \\ 5 & -9 & -5 \\ 3 & -5 & -3 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Die Matrix A hängt von einem Parameter $\mu \in \mathbb{R}$ ab.

- (a) Berechnen Sie die Determinante der Matrix A in Abhängigkeit von μ für alle $\mu \in \mathbb{R}$.
- (b) Sei $\mu = 3$. Berechnen Sie die Inverse von A.
- (c) Sei $\mu = 1$. Bestimmen Sie alle Lösungen des inhomogenen linearen Gleichungssystems Ax = b.
- (d) Bestimmen Sie alle Eigenwerte der Matrix B. Finden Sie einen normierten Eigenvektor zu dem doppelten Eigenwert dieser Matrix.

2. Aufgabe

Sei $\mu \in \mathbb{R}$. Betrachten Sie die folgende Matrix:

$$A(\mu) = \begin{pmatrix} 1 - \mu & 0 & \mu \\ \mu & 1 - \mu & 0 \\ 0 & \mu & 1 - \mu \end{pmatrix}$$

- (a) Berechnen Sie die Eigenwerte und Eigenvektoren von $A(\mu)$. Welche Zahlen treten als Eigenwerte von $A(\mu)$ auf? Wann sind alle Eigenwerte reell?
- (b) Beantworten Sie die Fragen aus a) für die inverse Matrix $A^{-1}(\mu)$.
- (c) (**Optional**) Skizzieren Sie die Eigenwerte von $A(\mu)$ und $A^{-1}(\mu)$ in Abhängigkeit von μ in der Zahlebene \mathbb{C} .

3. Aufgabe

Betrachten Sie die folgende Matrix:

$$A = \left(\begin{array}{cc} 5 & 6 \\ -3 & -4 \end{array}\right)$$

- (a) Berechnen Sie die Eigenwerte λ_1 und λ_2 von A sowie die zugehörigen Eigenvektoren v_1, v_2 .
- (b) Wir definieren $T=(v_1 \ v_2) \in \mathbb{R}^{2\times 2}$, d.h. die Spalten der Matrix T sind die Vektoren v_1 und v_2 . Berechnen Sie T^{-1} und $D=T^{-1}AT$. Was stellen Sie fest?
- (c) Berechnen Sie A^{99} .

FS 2023

4. Aufgabe

Sind folgende Vektoren linear abhängig oder linear unabhängig?

(a)
$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$, $c = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$,

(b)
$$a = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$$
, $b = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$, $c = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$,

(c)
$$a = \begin{pmatrix} i \\ i \\ 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 1-i \\ 1-i \\ 0 \end{pmatrix}$, $c = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$,

(d)
$$a = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $c = \begin{pmatrix} 1-i \\ 2-2i \\ 1-i \end{pmatrix}$.

FS 2023 2

Multiple Choice

Wichtig: Bei jeder Aufgabe ist genau eine Antwort richtig. Falls Sie die Lösung nicht wissen, raten Sie nicht und schreiben Sie "Weiss ich nicht." So erhält Ihr/e Ubungsleiter/in eine bessere Rückmeldung.

1. Betrachten Sie die folgende Matrix:

$$A = \begin{pmatrix} 1 & -1 \\ 4 & 1 \end{pmatrix}$$

Der Vektor $\binom{-1+i}{1+i} = \binom{(1+i)\cdot i}{(1+i)\cdot 1}$ ist ein Eigenvektor von A^{-1} .

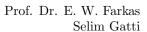
- (a) Richtig,
- (b) Falsch.
- **2.** Es sei A eine invertierbare $(n \times n)$ -Matrix. Welche der folgenden Aussagen ist falsch?
- (a) Jeder Kehrwert der Eigenwerte von A ist ein Eigenwert von A^{-1} ,
- (b) Jeder Eigenvektor von A ist auch Eigenvektor von A^2 ,
- (c) Falls alle Eigenwerte von A reell sind, so sind alle Eigenwerte von A^2 positiv,
- (d) Falls A n paarweise voneinander verschiedene Eigenwerte hat, so sind auch alle Eigenwerte von A^2 paarweise voneinander verschieden.
- **3.** Sei $b \in \mathbb{R}$. Betrachten Sie die folgenden Matrizen:

$$E = \begin{pmatrix} 0 & -1 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Welche der folgenden Aussagen ist falsch?

- (a) Für $b \neq 0$ ist $E^{-1} = \begin{pmatrix} 0 & \frac{1}{b} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
- (b) Für b > 0, ist die Summe der Eigenwerte von EF eine negative reelle Zahl,
- (c) Für $b \in \mathbb{R}$ ist det(EF) auch eine reelle Zahl,
- (d) Ist λ ein Eigenwert von E, so ist λ^2 ein Eigenwert von EF.

FS 2023 3



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

4. Seien $0<\alpha,\beta,\delta,\gamma<2\pi$ und $0<\phi<\pi.$ Betrachten Sie die folgenden Matrizen:

$$A = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0\\ \sin(\phi) & \cos(\phi) & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad A^2 = \begin{pmatrix} \cos(\alpha) & -\sin(\beta) & 0\\ \sin(\gamma) & \cos(\delta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Welche der folgenden Aussagen ist falsch?

Hinweis: Verwenden Sie zum Beispiel die Additionstheoreme:

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b), \quad \cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b).$$

- (a) $\alpha = \beta = \gamma = \delta$,
- (b) $\alpha = \delta = 2\phi$,
- (c) $\beta = \gamma = \phi^2$,
- (d) $\beta = 2\phi$.

Abgabe der schriftlichen Aufgaben: Vor Samstag, den 1. April um 12 Uhr über SAMup.

FS 2023 4