Wahrscheinlichkeit & Statistik

Quiz 10

Onlineabgabe vor Beginn der Übungsstunde

Dieser Quiz beschäftigt sich mit dem zentralen Grenzwertsatz und Ungleichungen. Die Übungen mit (*) markiert sind fakultativ.

Weitere Informationen und Instruktionen zur Abgabe unter https://metaphor.ethz.ch/x/2023/fs/401-0614-00L/

- **1.** Sei $X \sim \text{Bin}(n, \frac{1}{2})$, wobei $n \in \mathbb{N}$ gross ist. Welche dieser Annäherungen stimmt?
- $\sqrt{}$ (a) $X \stackrel{\text{approx.}}{\sim} \mathcal{N}(n/2, n/4)$

Richtig!

(b) $X \stackrel{\text{approx.}}{\sim} \text{Poi}(n/2)$

Leider nicht.

(c) $X \stackrel{\text{approx.}}{=} n/2$

Leider nicht.

Es gilt $X \stackrel{d}{=} \sum_{k=1}^{n} Y_k$, wobei Y_1, \dots, Y_k unabhängig und identisch verteilt sind mit $Y_k \sim \text{Ber}(1/2)$. Aus dem Zentralen Grenzwertsatz erhalten wir, dass

$$Z := \frac{\sum_{k=1}^{n} Y_k - n/2}{\sqrt{n}/2} \stackrel{\text{approx.}}{\sim} \mathcal{N}(0, 1).$$

Da $X \stackrel{d}{=} \frac{\sqrt{n}}{2}Z + \frac{n}{2}$ können wir schreiben $X \stackrel{\text{approx.}}{\sim} \mathcal{N}(n/2, n/4).$

- **2.** Sei $X \sim \text{Bin}(n, \frac{1}{2n})$, wobei $n \in \mathbb{N}$ gross ist. Welche dieser Annäherungen stimmt?
- (a) $X \stackrel{\text{approx.}}{\sim} \mathcal{N}(1/2, 1/4)$

Leider nicht.

 $\sqrt{}$ (b) $X \stackrel{\text{approx.}}{\sim} \text{Poi}(1/2)$

Richtig!

(c) $X \stackrel{\text{approx.}}{=} 1/2$

Leider nicht.

Dies ist das Beispiel von s.42 im Skript von M. Schweizer.

- **3.** Sei $X \sim \mathcal{N}(0, \sigma^2)$. Was ist $E[\exp(\lambda X)]$ für $\lambda \in \mathbb{R}$?
- (a) $\exp(\sigma\lambda)$

Leider nicht.

(b) $\exp(2\sigma\lambda)$

Leider nicht.

$$\sqrt{-(c)} = \exp(\sigma^2 \lambda^2/2)$$

Richtig!

(d)
$$\exp(\sigma^2 \lambda^2)$$

Leider nicht.

Es gilt

$$E[\exp(\lambda X)] = \int \frac{1}{\sqrt{2\pi}} \exp\left(\lambda x - \frac{x^2}{2\sigma^2}\right) dx$$
$$= e^{\sigma^2 \lambda^2/2} \int \frac{1}{\sqrt{2\pi}} \exp\left(\frac{(x - \sigma^2 \lambda)^2}{2\sigma^2}\right) dx = e^{\sigma^2 \lambda^2/2},$$

denn $\frac{1}{\sqrt{2\pi}}\exp(\frac{(x-\sigma^2\lambda)^2}{2\sigma^2})$ ist die Dichte der Verteilung $\mathcal{N}(\sigma^2\lambda,\sigma^2)$.

- 4. Sei $X \ge 0$ eine Zufallsvariable mit $E[X] = \mu$. Welche der folgenden Ungleichungen gilt?
- (a) $P[X \le c] \le \frac{c}{\mu}$ für c > 0.

Leider nicht.

(b)
$$P[X \le c] \le \frac{\mu}{c}$$
 für $c > 0$.

Leider nicht.

(c)
$$P[X \ge c] \le \frac{c}{\mu}$$
 für $c > 0$.

Leider nicht.

$$\label{eq:lambda} \sqrt{\quad (\mathrm{d}) \quad P[X \geq c]} \leq \tfrac{\mu}{c} \text{ für } c > 0.$$

Richtig!

Es gilt

$$E[X] = E[X1_{\{X < c\}} + X1_{\{X \ge c\}}] \ge 0 + cP[X \ge c],$$

sodass $P[X \ge c] \le E[X]/c = \mu/c$. Dies ist die Markow-Ungleichung (manchmal auch Chebyshev-Ungleichung genannt).

- 5. Welchen der folgenden Schranken gelten für $X \sim \mathcal{N}(0, \sigma^2)$? (Mehrere richtige Antworten möglich.)
- $\sqrt{\quad}$ (a) $P[X \ge x] \le \frac{\sigma^2}{x^2}$ für x > 0.

Richtig!

(b)
$$P[X \ge x] \le \frac{x^2}{\sigma^2}$$
 für $x > 0$.

Leider nicht.

$$\sqrt{}$$
 (c) $P[X \ge x] \le e^{\sigma^2/2 - x}$ für $x > 0$.

Richtig!

$$\sqrt{ \quad (\mathrm{d}) \quad P[X \ge x]} \le e^{2(\sigma^2 - x)} \text{ für } x > 0.$$

Richtig!

- (a) folgt aus der Chebyshev-Ungleichung, und (c) und (d) folgen aus der Markov-Ungleichung (Frage
- 4) bzw. mit $Y = \exp(X)$ und $Y = \exp(2X)$. Generell haben wir

$$P[X \ge x] = P[\exp(\lambda X) \le \exp(\lambda x)] \le \frac{\exp(\sigma^2 \lambda^2/2)}{\exp(\lambda x)} = \exp(\sigma^2 \lambda^2/2 - \lambda x)$$

für $\lambda \geq 0$.