Wahrscheinlichkeit & Statistik

Quiz 7

Onlineabgabe vor Beginn der Übungsstunde

Dieser Quiz beschäftigt sich mit der Definition des Erwartungswerts und der Varianz stetiger Zufallsvariabeln und mit wichtigen Beispielen. Die Übungen mit (*) markiert sind fakultativ.

Weitere Informationen und Instruktionen zur Abgabe unter https://metaphor.ethz.ch/x/2023/fs/401-0614-00L/

- 1. Sei X eine diskrete Zufallsvariable und Y eine stetige Zufallsvariable mit Dichte f_Y . Welche der folgenden unten aufgelisteten Kombinationen können niemals auftreten? (Mehrere richtige Antworten möglich.)
- (a) $\mathbb{P}(X=3) = 0.3; f_Y(0.6) = 1.5$
- $\sqrt{}$ (b) $\mathbb{P}(X=3) = 1.3; f_Y(0.6) = 0.5$
 - (c) $\mathbb{P}(X=3) = 0.3; f_Y(0.6) = 0.7$

Bei einer diskreten Zufallsvariable X kann die Wahrscheinlichkeit eines Ereignisses nicht grösser als 1 sein. Der Wert einer Dichte kann aber durchaus grösser als 1 werden.

- **2.** Sei a > 1 und sei U eine $\mathcal{U}([a, a^2])$ -verteilte Zufallsvariable. Was ist der Erwartungswert $\mathrm{E}[U]$?
- $\sqrt{}$ (a) $\frac{a(a+1)}{2}$
 - (b) $\frac{a^2}{2}$
 - (c) $a^2 + a$
 - (d) a

3. Sei $\lambda > 0$ und sei X eine $\text{Exp}(\lambda)$ -verteilte Zufallsvariable. Was ist der Erwartungswert E[X]?

- (a) 1
- $\sqrt{}$ (b) $1/\lambda$
 - (c) λ
 - (d) λ^2

Man berechnet durch partielle Ableitung

$$\mathbb{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \underbrace{\left[-x e^{-\lambda x}\right]_0^\infty}_{=0} + \underbrace{\int_0^\infty e^{-\lambda x} dx}_{=\left[-\frac{1}{\lambda} e^{-\lambda x}\right]_0^\infty}_{=}$$

4. Seien $\mu, \lambda > 0$. Seien $X \sim \text{Exp}(\lambda)$ und $Y \sim \text{Exp}(\mu)$. Was ist der Erwartungswert von $\mathbb{E}[\lambda X + \mu Y]$?

- (a) $\lambda^2 + \mu^2$
- (b) $\lambda + \mu$
- (c) $1/\lambda + 1/\mu$
- $\sqrt{}$ (d) 2

Wir verwenden die Linearität des Erwartungswerts und erhalten

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y] = \lambda \cdot 1/\lambda + \mu \cdot 1/\mu = 1 + 1 = 2.$$

5. Sei $X \sim \mathcal{N}(0,1)$ und Y eine Zufallsvariable, sodass $X+Y \sim \mathcal{N}(1,6)$. Was ist der Erwartungswert $\mathrm{E}[Y]$?

- (a) 2
- $\sqrt{}$ (b) 1
 - $(c) \quad 0$
 - (d) -1

Aufgrund der Linearität des Erwartungswerts gilt $\mathrm{E}[Y] = \mathrm{E}[X+Y] - \mathrm{E}[X] = 1-0=1.$

6. (*) Sei $X \sim \mathcal{N}(0,1)$ und sei $Y := 2 \cdot X^3$. Was ist der Erwartungswert $\mathrm{E}[Y]$?

- (a) 2
- (b) 1
- $\sqrt{}$ (c) 0
 - (d) -1

Aufgrund der Linearität des Erwartungswerts gilt $\mathrm{E}[Y] = 2 \cdot \mathrm{E}[X^3]$. Man berechnet dann

$$\mathbb{E}[X^3] = \int_{-\infty}^{\infty} \frac{x^3}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0,$$

da $\frac{x^3}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ eine ungerade Funktion ist.

7. Sei a > 0 und sei U eine $\mathcal{U}([a, 2a])$ -verteilte Zufallsvariable. Was ist die Varianz σ_U^2 ?

- (a) $\frac{a^2}{24}$
- $\sqrt{}$ (b) $\frac{a^2}{12}$
 - (c) $\frac{a^2}{4}$
 - (d) $\frac{a^2}{3}$

Wir berechnen zunächst die Varianz einer $\mathcal{U}([a,b])$ -verteilte Zufallsvariable Y. Es gilt

$$\sigma_Y^2 = \int_{-\infty}^{\infty} \left(y - \frac{b+a}{2} \right)^2 f_Y(y) dy = \frac{1}{b-a} \int_a^b \left(x - \frac{b+a}{2} \right)^2 dy = \frac{1}{b-a} \left[\frac{1}{3} \left(x - \frac{b+a}{2} \right)^3 \right]_a^b$$
$$= \frac{2}{3(b-a)} \left(\frac{b-a}{2} \right)^3 = \frac{(b-a)^2}{12}.$$

Somit folgt $\sigma_U^2 = \frac{a^2}{12}$.

8. Sei $\lambda > 0$ und sei X eine $\text{Exp}(\lambda)$ -verteilte Zufallsvariable. Was ist die Varianz σ_X^2 ?

- (a) 1
- (b) $1/\lambda$
- (c) λ
- $\sqrt{}$ (d) $1/\lambda^2$

Man berechnet durch partielle Integration

$$\mathbb{E}[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \underbrace{\left[-x^2 e^{-\lambda x}\right]_0^\infty}_{=0} + \underbrace{\int_0^\infty 2x e^{-\lambda x} dx}_{=\frac{2}{\lambda} \int_0^\infty x \lambda e^{-\lambda x} dx} = \frac{2}{\lambda} \mathbb{E}[X].$$

und somit gilt $\sigma_X^2 = \mathrm{E}[X^2] - \mathrm{E}[X]^2 = \frac{2}{\lambda} \cdot \frac{1}{\lambda} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$, wobei wir $\mathrm{E}[X] = 1/\lambda$ aus Frage 4 verwendet haben.

9. Seien X und Y zwei unabhängige Zufallsvariablen mit $X \sim \mathcal{N}(0,1)$ und $X+Y \sim \mathcal{N}(1,6)$. Was ist die Varianz σ_Y^2 ?

- (a) 35
- $\sqrt{}$ (b) 5
 - (c) 1
 - (d) 0

Aus der Unabhängigkeit wissen wir, dass $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$. Somit folgt $\sigma_Y^2 = \sigma_{X+Y}^2 - \sigma_X^2 = 6 - 1 = 5$.

10. (*) Sei $\Omega = [0, 1]$ und \mathcal{F} eine σ -Algebra, sodass $[a, b] \in \mathcal{F}$ für alle $0 \le a \le b \le 1$ gilt (also auch $\{a\} \in \mathcal{F}$). Welche der folgenden Mengen sind Elemente von \mathcal{F} ? (Mehrere richtige Antworten möglich.)

 $\sqrt{}$ (a) ℓ

Richtig! Dies ist eine direkte Konsequenz aus der Definition einer σ -Algebra.

 $\sqrt{\ }$ (b) $(\frac{1}{2}, 1]$

Richtig! Da $[0, \frac{1}{2}] \in \mathcal{F}$, gilt auch $(\frac{1}{2}, 1] = [0, \frac{1}{2}]^{c} \in \mathcal{F}$.

 $\sqrt{\ (c)\ (\frac{1}{2},\frac{3}{4})}$

Richtig! Da $\left[\frac{1}{2}, \frac{3}{4}\right] \in \mathcal{F}, \left\{\frac{1}{2}\right\} \in \mathcal{F} \text{ und } \left\{\frac{3}{4}\right\} \in \mathcal{F}, \text{ gilt auch } \left(\frac{1}{2}, \frac{3}{4}\right) = \left[\frac{1}{2}, \frac{3}{4}\right] \cap \left\{\frac{1}{2}\right\}^{\mathsf{c}} \cap \left\{\frac{3}{4}\right\}^{\mathsf{c}} \in \mathcal{F}.$

 $\sqrt{\ }$ (d) $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$

Richtig! Da $\{\frac{1}{n}\} \in \mathcal{F}$ für alle $n \ge 1$ gilt, ist auch die abzählbare Vereinigung $\bigcup_{n=1}^{\infty} \{\frac{1}{n}\}$ ein Element von \mathcal{F} .