Wahrscheinlichkeit & Statistik

Serie 4

Aufgabe 4.1 [Bedingter Erwartungswert] Sei (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum mit $\mathcal{A} = 2^{\Omega}$ und $\mathcal{B} = (B_i)_{i \in I}$ eine Partition von Ω . Wir betrachten eine Zufallsvariable X mit $\mathbb{E}[X^2] < \infty$.

- (a) Zeige, dass $\mathbb{E}[1_{B_i}\mathbb{E}[X \mid \mathcal{B}]] = \mathbb{E}[1_{B_i}X]$ gilt für jedes $i \in I$.
- (b) Zeige, dass $\mathbb{E}[\mathbb{E}[X \mid \mathcal{B}]] = \mathbb{E}[X]$.

Aufgabe 4.2 [**Zufällige Summe**] Sei (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum und N, X_1, X_2, \dots, X_9 unabhängige Zufallsvariablen. Wir nehmen an, dass

$$X_i \sim \text{Ber}(p)$$
 und $P[N=i] = q_i$

für jedes $i \in \{1, ..., 9\}$, wobei $p, q_1, ..., q_9 \in (0, 1)$ und $q_1 + \cdots + q_9 = 1$. Wir betrachten die Summe $S = \sum_{i=1}^{N} X_i$ und die Partition $\mathcal{B} = (B_i)_{i \in \{1, ..., 9\}}$ von Ω gegeben durch $B_i = \{N = i\}$ für $i \in \{1, ..., 9\}$.

- (a) Berechne $\mathbb{E}[S \mid \mathcal{B}]$ und $\mathbb{E}[S^2 \mid \mathcal{B}]$.
- (b) Berechne $\mathbb{E}[S]$, $\mathbb{E}[S^2]$ und Var(S).

Aufgabe 4.3 [Momentenerzeugende Funktion] Seien X_1, X_2 diskrete unabhängige Zufallsvariablen mit Werten in \mathbb{N}_0 .

(a) Zeige die Faltungsformel

$$\forall k \in \mathbb{N}_0: \qquad P[X_1 + X_2 = k] = \sum_{j=0}^k P[X_1 = j] P[X_2 = k - j]. \tag{1}$$

(b) Die Momentenerzeugende Funktion einer diskreten Zufallsvariable X mit Werten in \mathbb{N}_0 ist definiert als

$$\forall s \in \mathbb{R}: \qquad M_X(s) = \sum_{k=0}^{\infty} e^{sk} P[X = k]. \tag{2}$$

Zeige, dass

$$\forall s \in \mathbb{R}: \qquad M_{X_1 + X_2}(s) = M_{X_1}(s)M_{X_2}(s). \tag{3}$$

Aufgabe 4.4 [Prüfziffer]

Sei $N \in \mathbb{N}$. Betrachte die Menge

$$\Omega = \{0,1\}^N = \{(a_1, \dots, a_N) : a_1, \dots, a_N \in \{0,1\}\}$$

sowie $\mathcal{A}=2^{\Omega}$ und das Wahrscheinlichkeitsmass P definiert durch

$$P[\{(a_1,\ldots,a_N)\}] = \begin{cases} 2^{-N+1}, & \text{falls } a_1 + \cdots + a_N \text{ gerade ist,} \\ 0, & \text{sonst.} \end{cases}$$

Seien X_1, \ldots, X_N Zufallsvariablen definiert durch $X_i((a_1, \ldots, a_N)) = a_i$.

- (a) Zeige, dass X_1,\dots,X_{N-1} unabhängig sind.
- (b) Zeige, dass X_1,\dots,X_N nicht unabhängig sind.