Dr. R. Käppeli

L. Rueff

Serie 11

- 1. Stabilitätsfunktionen und Gebiete
 - a) Berechnen Sie die Stabilitätsfunktionen folgender Verfahren:
 - (i) Expliziter Euler

(ii) Impliziter Euler

(iii) Heun Verfahren

$$\begin{array}{c|cccc}
0 & & \\
1 & 1 & \\
\hline
& \frac{1}{2} & \frac{1}{2} \\
\end{array}$$

(iv) Klassisches Runge-Kutta Verfahren

(v) Implizite Mittelpunktsregel

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

Hinweis: (i) und (ii) wurde bereits in der Vorlesung berechnet.

b) Zeichnen Sie die Stabilitätsgebiete mit die MATLAB Funktionen draw_stabfunc.m für die Verfahren (i)-(v). Was beobachten Sie?

c) Bestimmen Sie auf mindesten fünf Stellen genau die Stabilitätsintervalle für die Verfahren (i)-(v).

Hinweis: Sie können im Template stab_klassiches_RK.m arbeiten und die MATLAB Funktion fsolve für (iv) verwenden.

d) Wir betrachten das AWP

$$\dot{y}(t) = (-1000 + \pi i)y(t)$$

 $y(0) = 1.$

Geben Sie sinnvolle Grenzen für die Schrittweite h an, so dass die Verfahren (i)-(v) den qualitativen Verlauf der exakten Lösung folgen.

Hinweis: Sie können im Template grenzen_schrittweite_h.m arbeiten und die MATLAB Funktion fsolve für (iv) verwenden.

- e) Zeichnen Sie den Realteil und den Imaginärteil der Lösung y(t) aus **d**). Hinweis: Sie können im Template schnelle_oszillation_verfall.m arbeiten.
- **2.** Stabilitäts-funktionen für RK-ESV
 - **a)** Zeigen Sie, dass die Stabilitätsfunktion eines expliziten RK-ESVs *immer* ein Polynom ist .

Hinweise: Siehe die Notizen auf Seiten 13e-13f in Kap. 5.

b) Kann ein explizites RK-ESV A-stabil sein?

3. L-Stabil

Ist die implizite Mittelpunkts-Methode L-stabil? Begründen Sie Ihre Antwort.

Hinweis: Beispiel (3) aus Kapitel 5 der Vorlesung.

4. Lineare Mehrschrittverfahren: BDF-Verfahren

In dieser Aufgabe befassen wir uns weiter mit sog. Mehrschrittverfahren, welche wir bereits in Aufgabe 3 der Serie 9 kennengelernt haben. Lineare Mehrschrittverfahren haben die Form

$$\sum_{l=0}^{k} \alpha_l \ y_{j+1-l} = h \sum_{l=0}^{k} \beta_l \ f_{j+1-l}.$$

Hier bezeichnet $y_{j+1-l} \approx y\left(t_{j+1-l}\right)$ die Approximation der Lösung eines geg. Anfangswertswertsproblem (AWP) zur Zeit t_{j+1-l} , $f_{j+1-l} \approx f\left(t_{j+1-l}, y_{j+1-l}\right)$ die Auswertung der rechten Seite Funktion f und α_l , β_l Koeffizienten. Der Einfachheit halber nehmen wir auch hier wieder eine konstante Schrittweite h an, d.h. $t_j = t_0 + j h$ $(j=0,1,\ldots)$.

Spezialfälle der Koeffizientenwahl beschreiben folgende Verfahren:

• Adams-Bashforth (AB):

-
$$\alpha_0 = 1$$
, $\alpha_1 = -1$, und $\alpha_l = 0$ für $l > 1$,
- $\beta_0 = 0$.

Da $\beta_0 = 0$ sind die Verfahren explizit. AB2 (k = 2) hatten wir in Aufgabe 3 der Serie 9 konstruiert.

• Adams-Moulton (AM):

-
$$\alpha_0 = 1$$
, $\alpha_1 = -1$, und $\alpha_l = 0$ für $l > 1$, - $\beta_0 \neq 0$.

Da $\beta_0 \neq 0$ sind diese Verfahren implizit.

• Rückwärtsdifferenzenmethoden (Backward Differencing Methods (BDF)):

$$-\beta_0 \neq 0$$
 und $\beta_l = 0$ für $l \geq 1$

Da $\beta_0 \neq 0$ sind diese Verfahren implizit.

BDF Methoden werden oft auf steife AWP angewendet. Die Idee eines k-Schritt BDF Verfahren (kurz BDFk) ist die rechte Seite Funktion f nur am neuen Zeitschritt (t_{j+1}, y_{j+1}) auszuwerten. Dies wird gleichgesetzt mit einer Approximation der Ableitung zur Zeit t_{j+1} , welche man mit Interpolation von $y_{j+1}, y_j, \ldots, y_{j+1-k}$ bestimmt (ganz analog zu finiten Differenzen, welche wir in Aufgabe 4 der Serie 2 gesehen haben). Es soll nun BDF2 gebaut werden:

- a) Bestimmen Sie das Interpolationspolynom $p_2(t)$ durch $(t_{j+1},y_{j+1}),(t_j,y_j)$ und $(t_{j-1},y_{j-1}).$
- **b**) Bestimmen Sie mittels a) eine Approximation der Ableitung der Lösung \dot{y} zur Zeit t_{j+1} (d.h. berechnen Sie $\dot{p}_2(t_{j+1})$).
- c) Setzen Sie die Approximation der Ableitung $\dot{y}(t_{j+1})$ gleich der rechten Seite Funtion ausgewertet bei (t_{j+1},y_{j+1}) und bestimmen Sie die Koeffizienten $\alpha_0,\alpha_1,\alpha_2$ und β_0 von BDF2. Normieren Sie $\alpha_0=1$.

Hinweis: Beispiel (10) in Kap. 5 der Vorlesungsnotizen.

Abgabe: Online bis Freitag, den 26.05.2023 unter sam-up.math.ethz.ch.