Musterlösung Serie 12

SCHUBFACHPRINZIP

1. Zeige, dass unter drei ganzen Zahlen immer zwei existieren, so dass a^3b-ab^3 durch 10 teilbar ist.

Lösung: Man kann $a^3b - ab^3 = ab(a+b)(a-b)$ schreiben. Diese Zahl ist immer gerade, weil entweder a oder b gerade ist, oder andernfalls a+b gerade ist.

Sodann ist das Produkt durch 5 teilbar, wenn a oder b durch 5 teilbar ist. Wir gewinnen also, wenn mindestens eine der drei gegebenen Zahlen durch 5 teilbar ist. Andernfalls verteilen sich deren Restklassen auf die Möglichkeiten ± 1 und ± 2 modulo (5). Nach dem Schubfachprinzip gibt es also ein Paar mit Restklassen in der Menge $\{\pm 1\}$ oder der Menge $\{\pm 2\}$. In jedem dieser Fälle ist ein Faktor der Form $a \pm b$ durch 5 teilbar, und wir gewinnen wieder.

2. Zwanzig paarweise verschiedene natürliche Zahlen sind alle < 70. Beweise, dass unter den paarweisen Differenzen mindestens vier gleiche Zahlen auftreten.

Lösung: Wir benennen die Zahlen mit $0 \le a_1 < \ldots < a_{20} < 70$. Die Summe aller aufeinanderfolgenden Differenzen erfüllt dann die Ungleichung

$$(a_2 - a_1) + (a_3 - a_2) + \ldots + (a_{20} - a_{19}) = a_{20} - a_1 \le 69.$$

Falls unter diesen $19 = 6 \cdot 3 + 1$ aufeinanderfolgenden Differenzen aber jeder Wert höchstens dreimal auftritt, so ist deren Summe mindestens

$$3 \cdot 1 + 3 \cdot 2 + 3 \cdot 3 + 3 \cdot 4 + 3 \cdot 5 + 3 \cdot 6 + 7 = 70.$$

Zusammen ist dies ein Widerspruch.

3. Zeige, dass jede Folge ganzer Zahlen a_1, \ldots, a_n der Länge $n \geq 5$ eine nichtleere Teilfolge besitzt, deren Elemente geeignet addiert oder subtrahiert ein Vielfaches von n^2 ergeben.

Lösung: Es gibt insgesamt $2^n - 1$ nichtleere Teilmengen $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, und für jede solche betrachten wir die Summe $a_{i_1} + \ldots + a_{i_k}$. Wegen $n \ge 5$ gilt dabei $2^n - 1 > n^2$. Daher existieren zwei verschiedene nichtleere Teilmengen, deren Summe denselben Rest modulo n^2 haben. Deren Differenz ist ein nichttrivialer Ausdruck der Form $\pm a_{i_1} \pm \ldots \pm a_{i_k} \equiv 0 \mod (n^2)$, wie gewünscht.

4. Für je $k > \frac{n+1}{2}$ ganze Zahlen $1 \le a_1 < a_2 < \ldots < a_k \le n$ existieren Indizes $1 \le i < r \le k$ mit $a_1 + a_i = a_r$.

Lösung: Wir haben einerseits k paarweise verschiedene Zahlen a_i und andererseits k-1 paarweise verschiedene Differenzen der Form a_r-a_1 für $2\leqslant r\leqslant k$, und alle liegen in der Menge $\{1,2,\ldots,n\}$. Wegen k+(k-1)>n muss daher eine der Zahlen a_i gleich eine der Differenzen a_r-a_1 sein. Dann gilt $a_1+a_i=a_r$ und wegen $a_1>0$ somit r>i.

- *5. Ein unendlich grosses Schachbrett besteht aus Quadraten der Grösse 1×1 . Ein Floh beginnt irgendwo und springt unendlich oft um den Betrag α nach rechts und β nach oben, wobei $\alpha, \beta, \alpha/\beta$ alle irrational sind. Beweise, dass der Floh irgendwann einmal auf einem schwarzen Feld landet.
- 6. Zeige: Es existieren ganze Zahlen a,b,c mit $|a|,|b|,|c|<10^6,$ die nicht alle gleich Null sind und für die gilt

$$\left| a + b\sqrt{2} + c\sqrt{3} \right| < 10^{-11}.$$

Lösung: Für alle ganzen Zahlen r, s, t mit $0 \le r, s, t < 10^6$ gilt

$$0 \ \leqslant \ r + s\sqrt{2} + t\sqrt{3} \ < \ (1 + \sqrt{2} + \sqrt{3}) \cdot 10^6 \ =: \ C.$$

Wir zerlegen das halboffene Intervall [0, C[in $N := 10^{18} - 1$ kleine halboffene Intervalle der Länge C/N. Unter den insgesamt $10^{18} = N + 1$ Tupeln (r, s, t) gibt es dann zwei verschiedene, für die die zugehörigen Zahlen $r + s\sqrt{2} + t\sqrt{3}$ im selben Teilintervall landen. Deren Differenz ist dann eine Zahl mit

$$\left| a + b\sqrt{2} + c\sqrt{3} \right| < \frac{C}{N} = \left(1 + \sqrt{2} + \sqrt{3} \right) \cdot \frac{10^6}{10^{18} - 1} < 10^{-11}$$

für ganze Zahlen a, b, c mit $|a|, |b|, |c| < 10^6$, die nicht alle gleich Null sind.

7. Eine ganze Zahl heisst *quadratfrei*, wenn sie nicht durch das Quadrat einer Primzahl teilbar ist. Betrachte eine quadratfreie ganze Zahl d > 1. Zeige: Es existiert ein $M \in \mathbb{R}$, so dass für unendlich viele Paare $(p,q) \in \mathbb{Z}^2$ gilt:

$$|p^2 - dq^2| \leqslant M.$$

Lösung: Zuerst zeigen wir, dass \sqrt{d} irrational ist. Ist diese Zahl rational, so existieren teilerfremde $a,b\in\mathbb{Z}^{>0}$ mit $\sqrt{d}=\frac{a}{b}$. Dann gilt $d=\frac{a^2}{b^2}$ und folglich $db^2=a^2$. Insbesondere gilt $b|a^2$, und weil a und b teilerfremd sind, folgt daraus b=1. Dann ist aber $d=a^2$, und wegen d>1 widerspricht das der Annahme, dass d quadratfrei ist.

Nun betrachten wir die Faktorisierung

$$p^2 - dq^2 = (p + \sqrt{d}q) \cdot (p - \sqrt{d}q).$$

Da \sqrt{d} irrational ist, existieren nach der Dirichlet-Approximation unendlich viele Paare $(p,q)\in\mathbb{Z}^2$ mit q>0 und

$$\left|\sqrt{d} - \frac{p}{q}\right| \leqslant \frac{1}{q^2}.$$

Für jedes solche Paar gilt $\left| p - \sqrt{d} \, q \right| \leqslant \frac{1}{q}$ und folglich

$$\left| p + \sqrt{d} \, q \right| \; \leqslant \; \left| p - \sqrt{d} \, q \right| + 2 \sqrt{d} \, q \; \leqslant \; \frac{1}{q} + 2 \sqrt{d} \, q.$$

Aus der obigen Faktorisierung folgt daher

$$|p^2 - dq^2| = |p + \sqrt{d}q| \cdot |p - \sqrt{d}q| \le \frac{1}{q^2} + 2\sqrt{d} \le 1 + 2\sqrt{d}.$$

Also gilt die gewünschte Aussage für $M = 1 + 2\sqrt{d}$.