Serie 8

KARDINALZAHLEN, KARDINALZAHLARITHMETIK

Erinnerung: Für zwei Mengen X und Y bezeichnet XY die Menge der Funktionen $X \to Y$.

- 1. Zur gegenseitigen Korrektur: Sei X eine unendliche Menge und $\operatorname{Perm}(X)$ die Menge der Bijektionen $X \stackrel{\sim}{\to} X$. Beweise $|\operatorname{Perm}(X)| = 2^{|X|}$.
- 2. Seien α, α', β und γ Kardinalzahlen mit $\alpha \leq \alpha'$.
 - (a) Beweise $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.
 - (b) Beweise $\alpha \cdot \beta = \beta \cdot \alpha$.
 - (c) Beweise $\gamma^{\alpha} \leqslant \gamma^{\alpha'}$ falls $\gamma \neq 0$.
- 3. Für jede ganze Zahl $n \ge 2$ sei X_n die Menge aller unendlichen Folgen mit Werten in $\{0, 1, \ldots, n-1\}$, das heisst, die Menge aller Funktionen $\omega \to n$.
 - (a) Zeige, dass die Mengen X_n alle dieselbe Kardinalität besitzen.
 - (b) Konstruiere eine explizite Bijektion zwischen X_2 und X_3 .
 - (c) Tue dasselbe für X_m und X_n für beliebige $n \ge m \ge 2$.
- 4. Sei V ein unendlichdimensionaler K-Vektorraum. Beweise

$$|V| = \max\{|K|, \dim_K(V)\}.$$

**5. Beweise den Satz von Hessenberg: Für jede unendliche Menge x gilt $x \times x \sim x$.