Prof. M. Einsiedler
Prof. P. Biran

## Serie 14

## Determinant

1. Compute the determinant of

$$
B=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 2 & 3 & 0 \\
0 & 2 & 3 & 0 & 0 \\
2 & 3 & 0 & 0 & 0
\end{array}\right)
$$

over $\mathbb{R}$ and over $\mathbb{F}_{5}$. Is $B$ invertible?
2. Each of the following expressions defines a function $D$ on the set of $3 \times 3$ matrices over the field of real numbers. In which of these cases is $D$ a 3 -linear function?
(a) $D(A)=A_{11}+A_{22}+A_{33}$;
(b) $D(A)=A_{11}^{2}+3 A_{11} A_{22}$;
(c) $D(A)=A_{11} A_{12} A_{33}$;
(d) $D(A)=A_{13} A_{22} A_{32}+5 A_{12} A_{22} A_{32}$;
(e) $D(A)=0$;
(f) $D(A)=1$.
3. (a) Let $K$ be a field, let $\lambda \in K$, and let $A \in M_{n \times n}(K)$. Show that:
i. For $B$ such that $A \xrightarrow{\lambda L_{i} \rightarrow L_{i}} B$, $\operatorname{det} B=\lambda \operatorname{det} A$;
ii. For $B$ such that $A \xrightarrow{L_{i} \leftrightarrow L_{j}} B$, $\operatorname{det} B=-\operatorname{det} A$;
iii. For $B$ such that $A \xrightarrow{\lambda L_{i}+L_{j} \rightarrow L_{j}} B$ with $i \neq j, \operatorname{det} B=\operatorname{det} A$.
(b) The integers $2014,1484,3710$ and 6996 are all multiples of 1006. Show (without brute-force calculations) that also

$$
\operatorname{det}\left(\begin{array}{llll}
2 & 1 & 3 & 6 \\
0 & 4 & 7 & 9 \\
1 & 8 & 1 & 9 \\
4 & 4 & 0 & 6
\end{array}\right)
$$

is a multiple of 106 .
4. Compute the determinants of the following matrices

$$
\begin{aligned}
A=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-1 & 2 & 0 & 1 \\
1 & 2 & -3 & 1 \\
0 & -4 & 2 & -1
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \\
C=\left(\begin{array}{ccccc}
2 & -3 & 5 & 1 & 4 \\
2 & -3 & 1 & -6 & 18 \\
4 & -3 & 9 & 6 & 10 \\
-2 & 4 & -6 & -1 & -1 \\
-6 & 11 & -23 & -14 & 9
\end{array}\right) .
\end{aligned}
$$

5. Let $A_{n} \in \mathrm{M}(n \times n, \mathbb{R})$ be the matrix

$$
\left(\begin{array}{ccccc}
2 & 1 & 0 & \ldots & 0 \\
1 & 2 & 1 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & & 1 & 2 & 1 \\
0 & \ldots & 0 & 1 & 2
\end{array}\right)
$$

Prove that

$$
\operatorname{det}\left(A_{n}\right)=n+1
$$

6. Let $K$ be a subfield of the complex numbers and $n$ a positive integer. Let $j_{1}, \ldots, j_{n}$ and $k_{1}, \ldots, k_{n}$ be positive integers not exceeding $n$. For an $n \times n$ matrix $A$ over $K$ define

$$
D(A)=A\left(j_{1}, k_{1}\right) A\left(j_{2}, k_{2}\right) \cdots A\left(j_{n}, k_{n}\right)
$$

Prove that $D$ is $n$-linear if and only if the integers $j_{1}, \ldots, j_{n}$ are distinct.

Single Choice. In each exercise, exactly one answer is correct.

1. For which $x \in \mathbb{R}$ do we have $\operatorname{det}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right)=1$ ?
(a) $x=-2$
(b) $x=2$
(c) $x=-1$
(d) $x=1$
2. Let $K$ be a field and $\operatorname{Mat}_{n \times n}(K)$ the vector space of $n \times n$-Matrizen over $K$. Which assertion is wrong in general?
(a) A marix $A \in \operatorname{Mat}_{n \times n}(K)$ over $K$ is invertible if and only if $\operatorname{det}(A) \neq 0$.
(b) The determinant of an upper triangular matrix only depends on its diagonal entries.
(c) For every $n \geqslant 0$ the determinant is a linear map $\operatorname{Mat}_{n \times n}(K) \rightarrow K$.
(d) For every $n>0$ the determinant map $M a t_{n \times n}(K) \rightarrow K$ is surjektive.
3. In general, which operation changes the determinant?
(a) Exchanging two rows.
(b) Adding the multiple of one row to another
(c) Transpose.
(d) Replacement by similar matrix.

## Multiple Choice Fragen.

1. Which of the following assertions are correct for arbitrary $A, B \in M_{n \times n}(\mathbb{R})$ with $n \geqslant 2$ ?
(a) We have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(b) From $\operatorname{det}(A) \neq 0$ it follows that the column vectors $a_{1}, \cdots, a_{n}$ of $A$ are linearly independent.
(c) Es gilt $\operatorname{det}(A B)=\operatorname{det}(B A)$.
(d) For every non-zero real number $\lambda$ we have $\operatorname{det}(\lambda A)=\lambda \operatorname{det}(A)$.
(e) We have $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
2. Let $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=4$. Which of the following statements are true?
(a) $\operatorname{det}\left(\begin{array}{ll}2 a & 2 b \\ 2 c & 2 d\end{array}\right)=8$.
(b) $\operatorname{det}\left(\begin{array}{cc}a & b \\ c-a & d-b\end{array}\right)=4$.
(c) $\operatorname{det}\left(\begin{array}{cc}a & b \\ c+2 a & d+2 b\end{array}\right)=4$.
(d) $\operatorname{det}\left(\begin{array}{cc}a & b \\ 3 c & 3 d\end{array}\right)=12$.
