Lineare Algebra I

Serie 14

Determinant

1. Compute the determinant of

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \end{pmatrix}$$

over \mathbb{R} and over \mathbb{F}_5 . Is *B* invertible?

- 2. Each of the following expressions defines a function D on the set of 3×3 matrices over the field of real numbers. In which of these cases is D a 3-linear function?
 - (a) $D(A) = A_{11} + A_{22} + A_{33};$
 - (b) $D(A) = A_{11}^2 + 3A_{11}A_{22};$
 - (c) $D(A) = A_{11}A_{12}A_{33};$
 - (d) $D(A) = A_{13}A_{22}A_{32} + 5A_{12}A_{22}A_{32};$
 - (e) D(A) = 0;
 - (f) D(A) = 1.
- 3. (a) Let K be a field, let $\lambda \in K$, and let $A \in M_{n \times n}(K)$. Show that:
 - i. For B such that $A \xrightarrow{\lambda L_i \to L_i} B$, det $B = \lambda \det A$;
 - ii. For B such that $A \xrightarrow{L_i \leftrightarrow L_j} B$, det $B = -\det A$;
 - iii. For B such that $A \xrightarrow{\lambda L_i + L_j \to L_j} B$ with $i \neq j$, det $B = \det A$.
 - (b) The integers 2014, 1484, 3710 and 6996 are all multiples of 1006. Show (without brute-force calculations) that also

$$\det \begin{pmatrix} 2 & 1 & 3 & 6\\ 0 & 4 & 7 & 9\\ 1 & 8 & 1 & 9\\ 4 & 4 & 0 & 6 \end{pmatrix}$$

is a multiple of 106.

4. Compute the determinants of the following matrices

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -1 & 2 & 0 & 1 \\ 1 & 2 & -3 & 1 \\ 0 & -4 & 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},$$
$$C = \begin{pmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{pmatrix}.$$

5. Let $A_n \in \mathcal{M}(n \times n, \mathbb{R})$ be the matrix

Prove that

$$\det\left(A_n\right) = n + 1.$$

6. Let K be a subfield of the complex numbers and n a positive integer. Let j_1, \ldots, j_n and k_1, \ldots, k_n be positive integers not exceeding n. For an $n \times n$ matrix A over K define

$$D(A) = A(j_1, k_1)A(j_2, k_2) \cdots A(j_n, k_n).$$

Prove that D is n-linear if and only if the integers j_1, \ldots, j_n are distinct.

Single Choice. In each exercise, exactly one answer is correct.

- 1. For which $x \in \mathbb{R}$ do we have det $\begin{pmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} = 1?$
 - (a) x = -2
 - (b) x = 2
 - (c) x = -1
 - (d) x = 1
- 2. Let K be a field and $Mat_{n \times n}(K)$ the vector space of $n \times n$ -Matrizen over K. Which assertion is wrong in general?
 - (a) A marix $A \in Mat_{n \times n}(K)$ over K is invertible if and only if $det(A) \neq 0$.
 - (b) The determinant of an upper triangular matrix only depends on its diagonal entries.
 - (c) For every $n \ge 0$ the determinant is a linear map $\operatorname{Mat}_{n \times n}(K) \to K$.
 - (d) For every n > 0 the determinant map $Mat_{n \times n}(K) \to K$ is surjective.
- 3. In general, which operation changes the determinant?
 - (a) Exchanging two rows.
 - (b) Adding the multiple of one row to another
 - (c) Transpose.
 - (d) Replacement by similar matrix.

Multiple Choice Fragen.

- 1. Which of the following assertions are correct for arbitrary $A, B \in M_{n \times n}(\mathbb{R})$ with $n \ge 2$?
 - (a) We have det(AB) = det(A) det(B).
 - (b) From det(A) $\neq 0$ it follows that the column vectors a_1, \dots, a_n of A are linearly independent.
 - (c) Es gilt det(AB) = det(BA).
 - (d) For every non-zero real number λ we have $\det(\lambda A) = \lambda \det(A)$.
 - (e) We have det(A + B) = det(A) + det(B).

2. Let det
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 4$$
. Which of the following statements are true?
(a) det $\begin{pmatrix} 2a & 2b \\ 2c & 2d \end{pmatrix} = 8$.
(b) det $\begin{pmatrix} a & b \\ c-a & d-b \end{pmatrix} = 4$.

(c) det
$$\begin{pmatrix} a & b \\ c+2a & d+2b \end{pmatrix} = 4.$$

(d) det $\begin{pmatrix} a & b \\ 3c & 3d \end{pmatrix} = 12.$