Lineare Algebra I

HS 2022

Serie 15

Determinant

1. Let K be a commutative ring with identity. If A is a 2×2 matrix over K, the classical adjoint of A is the 2×2 matrix adj A defined by

adj
$$A = \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$$

If det denotes the unique determinant function on 2×2 matrices over K, show that

- (a) $(\operatorname{adj} A)A = A(\operatorname{adj} A) = (\det A)I;$
- (b) $\det(\operatorname{adj} A) = \det(A);$
- (c) $\operatorname{adj}(A^t) = (\operatorname{adj} A)^t$.

 $(A^t \text{ denotes the transpose of } A.)$

2. (a) List explicitly the 24 permutations of degree 4, state which are odd and which are even, and use this to give the complete Leibniz formula

$$\det(A) = \sum_{\sigma} (\operatorname{sgn} \sigma) A(1, \sigma 1) \cdots A(n, \sigma n)$$

for the determinant of a 4×4 matrix. Notice that for $n \ge 4$ it is not sufficient to compute a combination of the diagonals of a matrix to obtain its determinant.

- (b) For a general $n \in \mathbb{N}_{\geq 1}$, how many *even* permutations are there in S_n ?
- 3. An $n \times n$ matrix A is called triangular if $A_{ij} = 0$ whenever i > j or if $A_{ij} = 0$ whenever i < j. Prove that the determinant of a triangular matrix is the product $A_{11}A_{22}\cdots A_{nn}$ of its diagonal entries.
- 4. Let $n \in \mathbb{N}_{\geq 2}$. Show that

$$\det \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Remark. Products of the sort are called a *Vandermonde determinants* and the above matrix is called a *Vandermonde matrix*.

5. Let K be a field and let $A, B, C, D \in M_{n \times n}(K)$. Assume that A and C commute and that det $A \neq 0$. Show that

$$\det\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) = \det(A \cdot D - C \cdot B)$$

Hint. Consider the matrix

$$\left(\begin{array}{c|c} I_n & O_n \\ \hline -C & A \end{array}\right).$$

6. Prove the following proposition using the Leibniz formula for determinants:

Proposition. Let K be a field, and let $A, B \in M_{n \times n}(K)$. Then

$$\det(AB) = \det(A) \cdot \det(B).$$

Hint. Denote $\{\mathbf{e}_i\}_{i=1}^n$ the standard basis of K^n and write the matrix B as a list of column blocks:

$$B = \left(\sum_{s_1=1}^n B(s_1, 1) \mathbf{e}_{s_1} \mid \cdots \mid \sum_{s_n=1}^n B(s_n, n) \mathbf{e}_{s_n} \right).$$

You will also need to prove the following lemma

Lemma. For any $A \in M_{n \times n}(K)$ and any $\sigma \in S_n$, we have

$$\det \left(A \cdot \mathbf{e}_{\sigma(1)} \mid \cdots \mid A \cdot \mathbf{e}_{\sigma(n)} \right) = \operatorname{sgn}(\sigma) \det(A).$$