Serie 15

Determinant

1. Let K be a commutative ring with identity. If A is a 2×2 matrix over K, the classical adjoint of A is the 2×2 matrix adj A defined by

$$
\operatorname{adj} A=\left(\begin{array}{cc}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right)
$$

If det denotes the unique determinant function on 2×2 matrices over K, show that
(a) $(\operatorname{adj} A) A=A(\operatorname{adj} A)=(\operatorname{det} A) I$;
(b) $\operatorname{det}(\operatorname{adj} A)=\operatorname{det}(A)$;
(c) $\operatorname{adj}\left(A^{t}\right)=(\operatorname{adj} A)^{t}$.
(A^{t} denotes the transpose of A.)
2. (a) List explicitly the 24 permutations of degree 4 , state which are odd and which are even, and use this to give the complete Leibniz formula

$$
\operatorname{det}(A)=\sum_{\sigma}(\operatorname{sgn} \sigma) A(1, \sigma 1) \cdots A(n, \sigma n)
$$

for the determinant of a 4×4 matrix. Notice that for $n \geqslant 4$ it is not sufficient to compute a combination of the diagonals of a matrix to obtain its determinant.
(b) For a general $n \in \mathbb{N}_{\geqslant 1}$, how many even permutations are there in S_{n} ?
3. An $n \times n$ matrix A is called triangular if $A_{i j}=0$ whenever $i>j$ or if $A_{i j}=0$ whenever $i<j$. Prove that the determinant of a triangular matrix is the product $A_{11} A_{22} \cdots A_{n n}$ of its diagonal entries.
4. Let $n \in \mathbb{N}_{\geqslant 2}$. Show that

$$
\operatorname{det}\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right) .
$$

Remark. Products of the sort are called a Vandermonde determinants and the above matrix is called a Vandermonde matrix.
5. Let K be a field and let $A, B, C, D \in M_{n \times n}(K)$. Assume that A and C commute and that $\operatorname{det} A \neq 0$. Show that

$$
\operatorname{det}\left(\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right)=\operatorname{det}(A \cdot D-C \cdot B)
$$

Hint. Consider the matrix

$$
\left(\begin{array}{c|c}
I_{n} & O_{n} \\
\hline-C & A
\end{array}\right)
$$

6. Prove the following proposition using the Leibniz formula for determinants:

Proposition. Let K be a field, and let $A, B \in M_{n \times n}(K)$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

Hint. Denote $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ the standard basis of K^{n} and write the matrix B as a list of column blocks:

$$
B=\left(\sum_{s_{1}=1}^{n} B\left(s_{1}, 1\right) \mathbf{e}_{s_{1}}|\cdots| \sum_{s_{n}=1}^{n} B\left(s_{n}, n\right) \mathbf{e}_{s_{n}}\right)
$$

You will also need to prove the following lemma
Lemma. For any $A \in M_{n \times n}(K)$ and any $\sigma \in S_{n}$, we have

$$
\operatorname{det}\left(A \cdot \mathbf{e}_{\sigma(1)}|\cdots| A \cdot \mathbf{e}_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \operatorname{det}(A)
$$

