Serie 16

Characteristic polynomials, Eigenvectors, Eigenvalues

1. Consider the matrix $A=\left(\begin{array}{ccc}3 & 0 & -2 \\ 2 & 0 & -2 \\ 0 & 1 & 1\end{array}\right)$ over \mathbb{R}.
(a) Determine the characteristic polynomial of A.
(b) Determine the eigenvalues of A.
(c) The geometric multiplicity of an eigenvector is the dimension of its eigenspace.

The arithmetic multiplicity of an eigenvector is the multiplicity of this eigenvector as a zero of the characteristic polynomial. Determine the arithmetic and geometric multiplicity of all eigenvalues.
2. Compute the characterisitc polynomial, the eigenvalues and eigenvektors of the following matrices over \mathbb{Q} and check if they are diagonalizable.
(a) $A:=\left(\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right)$
(b) $B:=\left(\begin{array}{ccc}2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1\end{array}\right)$
(c) $C:=\left(\begin{array}{cccc}-4 & -3 & -1 & -7 \\ -3 & -1 & -1 & -4 \\ 6 & 4 & 3 & 8 \\ 3 & 3 & 1 & 6\end{array}\right)$
3. For an arbitrary invertible $n \times n$-matrix A, write the characteristic polynomial of A^{-1} in terms of the characteristic polynomial of A.
4. Let K^{∞} be the vectorspace of all infinite sequences in K, and let K_{0}^{∞} be the subspace of all sequences where all but finitily many elements are 0 .
(a) Determine all eigenvalues and eigenvectors of the endomorphism

$$
T: K^{\infty} \rightarrow K^{\infty},\left(x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(x_{1}, x_{2}, x_{3}, \ldots\right) .
$$

(b) Do the same for the induced endomorphism $K_{0}^{\infty} \rightarrow K_{0}^{\infty}$.
(c) Construct an endomorphism of K_{0}^{∞} with eigenvalues $0,1,2,3, \ldots$
(d) Construct an endomorphism of K_{0}^{∞} which has no Eigenvalues.
5. Let A be a nilpotent $n \times n$-matrix. This means that there exists $m \geqslant 1$ with $A^{m}=O$. Show that the only possible eigenvalue of A is 0 . When exactly is 0 an eigenvalue of A ?
6. Let V be a K-vectorspace and let $F, G \in \operatorname{End}(V)$. Show:
(a) If $v \in V$ is an eigenvektor of $F \circ G$ with eigenvalue λ and $G(v) \neq 0$, then $G(v)$ is an eigenvector of $G \circ F$ with eigenvalue λ.
(b) If V is finite-dimensional, the endomorphisms $F \circ G$ and $G \circ F$ have the same eigenvalues.
(c) Find a counterexample to (b) if V is not finite-dimensional.

