Serie 17

EIGENVECTORS, EIGENVALUES

1. In each of the following cases, let T_i be the endomorphism of \mathbb{R}^2 which is represented by the matrix A_i in the standard ordered basis for \mathbb{R}^2 , and let U_i be the endomorphism of \mathbb{C}^2 represented by A_i in the standard ordered basis. Find the characteristic polynomial for T_i and that for U_i , find the eigenvalues of each endomorphism, and for each such eigenvalue find a basis for the corresponding space of eigenvectors.

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

- 2. Let K be a field and let V be a finite-dimensional vector space over K. Suppose that $T \in \text{End}(V)$ is invertible. Prove that $\text{Eig}_T(\lambda) = \text{Eig}_{T^{-1}}(1/\lambda)$ for every $\lambda \in K^*$.
- 3. Consider the space $C^{\infty}(\mathbb{R})$ of smooth functions over \mathbb{R} and the map

$$\begin{array}{rccc} T: & C^{\infty}(\mathbb{R}) & \to & C^{\infty}(\mathbb{R}) \\ & f & \mapsto & f' \end{array}$$

Find the eigenvalues and the corresponding eigenfunctions (this is a synonym for eigenvectors when working on a space whose elements are functions) of T.

4. Let $K = \mathbb{R}$, show that K^{∞} does not admit any countable basis.

Hint: Use the fact that pairwise distinct eigenvalues correspond to a set of linearly independent eigenvectors.

- 5. (a) Let f be an endomorphism of a finite-dimensional vector space V, and let $V = V_1 \oplus \ldots \oplus V_r$ with f-invariant subpaces V_i . Show, that the arithmetic, resp. geometric multiplicities of an eigenvalue $\lambda \in K$ of f is equal to the sum of the arithmetic, resp. geometric multiplies of λ as an eigenvalue of the endomorphisms $f|_{V_i}$ of V_i .
 - (b) Deduce that f is diagonalizable if and only if $f|_{V_i}$ is diagonalizable for every i.

(c) Let f and g be endomorphisms for the same finite dimensional vector space V. Show that f and g are simultaneously diagonalizable (meaning that there exists a basis of eigenvectors of f which are all also eigenvectors of g) if and only if they commute and are diagonalizable.
Hint: To prove the the backward direction, first show that each eigenspace

of f is g-invariant, i.e. that g maps eigenvectors of f to eigenvectors of f in the same eigenspace.

- 6. Let K be a field and let V be an n-dimensional vector space over K (n > 0).
 - (a) Let T be a diagonalizable endomorphism of V with (not necessarily distinct) eigenvalues λ_i for $1 \leq i \leq n$. Show that

$$\operatorname{Tr}(T) = \sum_{i=1}^{n} \lambda_i$$
 and that $\operatorname{det}(T) = \prod_{i=1}^{n} \lambda_i$.

For $0 \leq k \leq n$, let c_k be the coefficient of x^k in the characteristic polynomial of T. Give a formula for c_k in terms of the eigenvalues of T.

(b) Let $B \in M_{2 \times 2}(\mathbb{R})$ be diagonalizable with $\operatorname{Tr}(B) = 0$. Show that $\det(B) \leq 0$.