Serie 17

Eigenvectors, Eigenvalues

1. In each of the following cases, let T_{i} be the endomorphism of \mathbb{R}^{2} which is represented by the matrix A_{i} in the standard ordered basis for \mathbb{R}^{2}, and let U_{i} be the endomorphism of \mathbb{C}^{2} represented by A_{i} in the standard ordered basis. Find the characteristic polynomial for T_{i} and that for U_{i}, find the eigenvalues of each endomorphism, and for each such eigenvalue find a basis for the corresponding space of eigenvectors.

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc}
2 & 3 \\
-1 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

2. Let K be a field and let V be a finite-dimensional vector space over K. Suppose that $T \in \operatorname{End}(V)$ is invertible. Prove that $\operatorname{Eig}_{T}(\lambda)=\operatorname{Eig}_{T^{-1}}(1 / \lambda)$ for every $\lambda \in K^{*}$.
3. Consider the space $C^{\infty}(\mathbb{R})$ of smooth functions over \mathbb{R} and the map

$$
\begin{array}{cccc}
T: \quad C^{\infty}(\mathbb{R}) & \rightarrow & C^{\infty}(\mathbb{R}) \\
f & \mapsto & f^{\prime}
\end{array}
$$

Find the eigenvalues and the corresponding eigenfunctions (this is a synonym for eigenvectors when working on a space whose elements are functions) of T.
4. Let $K=\mathbb{R}$, show that K^{∞} does not admit any countable basis.

Hint: Use the fact that pairwise distinct eigenvalues correspond to a set of linearly independent eigenvectors.
5. (a) Let f be an endomorphism of a finite-dimensional vector space V, and let $V=V_{1} \oplus \ldots \oplus V_{r}$ with f-invariant subpaces V_{i}. Show, that the arithmetic, resp. geometric multiplicities of an eigenvalue $\lambda \in K$ of f is equal to the sum of the arithmetic, resp. geometric multiplies of λ as an eigenvalue of the endomorphisms $\left.f\right|_{V_{i}}$ of V_{i}.
(b) Deduce that f is diagonalizable if and only if $\left.f\right|_{V_{i}}$ is diagonalizable for every i.
(c) Let f and g be endomorphisms for the same finite dimensional vector space V. Show that f and g are simultaneously diagonalizable (meaning that there exists a basis of eigenvectors of f which are all also eigenvectors of g) if and only if they commute and are diagonalizable.
Hint: To prove the the backward direction, first show that each eigenspace of f is g-invariant, i.e. that g maps eigenvectors of f to eigenvectors of f in the same eigenspace.
6. Let K be a field and let V be an n-dimensional vector space over $K(n>0)$.
(a) Let T be a diagonalizable endomorphism of V with (not necessarily distinct) eigenvalues λ_{i} for $1 \leqslant i \leqslant n$. Show that

$$
\operatorname{Tr}(T)=\sum_{i=1}^{n} \lambda_{i} \quad \text { and that } \quad \operatorname{det}(T)=\prod_{i=1}^{n} \lambda_{i} .
$$

For $0 \leqslant k \leqslant n$, let c_{k} be the coefficient of x^{k} in the characteristic polynomial of T. Give a formula for c_{k} in terms of the eigenvalues of T.
(b) Let $B \in M_{2 \times 2}(\mathbb{R})$ be diagonalizable with $\operatorname{Tr}(B)=0$. Show that $\operatorname{det}(B) \leqslant 0$.

