Serie 18

Diagonalizabiltiy, Cayley-Hamilton

1. Let K be a field, let $n \geqslant 2$, and let

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
0 & 0 & \cdots & 0 & -c_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{array}\right) \in M_{n \times n}(K) .
$$

Prove that

$$
\operatorname{char}_{A}(X)=(-1)^{n}\left(X^{n}+c_{n-1} X^{n-1}+\cdots+c_{0}\right)
$$

Hint: Use induction.
2. Let A be a $n \times n$-matrix of rank r. Show that the degree of the minimal polynomial of A is smaller or equal than $r+1$.
3. Prove that every 2×2 invertible real matrix belongs to one of the following categories:

- It is diagonalizable;
- it is trigonalizable with algebraic multiplicity 2 and geometric multiplicity 1 ;
- one can find a basis such that the matrix representation in that basis is

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \quad \text { with } b \neq 0
$$

4. Let K be a field, $A \in M_{n \times n}(K)$, and $p \in K[X]$ be a non-trivial polynomial such that $p(A)=0$. Show that every eigenvalue of A is a root of p.
Hint: For an eigenvector v of A and a polynomial q over K, state and prove the relationship between v and $q(A) \cdot v$.
5. (a) Let A be a $n \times n$-matrix. Prove that the subspace $\left\langle I_{n}, A, A^{2}, \ldots\right\rangle$ of $M_{n \times n}(K)$ has dimension $\leqslant n$.
(b) Let $A:=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right)$. Find a polynomial $p(X)$ with $p(A)=A^{-1}$.
6. Prove or disprove: There exists a real $n \times n$-matrix A satisfying

$$
A^{2}+2 A+5 I_{n}=0
$$

if and only if n is even.

