Serie 19

Scalar products, bilinear forms

1. For which values of $a \in \mathbb{R}$ does the expression

$$
\langle x, y\rangle:=x_{1} y_{1}+a x_{1} y_{2}+a x_{2} y_{1}+7 x_{2} y_{2},
$$

where $x=\binom{x_{1}}{x_{2}}$ and $y=\binom{y_{1}}{y_{2}}$, define an inner product on \mathbb{R}^{2} ?
2. Let V be the vector space of real polynomials of degree at most n.
(a) Show that the expression

$$
\langle p, q\rangle:=\int_{0}^{\infty} p(t) q(t) e^{-t} d t
$$

defines an inner product on V.
(b) Find the matrix of the inner product with respect to the basis $1, x, \ldots, x^{n}$.
3. Let $V=\mathbb{R}^{2}$ endowed with the standard scalar product, and for $i=1,2$, let $v_{i} \in V \backslash\{0\}$. Show that the formula

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\|v_{1}\right\|\left\|v_{2}\right\| \cos \left(\widehat{v_{1}, v_{2}}\right)
$$

defining the cosinus of an angle is rotation-invariant. In other words show that, for any rotation of the plane $R: V \rightarrow V$, we have

$$
\cos \left(\widehat{v_{1}, v_{2}}\right)=\cos \left(\widehat{R v_{1}, R} v_{2}\right)
$$

which is what we would expect from a good definition of the angle between 2 vectors.
4. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Show that:
(a) The matrix $A^{T} A$ is symmetric.
(b) The matrix $A^{T} A$ is positive-definite if and only if A is invertible.
(c) It holds that $\operatorname{Rang}\left(A^{T} A\right)=\operatorname{Rang}(A)$.
5. (a) Let $\|\cdot\|$ be a norm on the \mathbb{R}-vector space V. Show that the norm is induced by an inner product $\langle\cdot, \cdot\rangle$ on V if and only if it satisfies the parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

for all $x, y \in V$.
(b) Let V be a finite-dimensional \mathbb{R} vector space. Consider the following map:

$$
\|\cdot\|_{1}: \begin{array}{ccc}
V & \rightarrow & \mathbb{R}_{\geqslant 0} \\
& v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) & \mapsto
\end{array} \sum_{i=1}^{n}\left|v_{i}\right|
$$

Check that $\|\cdot\|_{1}$ defines a norm on V and prove that it does not come from a scalar product.
6. Let $K=\mathbb{R}, V=M_{n \times n}(K)$, and consider the map

$$
\begin{array}{ccc}
V \times V & \rightarrow & K \\
(A, B) & \mapsto & \operatorname{Tr}\left(A^{T} B\right) .
\end{array}
$$

Show that it defines an inner product on V and find an orthonormal basis with respect to this inner product. The induced norm is called the Hilbert-Schmidt norm. Give a formula form the norm of a matrix $A \in V$ in terms of its entries.

