Serie 21

Gram-Schmidt, Orthogonality

1. Let $K=\mathbb{R}, \mathbb{C}, A, B \in M_{n \times m}(K), C \in M_{m \times p}(K)$. Prove the following properties of the adjoint matrix:
(a) $\overline{A+B}^{T}=\bar{A}^{T}+\bar{B}^{T}$;
(b) For all $\lambda \in K, \overline{(\lambda A)}^{T}=\bar{\lambda} \bar{A}^{T}$;
(c) ${\overline{\left(\bar{A}^{T}\right)}}^{T}=A$;
(d) $\bar{I}_{n}{ }^{T}=I_{n}$;
(e) $\overline{(A \cdot C)}^{T}=\bar{C}^{T} \cdot \bar{A}^{T}$.
2. Let $K=\mathbb{R}$. On $K[x]_{2}$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x .
$$

(a) Apply the Gram-Schmidt procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $K[x]_{2}$.
(b) Find an orthonormal basis of $K[x]_{2}$ such that the differential operator $p \mapsto p^{\prime}$ on $K[x]_{2}$ has an upper triangular matrix with respect to this basis.
3. Minimizing the distance to a subset. Let K be a field and V be a K-vector space. Suppose that U is a finite-dimensional subspace of V and denote $P_{U}: V \rightarrow$ U the orthogonal projection onto U. Let $v \in V$ and $u \in U$. Show that

$$
\left\|v-P_{U}(v)\right\| \leqslant\|v-u\| .
$$

Additionally, prove that the inequality above is an equality if and only if $u=P_{U}(v)$.
4. Find a polynomial p with real coefficients and degree at most 5 that approximates $\sin (x)$ as well as possible on the interval $[-\pi, \pi]$, in the sense that

$$
\int_{-\pi}^{\pi}|\sin (x)-p(x)|^{2} d x
$$

is as small as possible.

Hint. Reformulate the problem in order to use exercise 3.
5. Let $V=C([-1,1], \mathbb{R})$ denote the space of continuous real-valued functions on the interval $[-1,1]$ with inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

for $f, g \in V$. Let $\varphi: V \rightarrow \mathbb{R}$ be the linear functional defined by $\varphi(f)=f(0)$. Show that there does not exist $g \in V$ such that

$$
\forall f \in V: \varphi(f)=\langle f, g\rangle
$$

6. Let $G=(V, E)$ be a finite directed graph. More precisely, let V be a finite set, and let $E \subseteq\left\{\left(v_{\text {init }}, v_{\text {term }}\right) \mid v_{\text {init }}, v_{\text {term }} \in V \wedge v_{\text {init }} \neq v_{\text {term }}\right\} \subseteq V \times V$. We think of V as the set of vertices of the graph, and of the pair $\left(v_{\text {init }}, v_{\text {term }}\right) \in E$ as the directed edge connecting $v_{\text {init }} \in V$ to $v_{\text {term }} \in V$ (this can be represented by drawing an arrow pointing towards $v_{\text {term }}$ on the said edge).
Example of a directed graph.

We also define the vector spaces $\mathbb{R}^{V}=\{f: V \rightarrow \mathbb{R}\}$ and $\mathbb{R}^{E}=\{\varphi: E \rightarrow \mathbb{R}\}$, which we equip with the inner products

$$
\begin{array}{ll}
\left\langle f_{1}, f_{2}\right\rangle_{V}=\sum_{v \in V} f_{1}(v) f_{2}(v), & f_{1}, f_{2} \in \mathbb{R}^{V} \\
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{E}=\sum_{e \in E} \varphi_{1}(e) \varphi_{2}(e), & \varphi_{1}, \varphi_{2} \in \mathbb{R}^{E}
\end{array}
$$

Also define $T: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ as the "combinatorial derivative": for $f \in \mathbb{R}^{V}$ and $e=\left(v_{\text {init }}, v_{\text {term }}\right) \in E$, let

$$
T(f)(e)=f\left(v_{\text {term }}\right)-f\left(v_{\text {init }}\right)
$$

Also define $S: \mathbb{R}^{E} \rightarrow \mathbb{R}^{V}$ by

$$
S(\varphi)(v)=\sum_{\substack{v_{\text {init }} \in V \\\left(v_{\text {init }}, v\right) \in E}} \varphi\left(\left(v_{\text {init }}, v\right)\right)-\sum_{\substack{v_{\text {term }} \in V \\\left(v, v_{\text {term }}\right) \in E}} \varphi\left(\left(v, v_{\text {term }}\right)\right) .
$$

(a) Show that $T^{*}=S$ and calculate $T^{*} \circ T=S \circ T$, which is also called the combinatorial Laplacian of G.
(b) Now simplify the setup by assuming that the graph is undirected, i.e.

$$
\left(v_{\text {init }}, v_{\text {term }}\right) \in E \Leftrightarrow\left(v_{\text {term }}, v_{\text {init }}\right) \in E,
$$

and d-regular (for any $v \in V$ there are exactly d vertices $v_{\text {term }} \in V$ with $\left.\left(v, v_{\text {term }}\right) \in E\right)$. Show that $T^{*} \circ T$ admits 0 as an eigenvalue. Explain why the geometric multiplicity of 0 is related to the connectivity of G.

Single Choice. In each exercise, exactly one answer is correct.

1. For which $x \in \mathbb{C}$ is the matrix $A:=\left(\begin{array}{cc}x & -x \\ x & x\end{array}\right)$ unitary?
(a) For all $x \in \mathbb{C}$ with $|x|^{2}=\frac{1}{2}$.
(b) Exactly for $x=\frac{1}{\sqrt{2}}$.
(c) For all $x \in \mathbb{C}$ with $x=-\bar{x}$.
(d) For $x=0$.
2. Which set is a subspace of the \mathbb{C}-vector space $M_{n \times n}(\mathbb{C})$?
(a) The set of unitary $n \times n$ matrices.
(b) The set of self-adjoint $n \times n$ matrices.
(c) The set of symmetric $n \times n$ matrices.
(d) The set of normal $n \times n$ matrices.

Multiple Choice Fragen

1. Let A be a Hermitian matrix. Which statements are correct?
(a) $\operatorname{Tr}(A) \in \mathbb{R}$.
(b) $\operatorname{det}(A) \in \mathbb{R}$.
