Serie 22

Self-adjoint operators, Spectral theory

1. Let K be a field and let $(V,\langle\cdot, \cdot\rangle)$ be an inner product finite-dimensional K-vector space. Suppose that $T \in \operatorname{End}(V)$ and that U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^{*}.
2. Let f, g_{1}, and g_{2} be endomorphisms of a finite-dimensional Euclidean vector space such that

$$
f^{*} \circ f \circ g_{1}=f^{*} \circ f \circ g_{2} .
$$

Prove that $f \circ g_{1}=f \circ g_{2}$.
3. Let V be a finite-dimensional unitary vector space and let $T \in \operatorname{End}(V)$ be a normal operator. For a subspace $W \subseteq V$, we denote P_{W} the orthogonal projection onto W.
(a) Show the following:

Theorem. There exist finitely many complex numbers $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$, and mutually orthogonal subspaces of V denoted W_{1}, \ldots, W_{k} such that

$$
T=\lambda_{1} P_{W_{1}}+\cdots+\lambda_{k} P_{W_{k}} .
$$

(b) Show that for any subspace U of V, P_{U} is self-adjoint.
4. Make $\mathbb{R}[x]_{2}$ into an inner product space by defining

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Define $T \in \operatorname{End}\left(\mathbb{R}[x]_{2}\right)$ by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{1} x$.
(a) Show that T is not self-adjoint.
(b) The matrix of T with respect to the basis $\left(1, x, x^{2}\right)$ is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.
5. Let $f: V \rightarrow W$ be a homomorphism of euclidian vector spaces.
(a) Assume that $\operatorname{dim}(V)<\infty$. Show that the adjoint of f exists in the following sense: show that there exists a unique map $f^{\prime}: W \rightarrow V$ such that

$$
\text { for all } v \in V \text {, for all } w \in W:\langle f(v), w\rangle=\left\langle v, f^{\prime}(w)\right\rangle \text {. }
$$

(b) Does the statement still hold if instead of assuming $\operatorname{dim}(V)<\infty$ we assume that $\operatorname{dim}(W)<\infty$?
6. Consider the vector space V consisting of all infinitely differentiable periodic functions from \mathbb{R} to \mathbb{R} with period 2π, equipped with the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) g(x) d x
$$

Let $D: V \rightarrow V$ be the linear transformation defined by $D(f)=\frac{d f}{d x}$.
(a) Is D self-adjoint? Determine its adjoint if it exists.
(b) Is $\Delta:=-D \circ D$ self-adjoint?
(c) Let $U \subset V$ be the linear span of the functions

$$
\{x \mapsto \cos (n x) \mid n \in \mathbb{Z}\} \cup\{x \mapsto \sin (n x) \mid n \in \mathbb{Z}\}
$$

with the induced inner product from V. Find an orthonormal basis of U consisting of eigenvectors of $\left.\Delta\right|_{U}$ and the multiplicities of all eigenvalues.

Multiple Choice Fragen

1. Let A and B be complex self-adjoint $n \times n$ matrices, and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
(a) $A+B$ is self-adjoint.
(b) λA is self-adjoint.
(c) λA is normal.
2. Let A, B be complex self-adjoint $n \times n$ matrices and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
(a) $A B$ is self-adjoint.
(b) $A B+B A$ is self-adjoint.
(c) $A B-B A$ is normal.
(d) $A B A$ is self-adjoint.
3. Let A be a normal matrix and $p \in \mathbb{C}[t]$ be a polynomial. Which of the following statements hold?
(a) $p(A)^{*}=p\left(A^{*}\right)$.
(b) $A^{i}\left(A^{*}\right)^{j}=\left(A^{*}\right)^{j} A^{i}$.
(c) $p(A)$ is normal.
(d) Every eigenvalue λ of A is also an eigenvalue of $p(A)$.
(e) Every eigenvector v of A is also an eigenvector of $p(A)$.
