Serie 23

Positive-definiteness, isometries

1. Let K be a field in which $2 \neq 0, V$ a K-vector space, and let B be a symmetric bilinear 9form on V. We define $q_{B}(v)=B(v, v)$ for every $v \in V$ to be the quadratic form associated to B. Show that

$$
B(v, w)=\frac{1}{2}\left(q_{B}(v+w)-q_{B}(v)-q_{B}(w)\right) .
$$

2. Consider the real matrix

$$
A:=\frac{1}{3}\left(\begin{array}{rrr}
2 & -2 & 1 \\
-1 & -2 & -2 \\
2 & 1 & -2
\end{array}\right) .
$$

(a) Show that A is orthogonal and $\operatorname{det} A=1$.
(b) Determine the rotational axis and the angle of $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, v \mapsto A v$.
3. Which of the following three real symmetrix matrices are positive definite?

$$
A:=\left(\begin{array}{llll}
3 & 3 & 2 & 3 \\
3 & 1 & 1 & 2 \\
2 & 1 & 2 & 1 \\
3 & 2 & 1 & 3
\end{array}\right), \quad B:=\left(\begin{array}{lll}
6 & 3 & 4 \\
3 & 7 & 3 \\
4 & 3 & 8
\end{array}\right), \quad C:=\left(\begin{array}{cccc}
3 & 0 & -1 & 0 \\
0 & 6 & 1 & 1 \\
-1 & 1 & 8 & 2 \\
0 & 1 & 2 & 5
\end{array}\right) .
$$

Hinweis: Verwende das Hauptminorenkriterium.
4. Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix. Show that the following statements are equivalent:
(A) A is positive definite, i.e. $v^{T} A v>0$ for all $v \neq 0$;
(B) All eigenvalues of A are positive;
(C) There exists an invertible symmetric matrix $S \in M_{n \times n}(\mathbb{R})$ such that $S^{2}=A$.
5. Show: For every orthogonal endomorphism f of an n-dimensional Euclidean vectorspace V, we have

$$
|\operatorname{Tr}(f)| \leqslant n .
$$

For which f do we have equality?
6. Consider two 2-dimensional subspaces $E_{1}, E_{2} \subset \mathbb{R}^{3}$. Describe the set of elements $T \in \mathrm{SO}_{3}(\mathbb{R})$ such that

$$
T E_{1}=E_{2},
$$

in terms of orthogonal bases of E_{1} and E_{2}.
Hint: Start by assuming that $E_{1}=E_{2}=\operatorname{Sp}\left(e_{1}, e_{2}\right)$.

