D-MATH Prof. M. Einsiedler Prof. P. Biran Lineare Algebra II

Serie 24

BILINEAR FORMS, SINGULAR VALUES DECOMPOSITION, JORDAN NORMAL FORM

1. (a) Determine a singular value decomposition A = QDR of the real matrix

$$A := \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

- (b) Determine a singular value decomposition of A^T .
- 2. Consider the real matrix

$$A = \begin{pmatrix} 14 & -13 & 8\\ -13 & 14 & 8\\ 8 & 8 & -7 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

Find a matrix $P \in O_3(\mathbb{R})$ such that $P^{-1}AP$ is diagonal.

- 3. Let V be an n-dimensional vector space over a field K. Show the following statements using the lemma about generalized eigenspaces seen in the lectures, but without using the Jordan Normal Form theorem:
 - (a) Suppose that $N \in \text{End}(V)$ is nilpotent. Then 0 is an eigenvalue of N and it is the only one.
 - (b) If $N \in \text{End}(V)$ is nilpotent, then $N^n = O_{n \times n}$. In other words, the nilpotency index of N is smaller or equal to dim(V).
 - (c) Suppose that $N \in \text{End}(V)$ is nilpotent and assume that $p_N(x)$ splits as a product of linear factors in K[x]. Then $p_N(x) = (-x)^n$.
 - (d) Let $T \in \text{End}(V)$ and assume that $p_T(x)$ splits into linear factors in K[x]. Let $\eta \in K$ and define $S = T \eta \operatorname{Id}_V$. Then $p_S(x)$ also splits into a product of linear factors over K[x]. In fact, $p_S(x) = p_T(x + \eta)$.
 - (e) Let $T \in \text{End}(V)$ and assume that $\lambda \in K$ is the only eigenvalue of T and that $p_T(x)$ splits as a product of linear factors in K[x]. Define $N = T \lambda \operatorname{Id}_V$. Then $p_N(x) = (-x)^n$, and $N^n = O_{n \times n}$.
- 4. Determine the Jordan normal form of the following matrix over \mathbb{R} and over \mathbb{F}_3 :

$$A := \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

5. Determine the Jordan normal form and the corresponding base change matrices of the real matrix

$$A := \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 3 & 0 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

6. Example regarding special relativity. Define the symmetric blinear form $s \colon \mathbb{R}^4 \to \mathbb{R}^4$ for all $v = (x, y, z, t)^T$ and $v' = (x', y', z', t')^T$ in \mathbb{R}^4 by

$$s(v,v') := xx' + yy' + zz' - ctt',$$

where c > 0 is a fixed parameter. The space $M := (\mathbb{R}^4, s)$ is called *Minkowski* space (sometimes Minkowski spacetime) and the parameter c is called *light speed*. We use the normalization c = 1.

A linear map $F: M \to M$ is called *isometry* or *Lorentz transformation*, if

$$\forall v, w \in \mathbb{R}^4 \colon s(F(v), F(w)) = s(v, w) \,.$$

- (a) Show that every isometry is bijective.
- (b) Show that the following endomorphisms are isometries of M:
 - i. Left multiplication with $\begin{pmatrix} T & 0 \\ \hline 0 & \pm 1 \end{pmatrix}$ für jedes $T \in O(3)$.
 - ii. A Lorentz boost in x-direction with speed v < c = 1, given by left multiplication with the matrix

$$B := \begin{pmatrix} \gamma & & -v\gamma \\ & 1 & & \\ & & 1 & \\ -v\gamma & & \gamma, \end{pmatrix}$$

for $\gamma := 1/\sqrt{1-v^2}$.

(c) The subset $\{x \in M \mid s(x, x) = 0\}$ is called *light cone in M*. Prove the "relativistic football theorem": Every linear isometry φ with $det(\varphi) = 1$ has an eigenvector in the light cone.

Remark. For $c \to \infty$ the light cone approaches the subspace $\{t = 0\}$ and the statement reduces to the classical case.

Single Choice. In each exercise, exactly one answer is correct.

- 1. Let f be an endomorphism of a finite-dimensional vector space V and let λ be an eigenvalue of f. Which statement is generally false?
 - (a) Every eigenvector of f corresponding to the eigenvalue λ lies in the eigenspace $\tilde{\text{Eig}}_{f}(\lambda)$.
 - (b) Every vector in $\tilde{\text{Eig}}_f(\lambda)$ is an eigenvector of f corresponding to the eigenvalue λ .
 - (c) The generalized eigenspace $\tilde{\text{Eig}}_{f}(\lambda)$ is not the zero space.
 - (d) For every eigenvalue μ of f with $\mu \neq \lambda$, we have $\tilde{\text{Eig}}_f(\mu) \cap \tilde{\text{Eig}}_f(\lambda) = \langle 0 \rangle$.
- 2. For every endomorphism f of an n-dimensional vector space V whose characteristic polynomial factors into linear factors, and every eigenvalue λ of f we have:
 - (a) $\operatorname{Eig}_f(\lambda) = \operatorname{Kern}(f \lambda \operatorname{id}_V).$
 - (b) $\dim(\tilde{\operatorname{Eig}}_f(\lambda)) = 1.$
 - (c) $\dim(\tilde{\operatorname{Eig}}_f(\lambda)) = n.$
 - (d) $\tilde{\operatorname{Eig}}_f(\lambda) = \operatorname{Kern}((f \lambda \operatorname{id}_V)^n).$

3. The generalized eigenspace of the real matrix $A := \begin{pmatrix} 2 & 3 & -1 & 5 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ with respect

- to X-2 is
- (a) One-dimensional
- (b) Two-dimensional
- (c) Three-dimensional
- (d) Four-dimensional
- 4. Let A be a 3×3 matrix with $A \neq 0$ and $A^2 = 0$. Then, the Jordan normal form of A has
 - (a) 1 Jordan block.
 - (b) 2 Jordan blocks.
 - (c) 3 Jordan blocks.
 - (d) It depends on the exact matrix A.

Multiple Choice Fragen

- 1. Which of the following statements is **true**: For arbitrary integers $n > m \ge 1$, there exists a square matrix with...
 - (a) characteristic polynomial $X^m + X^n$.
 - (b) minimal polynomial X^m and characteristic polynomial X^n .
 - (c) minimal polynomial $X^m \cdot (X^n 1)$.