Prof. M. Einsiedler
Prof. P. Biran

Serie 25

Jordan Normal form, Multilinear algebra

1. Prove the following propositions:
(a) For all K-vector spaces V_{1}, \ldots, V_{r} and W, we have that $\operatorname{Mult}_{K}\left(V_{1}, \ldots, V_{r} ; W\right)$ is a subspace of the vector space of all maps $V_{1} \times \cdots \times V_{r} \rightarrow W$.
(b) Consider linear maps of K-vector spaces $f_{i}: V_{i}^{\prime} \rightarrow V_{i}$ for $1 \leqslant i \leqslant r$ as well as $g: W \rightarrow W^{\prime}$. Then we get a linear map

$$
\begin{aligned}
\operatorname{Mult}_{K}\left(V_{1}, \ldots, V_{r} ; W\right) & \rightarrow \operatorname{Mult}_{K}\left(V_{1}^{\prime}, \ldots, V_{r}^{\prime} ; W^{\prime}\right), \\
\varphi & \mapsto g \circ \varphi \circ\left(f_{1} \times \cdots \times f_{r}\right) .
\end{aligned}
$$

2. Let K be a field. Consider the space $K[x]_{n}$ of polynomials over K of degree at most n.
(a) Find a Jordan normal form for the endomorphism

$$
\begin{aligned}
D: \quad K[x]_{n} & \rightarrow K[x]_{n} \\
p(x) & \mapsto
\end{aligned} p^{\prime}(x)
$$

(b) Find a Jordan normal form for the endomorphism

$$
\begin{aligned}
D_{2}: \quad K[x]_{n} & \rightarrow K[x]_{n} \\
p(x) & \mapsto p^{\prime \prime}(x)
\end{aligned}
$$

3. Determine a Jordan normal form over \mathbb{C} of the matrix

$$
A:=\left(\begin{array}{cccc}
-1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-2 & 0 & 1 & 1
\end{array}\right)
$$

4. Often the Jordan normal form is motivated by the desire to have a matrix with as much zeros as possible. Is the number of zeros actually maximized by the Jordan normal form? Stated differently: Does there exist a square matrix A over a field which has more zeros than its Jordan normal form J ?
5. Let B be a complex 5×5-matrix with minimaly polynomial $(X-3)(X+5)^{2}$ and characteristic polynomial $(X-3)^{2}(X+5)^{3}$. Determine all possible Jordan normal fomrs of B.
6. Let A be a real square matrix. We define the exponential of such a matrix as

$$
\exp (A)=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

when it converges.
(a) For $\lambda \in \mathbb{R}$ and $n \geqslant 1$, compute $\exp \left(J_{\lambda, n}\right)$.
(b) Determine the solution of the system of differential equations

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+9 y(t)+9 z(t) \\
y^{\prime}(t) & =3 x(t)-6 y(t)-8 z(t) \\
z^{\prime}(t) & =-4 x(t)+11 y(t)+13 z(t)
\end{aligned}
$$

with the initial conditions $x(0)=y(0)=z(0)=1$.
Hint: Use the Jordan normal form. If you need more hints, have a look at Chapter 9.5 from Menny Akka's notes.
(c) Determine the general real solution of the differential equation

$$
f^{(3)}(t)-f^{(2)}(t)+f^{\prime}(t)-f(t)=0
$$

Hint: Write the equation as a system of linear differential equations of the first order and use the Jordan normal form.

