Serie 26

Multilinear algebra, Tensor product

1. Simplify the following expression in $\mathbb{R}^{2} \otimes \mathbb{R}^{3}$.

$$
-\binom{1}{2} \otimes\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right)+\binom{3}{2} \otimes\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\binom{1}{1} \otimes\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right)-\binom{1}{0} \otimes\left(\begin{array}{l}
5 \\
0 \\
1
\end{array}\right)
$$

2. Let K be a field. Consider the bilinear map

$$
\begin{aligned}
\psi: K_{\text {cols }}^{m} \times K_{\text {cols }}^{n} & \rightarrow \\
(u, v) & M_{m \times n}(K) \\
\mapsto & u \cdot v^{T}
\end{aligned}
$$

(a) Prove that the image of ψ is the set of matrices of rank lower or equal to 1 .
(b) Is $\operatorname{Im}(\psi)$ a linear subspace?
(c) Describe $\operatorname{Sp}(\operatorname{Im}(\psi))$.
3. Let V, W be finite-dimensional vector spaces over a field K. Show that

$$
V^{*} \otimes W \cong \operatorname{Hom}(V, W) .
$$

4. Consider a set I. For a pair (U, ι) consisting of a K-vectorspace U and a map $\iota: I \rightarrow U$ consider the following universal property:
For every K-vectorspace V and for every map $\varphi: I \rightarrow V$ there exists exactly one linear map $\bar{\varphi}: U \rightarrow V$, such that the following diagram commutes:

(a) Show that for two pairs (U, ι) and $\left(U^{\prime}, \iota^{\prime}\right)$ satisfying the universal property, there exists a unique isomorphism $\psi: U \xrightarrow{\sim} U^{\prime}$ with $\psi \circ \iota=\iota^{\prime}$.
(b) Show that the universal property is satisfied for the K-vectorspace

$$
K^{(I)}:=\left\{\left(x_{i}\right)_{i \in I} \in K^{I} \mid x_{i} \neq 0 \text { for at most finitely many } i\right\}
$$

with the map

$$
\iota_{I}: I \rightarrow K^{(I)}, \quad i \mapsto\left(\delta_{i j}\right)_{j \in I} .
$$

5. Prove the following statements concerning vector spaces U, V, V_{1}, V_{2} over a field K :
(a) There is a unique linear map $\kappa: U \otimes V \rightarrow V \otimes U$ that satisfies

$$
\kappa(u \otimes v)=v \otimes u .
$$

This map is an isomorphism.
(b) There is a canonical isomorphism between $U \otimes K$ and U.
(c) There is a canonical isomorphism

$$
U \otimes\left(V_{1} \oplus V_{2}\right) \rightarrow\left(U \otimes V_{1}\right) \oplus\left(U \otimes V_{2}\right)
$$

Remark. Do not define the required homomorphisms with respect to bases.
6. Let V be a vector space of dimension $n<\infty$, and let f be an endomorphism of V with characteristic polynomial $\operatorname{char}_{f}(X)=\sum_{i=0}^{n} a_{i} X^{i}$. For all $r>0$ consider the induced map

$$
\operatorname{Alt}^{r}(f): \operatorname{Alt}_{K}^{r}(V, K) \rightarrow \operatorname{Alt}_{K}^{r}(V, K), \varphi \mapsto \varphi \circ(f \times \ldots \times f)
$$

Show: For all $r=1, \ldots, n$, we have

$$
a_{n-r}=(-1)^{n+r} \operatorname{Tr} \operatorname{Alt}^{r}(f) .
$$

