Lineare Algebra I/II - Mock exam

1. (5 points)
(a) (2 points) Give the definition of the symmetric group on n-elements S_{n}. For a permutation $\sigma \in S_{n}$ give the defintion of $\operatorname{sign}(\sigma)$. You do not have to show that $\operatorname{sign}(\sigma)$ is well defined.
(b) (3 points) Let $\sigma \in S_{n}$ and let $A \in M_{n \times n}(K)$ be the matrix obtained from the identity matrix I_{n} by permuting its rows using the permutation σ. Prove that $\operatorname{det}(A)=$ $\operatorname{sign}(\sigma)$.

Solution:

(a) The definition of S_{n} is

$$
S_{n}=\{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\} \mid \sigma \text { is bijective }\}
$$

Let $\sigma \in S_{n}$. We have seen in the lectures that σ can always be written as a composition of finitely many transpositions, i.e. $\sigma=\tau_{1} \cdots \tau_{m}$, where $\tau_{1}, \ldots, \tau_{m}$ are transpositions. Then $\operatorname{sign}(\sigma)$ is defined to be $(-1)^{m}$.
(b) We prove this by induction on the number of transpositions m used to decompose σ. First assume that $m=1$. Then σ exchanges two rows of the identity. Hence, by properties of the determinant, we have $\operatorname{det}(A)=-\operatorname{det}\left(I_{n}\right)=\operatorname{sign}(\sigma)$.
Now assume that $m>1$ and that we have shown the claim for all permutations that can be decomposed as a product of at most $m-1$ transpositions. Assume that $\sigma=\tau_{1} \cdots \tau_{m}$, where the τ_{i} 's are transpositions. Let us denote B the matrix obtained by permuting the rows of the identity matrix using $\tau_{2} \cdots \tau_{m}$. It follows from the induction hypothesis that $\operatorname{det}(B)=\operatorname{sign}\left(\tau_{2} \cdots \tau_{m}\right)=(-1)^{m-1}$. Now, note that A is obtained by permuting two rows of B using τ_{1}. Hence,

$$
\operatorname{det}(A)=-\operatorname{det}(B)=(-1)^{m}=\operatorname{sign}(\sigma)
$$

2. (5 points) Let V be a finite dimensional vector space over the field \mathbb{K}. Let $T \in \operatorname{End}(V)$ and let $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ be two distinct eigenvalues of T. Denote by $\operatorname{Eig}_{T}\left(\lambda_{i}\right)$ the eigenspace of λ_{i} and by $\widetilde{E i g}_{T}\left(\lambda_{i}\right)$ the generalized eigenspace of $\lambda_{i}, i=1,2$.
(a) (2 points) Prove that $\operatorname{Eig}_{T}\left(\lambda_{1}\right) \cap \operatorname{Eig}_{T}\left(\lambda_{2}\right)=\{0\}$.
(b) (3 points) Assume that the characteristic polynomial $p_{T}(x)$ of T splits as a product of linear factors in $\mathbb{K}[x]$. Prove that $\widetilde{\operatorname{Eig}}_{T}\left(\lambda_{1}\right) \cap \widetilde{\operatorname{Eig}}_{T}\left(\lambda_{2}\right)=\{0\}$.

Solution:

(a) Assume by contradiction that there exists a non-zero vector $v \in \operatorname{Eig}_{T}\left(\lambda_{1}\right) \cap \operatorname{Eig}_{T}\left(\lambda_{2}\right)$. Then,

$$
\lambda_{1} v=T v=\lambda_{2} v \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) v=0 \Longrightarrow \lambda_{1}=\lambda_{2},
$$

which is a contradiction.
(b) Let $\lambda \in \mathbb{K}$ be an eigenvalue of T. We first claim that every eigenvector v of T which belongs to $\widetilde{\mathrm{Eig}}_{T}(\lambda)$ must have eigenvalue λ. Indeed, if μ is the eigenvalue of v, then $T v=\mu v$, hence $T^{k} v=\mu^{k} v$ for all $k \geqslant 0$. It follows that

$$
\left(\lambda i d_{V}-T\right)^{k} v=(\lambda-\mu)^{k} v, \text { for all } k \geqslant 0 .
$$

In particular, for $n:=\operatorname{dim}(V)$ we have $\left(\lambda i d_{V}-T\right)^{n} v=(\lambda-\mu)^{n} v$. On the other hand, by a known result

$$
\widetilde{\operatorname{Eig}}_{T}(\lambda)=\operatorname{Ker}\left(\left(\lambda i d_{V}-T\right)^{n}\right),
$$

hence $(\lambda-\mu)^{n} v=0$. As $v \neq 0$, it follows that $(\lambda-\mu)^{n}=0$, hence $\lambda=\mu$. This proves the claim.
Let λ be as above. Recall that $\widetilde{\operatorname{Eig}}_{T}(\lambda)$ is a T-invariant subspace. Consider $T_{\lambda}:=$ $\left.T\right|_{\widetilde{E_{i g}^{T}}(\lambda)}$. By a known result, $p_{T_{\lambda}}(x)$ divides $p_{T}(x)$. Since $p_{T}(x)$ splits as a product of linear factors in $\mathbb{K}[x]$, so does $p_{T_{\lambda}}(x)$. As λ is the only eigenvalue of T_{λ}, it follows that $p_{T_{\lambda}}(x)$ has the form

$$
p_{T_{\lambda}}(x)=(\lambda-x)^{r_{\lambda}},
$$

for some $r_{\lambda} \geqslant 1$.
We are now ready to prove the statement of the problem. Put $U:=\widetilde{\operatorname{Eig}}_{T}\left(\lambda_{1}\right) \cap$ $\widetilde{E i g}_{T}\left(\lambda_{2}\right)$ and assume by contradiction that $U \neq\{0\}$. Then $\ell:=\operatorname{dim}(U) \geqslant 1$. Clearly $U \subseteq V$ is a T-invariant subspace because for $i=1,2, \widetilde{\operatorname{Eig}}_{T}\left(\lambda_{i}\right)$ are T invariant. Put $T_{U}:=\left.T\right|_{U} \in \operatorname{End}(U)$. Note that the characteristic polynomial $p_{T_{U}}(x)$ of T_{U} has degree $\ell \geqslant 1$ hence is not the constant polynomial. By a known result, $p_{T_{U}}(x)$ divides both $p_{T_{\lambda_{1}}}(x)$ and $p_{T_{\lambda_{2}}}(x)$. But this is impossibe since we have seen that

$$
p_{T_{\lambda_{1}}}(x)=\left(\lambda_{1}-x\right)^{r_{\lambda_{1}}}, \quad p_{T_{\lambda_{2}}}(x)=\left(\lambda_{2}-x\right)^{r_{\lambda_{2}}},
$$

and $\lambda_{1} \neq \lambda_{2}$. This yields a contradiction.
3. (10 Points) For each statement, mark with a cross whether it is true (T) or false (F). Correct answers are awarded +1 point, incorrect answers or no answer 0 points.
(a) $\square \mathrm{T} \square \mathrm{F} \quad$ The matrix $B=\left(\begin{array}{ccc}0 & \sqrt{3} i & 0 \\ \sqrt{3} i & 0 & 0 \\ 0 & 0 & -3\end{array}\right)$ is diagonalisable over \mathbb{C}.
(b) $\square \mathrm{T} \square \mathrm{F} \quad$ Every diagonalisable matrix $A \in M_{n, n}(\mathbb{K})$ consists of n linearly independent column vectors.
(c) $\square \mathrm{T} \square \mathrm{F}$ F Every matrix $A \in M_{n, n}(\mathbb{R})$, whose eigenvalues are all positive, is symmetric.
(d) $\square \mathrm{T} \square \mathrm{F}$ Every matrix $A \in \mathrm{SO}(3)$ satisfies $\operatorname{tr}(A) \leqslant 3$.
(e) $\square \mathrm{T} \square \mathrm{F}$ Let $A \in M_{4,4}(\mathbb{C})$ be a matrix with characteristic polynomial $p_{A}(x)=$ $(x+i)^{2}(x-\sqrt{2})(x+2)$. Then A is diagonalisable if and only if $\operatorname{dim}\left(\operatorname{Ker}\left(A+i 1_{4}\right)\right)=2$.
(f) $\square \mathrm{T} \square \mathrm{F} \quad$ Let f be a vector space endomorphism. Then, for every eigenvalue of f there exists a unique eigenvector.
(g) $\square \mathrm{T} \square \mathrm{F}$ Let V be a finite-dimensional vector space, and let V^{*} be its dual space. Then $V \cong V^{*}$.
(h) $\square \mathrm{T} \square \mathrm{F} \quad$ Let V be the vector space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. The map

$$
(f, g)=\int_{0}^{1} f(x) g\left(x+\frac{1}{2}\right) d x
$$

defines a scalar product over V.
(i) $\square \mathrm{T} \square \mathrm{F} \quad$ Consider $v_{1} \in \mathbb{R}^{3}$ with $\left\|v_{1}\right\|=1$. There is exactly one vector $v \in \mathbb{R}^{3}$, such that $\left(v, v_{1}\right)=1$ and $\|v\|=1$.
(j) $\square \mathrm{T} \square \mathrm{F}$ Consider two endomorphisms f, g of a finite-dimensional euclidian vector space. It holds that

$$
f^{*} g^{*}=g f \Leftrightarrow f g=g^{*} f^{*} .
$$

Counterexample: Consider the matrices

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in \operatorname{End}\left(\mathbb{R}^{2}\right)
$$

We have

$$
A B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Hence, $B^{T} A^{T}=(A B)^{T}=A B$. However,

$$
B A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
$$

is not symmetric. Hence $A^{T} B^{T}=(B A)^{T} \neq B A$.
4. (14 Points) Write your answer directly on the exam sheet. You do not have to justify your answer.
(a) Compute the determinant of

$$
A_{\lambda}=\left(\begin{array}{cccc}
1 & -\lambda & \lambda^{2} & -\lambda^{3} \\
1 & 2 \lambda & 4 \lambda^{2} & 8 \lambda^{3} \\
1 & \lambda & \lambda^{2} & \lambda^{3} \\
1 & -2 \lambda & 4 \lambda^{2} & -8 \lambda^{3}
\end{array}\right) \quad \text { für } \lambda \in \mathbb{C} . \quad \operatorname{det}\left(A_{\lambda}\right)=\square
$$

Solution: $72 \lambda^{6}$.
(b) For which $\alpha \in \mathbb{C}$ (give all of them) is the matrix

$$
A_{\alpha}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
\alpha & -1 & 0 \\
2 & 1 & \alpha
\end{array}\right) \in M_{3,3}(\mathbb{C}) \text { invertible? }
$$

Solution: $\alpha \in \mathbb{C} \backslash\{0,1\}$.
(c) Let A_{α} be the same as in (b), and let α be such that A_{α} is invertible. Compute the inverse of A_{α}. (Your answer will depend on the variable α.)

Solution:

$$
A^{-1}=\left(\begin{array}{lll}
\frac{1}{1-\alpha} & \frac{1}{\alpha-1} & 0 \\
\frac{\alpha}{1-\alpha} & \frac{1}{\alpha-1} & 0 \\
\frac{\alpha+2}{(\alpha-1) \alpha} & \frac{3}{\alpha-\alpha^{2}} & \frac{1}{\alpha}
\end{array}\right)
$$

(d) Compute the eigenvalues of the matrix

$$
\left(\begin{array}{ccc}
0 & -4 & 6 \\
-3 & 5 & 0 \\
2 & -4 & 1
\end{array}\right) \in M_{3,3}(\mathbb{R})
$$

\square

Solution: $\lambda_{1}=0, \lambda_{2}=3+2 \sqrt{7}, \lambda_{3}=3-2 \sqrt{7}$.
(e) Let $A=\left(\begin{array}{ccc}1 & 0 & 3 \\ -1 & \alpha & -2 \\ 2 & -\alpha & 2\end{array}\right)$ and $b=\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$. Find all $x \in \mathbb{R}^{3}$ such that $A x=b$, for $\alpha \in \mathbb{R},\{0\}$.

Solution: $x=\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)$.
(f) Compute the minimal polynomial of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

\square

Solution: The minimal polynomial of A is $(x-1)(x+1)$.
(g) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}[x]$ be the unique linear map such that $T(5,2)=11+22 x$ and $T(1,7)=33-11 x$. Compute $T(1,4)$.

$$
T(1,4)=\square
$$

Solution: $T(1,4)=19-4 x$.
5. (10 Points) Consider the vector subspaces

$$
V_{1}=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right)\right\rangle
$$

and

$$
V_{2}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+y+z=0\right\}
$$

in $V=\mathbb{R}^{3}$.
(a) (2 Points) Determine the dimension of V_{1}, V_{2} and $V_{1} \cap V_{2}$.
(b) (3 Points) Find a basis of $V_{1} \cap V_{2}$.
(c) (3 Points) Find a basis of the orthogonal complement of $V_{1} \cap V_{2}$ with respect to the standard scalar product over $V=\mathbb{R}^{3}$.
(d) (2 Points) Find a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{Ker}(f)=V_{1} \cap V_{2}$.

Solution:

(a) We have $\operatorname{dim}\left(V_{1}\right)=2$ since the 2 vectors generating V_{1} are linearly independent. We observe that $\operatorname{dim}\left(V_{2}\right) \geqslant 2$ since $(1,-1,0)^{T} \in V_{2}$ and $(1,0,-1)^{T} \in V_{2}$ are linearly independent. Moreover, $V_{2} \subsetneq \mathbb{R}^{3}$ because for example $(1,0,0)^{T} \notin V_{2}$. So $2 \leqslant V_{2}<3$, hence $\operatorname{dim}\left(V_{2}\right)=2$. Finally assume that a general vector of V_{1}

$$
v:=a\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+b\left(\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right)
$$

is in V_{2}. It must hold that $6 a+4 b=0 \Longrightarrow a=-\frac{2}{3} b$. And vice-versa, if $a=-\frac{2}{3} b$ then $v \in V_{2}$. Therefore,

$$
V_{1} \cap V_{2}=\left\{b \cdot\left[-\frac{2}{3}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\left(\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right)\right]: b \in \mathbb{R}\right\},
$$

which implies that it has dimension 1 .
(b) By the above computation,

$$
\left\{v_{0}:=\left(\begin{array}{c}
7 / 3 \\
-16 / 3 \\
3
\end{array}\right)\right\}
$$

is a basis of $V_{1} \cap V_{2}$.
(c) Since $x+y+z=0$ for all $(x, y, z)^{T} \in V_{1} \cap V_{2}$, we immediately have $(1,1,1)^{T} \in$ $\left(V_{1} \cap V_{2}\right)^{\perp}$. Now note that for

$$
u:=\left(\begin{array}{c}
1 \\
0 \\
-7 / 9
\end{array}\right)
$$

we have

$$
\left\langle v_{0}, u\right\rangle=0 \quad \text { and } \quad u \notin \operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right) .
$$

So, since $\left(V_{1} \cap V_{2}\right)^{\perp}$ is two-dimensional, $\left\{u,(1,1,1)^{T}\right\}$ is a basis of $\left(V_{1} \cap V_{2}\right)^{\perp}$.
(d) In (c), we have shown that

$$
\left\langle v_{0}, u\right\rangle=0 \text { and that }\left\langle v_{0},(1,1,1)^{T}\right\rangle=0 .
$$

Now, define

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, v \mapsto\langle v, u\rangle u+\left\langle v,(1,1,1)^{T}\right\rangle(1,1,1)^{T} .
$$

This map is clearly linear, and, by the above observation, we have $v_{0} \in \operatorname{Ker}(f)$. Moreover,

$$
f\left(\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right)=u \quad \text { and } \quad f\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Since $\left\{u,(1,1,1)^{T}\right\} \subset \operatorname{Im}(f)$ is a basis of $\left(V_{1} \cap V_{2}\right)^{\perp}$, we have $\left(V_{1} \cap V_{2}\right)^{\perp} \subseteq \operatorname{Im}(f)$. $\operatorname{Sodim}(\operatorname{Im}(f)) \geqslant 2$. On the other hand, since $v_{0} \in \operatorname{Ker}(f), \operatorname{dim}(\operatorname{Ker}(f)) \geqslant 1$ and, by the rank-nullity formula, $\operatorname{dim}(\operatorname{Im}(f))+\operatorname{dim}(\operatorname{Ker}(f))=3$. This implies that $\operatorname{dim}(\operatorname{Im}(f))=2$ and $\operatorname{dim}(\operatorname{Ker}(f))=1$. Hence, $\operatorname{Ker}(f)=\operatorname{span}\left(v_{0}\right)=V_{1} \cap V_{2}$.
6. (7 Points) Let M be a finite non-empty set and $V:=\{f: M \rightarrow \mathbb{K}\}$ be the set of all maps to \mathbb{K}. It is well known that V is a vector space over \mathbb{K} when endowed with the following operations:

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x), \forall f, g \in V, x \in M, \\
(a f)(x) & :=a f(x), \forall f \in V, a \in \mathbb{K}, x \in M .
\end{aligned}
$$

(a) (2 Points) Determine the dimension of V.
(b) (3 Points) Fix an $m \in M$ and show that the set

$$
U_{m}:=\{f \in V \mid f(m)=0\}
$$

is a vector subspace of V. Additionally, compute the dimension of U_{m}.
(c) (2 Points) Determine a linear complement of U_{m} in V.

Solution: Let us denote $M=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ for some integer $n \geqslant 0$.
(a) Consider the set of maps $\mathcal{B}=\left\{f_{i}: M \rightarrow \mathbb{K} \mid 1 \leqslant i \leqslant n\right\}$ defined such that

$$
f_{i}\left(a_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Any map in V can be written as a \mathbb{K}-linear combination of the f_{i} 's, in other words \mathcal{B} is a generating set for V. Moreover, any \mathbb{K}-linear combination $\sum_{i=1}^{n} b_{i} f_{i}(x)$ vanishes on the whole of M if and only if all of its coefficients vanish. Hence, \mathcal{B} is a basis of V and $\operatorname{dim}(V)=|\mathcal{B}|=n$.
(b) Clearly, the zero map belongs to U_{m}. Let $f, g \in U_{m}$ and $\alpha \in \mathbb{K}$. Using the vector space operations given above, we observe that

$$
(f+\alpha g)(m)=f(m)+\alpha g(m)=0 .
$$

It follows that U_{m} is closed under addition and scalar multiplication, which in turn shows that it is a subspace.
Up to reordering, we may assume that the m we fixed is equal to a_{1}. Note that U_{m} is at least $(n-1)$-dimensional since for all $i \in\{2, \ldots, n\}, f_{i} \in U_{m}$. However, $f_{1} \notin U_{m}$. Hence

$$
n-1 \leqslant \operatorname{dim}\left(U_{m}\right)<n \Longrightarrow \operatorname{dim}\left(U_{m}\right)=n-1 .
$$

This implies that $\mathcal{B} \backslash\left\{f_{1}\right\}$ is a basis for U_{m}.
(c) We continue to assume here that $m=a_{1}$. Consider $W:=\left\langle f_{1}\right\rangle$. Since \mathcal{B} is a basis and $\left\{f_{2}, \ldots, f_{n}\right\} \subseteq U_{m}$, we have

$$
V=W+U_{m} .
$$

Now, let $h \in W \cap U_{m}$. Since $h \in W, h=\alpha_{1} f_{1}$ for some $\alpha_{1} \in \mathbb{K}$. Moreover, by (b), there exist $\alpha_{2}, \ldots, \alpha_{n}$ such that $h=\sum_{i=2}^{n} \alpha_{i} f_{i}$. It follows that

$$
\alpha_{1} f_{1}=\sum_{i=2}^{n} \alpha_{i} f_{i},
$$

which contradicts the linear independence of \mathcal{B} except if $h=0$. It follows that $W \cap U_{m}=\{0\}$.
7. (10 Points) Consider the complex matrices

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(a) (2 Points) Show that the tuple $\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ defines a basis of the complex vector space $M_{2,2}(\mathbb{C})$ of 2×2 matrices.
(b) (1 Point) Show that the map

$$
\begin{aligned}
T: M_{2,2}(\mathbb{C}) & \rightarrow M_{2,2}(\mathbb{C}) \\
X & \mapsto X B-B X
\end{aligned}
$$

is linear.
(c) (3 Points) Compute the representation matrix of T with respect to the basis $\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$.
(d) (4 Points) Determine a basis of $M_{2,2}(\mathbb{C})$ that trigonalizes T.

Solution:

(a) The space $M_{2,2}(\mathbb{C})$ is 4-dimensional over \mathbb{C}. Hence we just need to show that the σ_{i} 's are linearly independent over \mathbb{C}. Assume that there exist $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ such that

$$
\alpha \sigma_{0}+\beta \sigma_{1}+\gamma \sigma_{2}+\delta \sigma_{3}=0
$$

if and only if

$$
\begin{aligned}
& \alpha+\delta=0 \quad 2 \delta=0 \\
& \begin{array}{l}
\beta-i \gamma=0 \\
\beta+i \gamma=0
\end{array} \Longleftrightarrow \begin{array}{c}
\alpha=\delta \\
2 \beta=0
\end{array} \Longleftrightarrow 0=\alpha=\beta=\gamma=\delta \text {. } \\
& \alpha-\delta=0 \quad \gamma=-i \beta
\end{aligned}
$$

This proves that the σ_{i} 's form a basis, which we denote \mathcal{C}.
(b) Let $M, N \in M_{2,2}(\mathbb{C})$ and $\alpha \in \mathbb{C}$. We have

$$
\begin{aligned}
T(M+\alpha N)=(M+\alpha N) B-B(M+\alpha N) & =M B+\alpha N B-B M-B(\alpha N) \\
& =M B-B M+\alpha(N B-B N) \\
& =T(M)+\alpha T(N) .
\end{aligned}
$$

This shows that T is linear.
(c) We compute the image of each basis element via T. We have

$$
\begin{aligned}
& T \sigma_{0}=0, \\
& T \sigma_{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=-\sigma_{3} \\
& T \sigma_{2}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)=-i \sigma_{3}, \\
& T \sigma_{3}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)=\sigma_{1}+i \sigma_{2} .
\end{aligned}
$$

It follows that

$$
[T]_{C}^{c}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & i \\
0 & -1 & -i & 0
\end{array}\right)
$$

(d) The characteristic polynomial of T is $x^{4} \in \mathbb{C}[x]$. Hence its single eigenvalue is $\lambda=0$ and it has algebraic multiplicity 4 . To compute a basis of $M_{2,2}(\mathbb{C})$ that trigonalizes T, we want to find a basis for the generalized eigenspace $\widetilde{\operatorname{Eig}}_{T}(0)$. We have

$$
\left([T]_{\mathcal{C}}^{c}\right)^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & -i & 0 \\
0 & -i & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left([T]_{\mathcal{C}}^{c}\right)^{3}=0 .
$$

So,

$$
\{0\} \subseteq \operatorname{Ker}\left([T]_{C}^{C}\right) \subseteq \operatorname{Ker}\left(\left([T]_{C}^{C}\right)^{2}\right) \subsetneq \operatorname{Ker}\left(\left([T]_{C}^{C}\right)^{3}\right)=M_{2,2}(\mathbb{C}) .
$$

We compute that $(1,0,0,0)^{T},(0,0,0,1)^{T}$ generate $\operatorname{Ker}\left(\left([T]_{C}^{C}\right)^{2}\right)$. It follows that

$$
\begin{aligned}
& v_{0}:=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \in \operatorname{Ker}\left(\left([T]_{C}^{c}\right)^{3}\right), \operatorname{Ker}\left(\left([T]_{C}^{c}\right)^{2}\right) \\
& \Longrightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1
\end{array}\right)=A v_{0} \in \operatorname{Ker}\left(\left([T]_{C}^{c}\right)^{2}\right), \operatorname{Ker}\left([T]_{C}^{c}\right) \\
& \Longrightarrow\left(\begin{array}{c}
0 \\
-1 \\
-i \\
0
\end{array}\right)=A^{2} v_{0} \in \operatorname{Ker}\left([T]_{C}^{c}\right) .
\end{aligned}
$$

To complete our basis, we choose $(1,0,0,0)^{T} \in \operatorname{Ker}\left([T]_{C}^{C}\right)$. The change of basis matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
-i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

trigonalizes T.
8. (11 Points) Let f be an endomorphism of a finite-dimensional unitary vector space $(V,\langle\cdot, \cdot\rangle)$ over \mathbb{C}. Assume that $f^{n}=i d_{V}$ for some $n \geqslant 1$.
(a) (2 Points) Show that the expression

$$
\langle\langle v, w\rangle\rangle:=\sum_{i=0}^{n-1}\left\langle f^{i}(v), f^{i}(w)\right\rangle
$$

defines (a possibly different) inner product $\langle\langle\cdot, \cdot\rangle\rangle$ on V.
(b) (2 Points) Which properties does f have with respect to $\langle\langle\cdot, \cdot\rangle\rangle$? Deduce from this that f is diagonalisable.
(c) (2 Points) Show again, using the minimal polynomial, that f is diagonalisable.
(d) (5 Points) Consider the case $V=\mathbb{C}^{2}$ with the standard inner product. Determine $\langle\langle\cdot, \cdot\rangle\rangle$ and an orthonormal basis of eigenvectors for the endomorphism $f: v \mapsto$ $A v$ where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

Solution:

(a) Let $v_{1}, v_{2}, w \in V$, and let $\alpha \in \mathbb{C}$. We have

$$
\begin{aligned}
\left\langle\left\langle v_{1}+\alpha v_{2}, w\right\rangle\right\rangle & =\sum_{i=0}^{n-1}\left\langle f^{i}\left(v_{1}+\alpha v_{2}\right), f^{i}(w)\right\rangle \\
& =\sum_{i=0}^{n-1}\left\langle f^{i}\left(v_{1}\right)+\alpha f^{i}\left(v_{2}\right), f^{i}(w)\right\rangle \\
& =\sum_{i=0}^{n-1}\left\langle f^{i}\left(v_{1}\right), f^{i}(w)\right\rangle+\alpha \sum_{i=0}^{n-1}\left\langle f^{i}\left(v_{2}\right), f^{i}(w)\right\rangle \\
& =\left\langle\left\langle v_{1}, w\right\rangle\right\rangle+\alpha\left\langle\left\langle v_{2}, w\right\rangle\right\rangle .
\end{aligned}
$$

We used the facts that f^{i} is linear for $0 \leqslant i \leqslant n-1$, and that the standard hermitian product is linear in the first variable to obtain the chain of equalities above. Similarly, we use linearity of f^{i} and sesquilinearity of the standard hermitian product in the second variable to prove sequilinearity of the expression in the second variable. By the hermitian property of the standard hermitian product and by the anti-linearity of complex conjugation, we obtain that the exression is hermitian, i.e.

$$
\forall v, w \in V: \quad\langle\langle v, w\rangle\rangle=\overline{\langle\langle w, v\rangle\rangle} .
$$

Finally, let $v \in V \backslash\{0\}$. We have

$$
\langle\langle v, v\rangle\rangle=\sum_{i=0}^{n-1}\left\langle f^{i}(v), f^{i}(v)\right\rangle=\langle v, v\rangle+\sum_{i=1}^{n-1}\left\langle f^{i}(v), f^{i}(v)\right\rangle .
$$

By positivity of the standard hermitian product, the first term above is strictly positive and the remaining terms in the sum are non-negative. Hence,

$$
\langle\langle v, v\rangle\rangle>0 .
$$

(b) We observe that

$$
\begin{aligned}
\langle\langle f(v), w\rangle\rangle & =\sum_{i=0}^{n-1}\left\langle f^{i+1}(v), f^{i}(w)\right\rangle \\
& =\sum_{i=1}^{n}\left\langle f^{i}(v), f^{i-1}(w)\right\rangle \\
& =\sum_{i=0}^{n-1}\left\langle f^{i}(v), f^{i}\left(f^{n-1}(w)\right)\right\rangle \\
& =\left\langle\left\langle v, f^{n-1}(w)\right\rangle\right\rangle,
\end{aligned}
$$

where we used that $f^{n}=i d_{V} \Longrightarrow f^{i-1}=f^{i+n-1}$ for all $i \in\{0, \ldots, n-1\}$. This implies that $f^{*}=f^{n-1}=f^{-1}$ with respect to $\langle\langle\cdot, \cdot\rangle\rangle$. This implies that f is an isometry, so that it is normal. Hence f is diagonalisable by the Spectral Theorem over \mathbb{C}. Indeed, we have

$$
\langle\langle f(v), f(w)\rangle\rangle=\left\langle\left\langle v, f^{*} \circ f(w)\right\rangle\right\rangle=\langle\langle v, w\rangle\rangle
$$

and

$$
f \circ f^{-1}=i d_{V}=f^{-1} \circ f
$$

(c) Let n_{0} be the smallest positive integer n such that $f^{n_{0}}=i d_{V}$. Then f is a root of the polynomial

$$
x^{n_{0}}-1 \in \mathbb{C}[x] .
$$

This polynomial factors as

$$
(x-1)\left(x^{n_{0}-1}+x^{n_{0}-2}+\cdots+1\right)=\prod_{k=0}^{n_{0}-1}\left(x-\zeta^{k}\right)
$$

where $\zeta=e^{2 \pi i / n_{0}} \in \mathbb{C}$. Hence the minimal polynomial of f, which must divide the above polynomial, factors into distinct linear factors over \mathbb{C}. It follows that f is diagonalisable.
(d) First of all, we compute that $f^{6}=i d_{V}$ and that 6 is the smallest integer to satisfy this property. We write out the definition of $((\cdot, \cdot))$ and compute that it is given by the hermitian matrix

$$
\left(\begin{array}{cc}
8 & -4 \\
-4 & 8
\end{array}\right)
$$

The characteristic polynomial of f is given by

$$
x^{2}-x+1 \in \mathbb{C}[x] .
$$

Hence the eigenvalue-eigenvector pairs of f are

$$
\left(\lambda_{1}=\frac{1+i \sqrt{3}}{2}, v_{1}=\binom{1}{\lambda_{1}}\right), \quad\left(\lambda_{2}=\frac{1-i \sqrt{3}}{2}, v_{2}=\binom{1}{\lambda_{2}}\right) .
$$

We compute that

$$
\left(\left(v_{2}, v_{1}\right)\right)=\left(\begin{array}{ll}
1 & \lambda_{2}
\end{array}\right)\left(\begin{array}{cc}
8 & -4 \\
-4 & 8
\end{array}\right)\left(\frac{1}{\lambda_{1}}\right)=8\left(1-\lambda_{2}+\lambda_{2}^{2}\right)=0 .
$$

Here we used that $\overline{\lambda_{1}}=\lambda_{2}$ and that λ_{2} is a root of $x^{2}-x+1$. So, our basis of eigenvectors is already orthogonal with respect to $\langle\langle\cdot, \cdot\rangle\rangle$. We only need to normalize each eigenvector. We compute that $\left\langle\left\langle v_{1}, v_{1}\right\rangle\right\rangle=12=\left\langle\left\langle v_{2}, v_{2}\right\rangle\right\rangle$. It follows that

$$
\left\{\frac{1}{2 \sqrt{3}} v_{1}, \frac{1}{2 \sqrt{3}} v_{2}\right\}
$$

is an orthonormal basis of eigenvectors of f with respect to $\langle\langle\cdot, \cdot\rangle\rangle$.
9. (5 Points) Let U and V be finite dimensional vector spaces over a field \mathbb{K}. Let $f \in$ $\operatorname{End}(U)$ and $g \in \operatorname{End}(V)$, and consider the endomorphism $f \otimes g: U \otimes V \rightarrow U \otimes V$. Express Trace $(f \otimes g)$ in terms of Trace(f) and Trace (g).
Solution: Let $\mathcal{B}=\left\{u_{1}, \ldots, u_{m}\right\}$, respectively $\mathcal{C}=\left\{v_{1}, \ldots, v_{n}\right\}$, be a basis of U, respectively V. Then, a basis for the tensor product $U \otimes V$ is given by

$$
\mathcal{D}=\left\{u_{i} \otimes v_{k} \mid 1 \leqslant i \leqslant m, 1 \leqslant k \leqslant n\right\} .
$$

Let $A=\left(a_{i j}\right)_{i, j=1, \ldots, m}=[f]_{\mathcal{B}}^{\mathcal{B}}$ and $B=\left(b_{k \ell}\right)_{k, \ell=1, \ldots, n}=[g]_{C}^{C}$. Then, by definition

$$
\begin{aligned}
(f \otimes g)\left(u_{i} \otimes v_{k}\right) & =f\left(u_{i}\right) \otimes g\left(v_{k}\right) \\
& =\left(\sum_{j=1}^{m} a_{j i} u_{j}\right) \otimes\left(\sum_{\ell=1}^{n} b_{\ell k} v_{\ell}\right) \\
& =\sum_{j=1}^{m} \sum_{\ell=1}^{n} a_{j i} b_{\ell k}\left(u_{j} \otimes v_{\ell}\right) .
\end{aligned}
$$

So, the diagonal entries of $[f \otimes g]_{\mathcal{D}}^{D}$ are given by

$$
\left\{a_{i i} b_{k k} \mid 1 \leqslant i \leqslant m, 1 \leqslant k \leqslant n\right\} .
$$

Since the trace does not depend on a choice of basis, we obtain

$$
\operatorname{tr}(f \otimes g)=\sum_{i=1}^{m} \sum_{k=1}^{n} a_{i i} b_{k k}=\left(\sum_{i=1}^{m} a_{i i}\right)\left(\sum_{k=1}^{n} b_{k k}\right)=\operatorname{tr}(f) \operatorname{tr}(g) .
$$

