
Lineare Algebra I/II - Mock exam

1. (5 points)

(a) (2 points) Give the definition of the symmetric group on n-elements Sn. For a per-
mutation � ∈ Sn give the defintion of sign(�). You do not have to show that sign(�)
is well defined.

(b) (3 points) Let � ∈ Sn and letA ∈Mn×n(K) be thematrix obtained from the identity
matrix In by permuting its rows using the permutation �. Prove that det(A) =
sign(�).

Solution:

(a) The definition of Sn is

Sn = {� ∶ {1,… , n} → {1,… , n} ∣ � is bijective}.

Let � ∈ Sn. We have seen in the lectures that � can always be written as a compo-
sition of finitely many transpositions, i.e. � = �1⋯ �m, where �1,… , �m are trans-
positions. Then sign(�) is defined to be (−1)m.

(b) We prove this by induction on the number of transpositions m used to decompose
�. First assume that m = 1. Then � exchanges two rows of the identity. Hence, by
properties of the determinant, we have det(A) = − det(In) = sign(�).
Now assume that m > 1 and that we have shown the claim for all permutations
that can be decomposed as a product of at most m− 1 transpositions. Assume that
� = �1⋯ �m, where the �i’s are transpositions. Let us denote B the matrix obtained
by permuting the rows of the identity matrix using �2⋯ �m. It follows from the
induction hypothesis that det(B) = sign(�2⋯ �m) = (−1)m−1. Now, note that A is
obtained by permuting two rows of B using �1. Hence,

det(A) = − det(B) = (−1)m = sign(�).

2. (5 points) Let V be a finite dimensional vector space over the field K. Let T ∈ End(V )
and let �1, �2 ∈ K be two distinct eigenvalues of T . Denote by EigT (�i) the eigenspace
of �i and by ẼigT (�i) the generalized eigenspace of �i, i = 1, 2.

(a) (2 points) Prove that EigT (�1) ∩ EigT (�2) = {0}.
(b) (3 points) Assume that the characteristic polynomial pT (x) of T splits as a product

of linear factors in K[x]. Prove that ẼigT (�1) ∩ ẼigT (�2) = {0}.

Solution:
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(a) Assume by contradiction that there exists a non-zero vector v ∈ EigT (�1)∩EigT (�2).
Then,

�1v = T v = �2v ⟹ (�1 − �2)v = 0 ⟹ �1 = �2,

which is a contradiction.
(b) Let � ∈ K be an eigenvalue of T . We first claim that every eigenvector v of T

which belongs to ẼigT (�) must have eigenvalue �. Indeed, if � is the eigenvalue
of v, then T v = �v, hence T kv = �kv for all k ⩾ 0. It follows that

(�idV − T )kv = (� − �)kv, for all k ⩾ 0.

In particular, for n ∶= dim(V ) we have (�idV − T )nv = (� − �)nv. On the other
hand, by a known result

ẼigT (�) = Ker((�idV − T )n),

hence (� − �)nv = 0. As v ≠ 0, it follows that (� − �)n = 0, hence � = �. This
proves the claim.
Let � be as above. Recall that ẼigT (�) is a T -invariant subspace. Consider T� ∶=
T |ẼigT (�). By a known result, pT�(x) divides pT (x). Since pT (x) splits as a product
of linear factors inK[x], so does pT�(x). As � is the only eigenvalue of T�, it follows
that pT�(x) has the form

pT�(x) = (� − x)r� ,

for some r� ⩾ 1.
We are now ready to prove the statement of the problem. Put U ∶= ẼigT (�1) ∩
ẼigT (�2) and assume by contradiction that U ≠ {0}. Then l ∶= dim(U ) ⩾ 1.
Clearly U ⊆ V is a T -invariant subspace because for i = 1, 2, ẼigT (�i) are T -
invariant. Put TU ∶= T |U∈ End(U ).Note that the characteristic polynomial pTU (x)
of TU has degree l ⩾ 1 hence is not the constant polynomial. By a known result,
pTU (x) divides both pT�1 (x) and pT�2 (x). But this is impossibe since we have seen
that

pT�1 (x) = (�1 − x)
r�1 , pT�2 (x) = (�2 − x)

r�2 ,

and �1 ≠ �2. This yields a contradiction.

3. (10 Points) For each statement, mark with a cross whether it is true (T) or false (F).
Correct answers are awarded +1 point, incorrect answers or no answer 0 points.

(a) ■T □F The matrix B =
⎛

⎜

⎜

⎝

0
√

3i 0
√

3i 0 0
0 0 −3

⎞

⎟

⎟

⎠

is diagonalisable over ℂ.

(b) □T ■F Every diagonalisable matrix A ∈ Mn,n(K) consists of n linearly inde-
pendent column vectors.
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(c) □T ■F Every matrix A ∈Mn,n(ℝ), whose eigenvalues are all positive, is sym-
metric.

(d) ■T □F Every matrix A ∈ SO(3) satisfies tr(A) ⩽ 3.
(e) ■T □F Let A ∈ M4,4(ℂ) be a matrix with characteristic polynomial pA(x) =

(x + i)2(x −
√

2)(x + 2). Then A is diagonalisable if and only if
dim(Ker(A + i14)) = 2.

(f) □T ■F Let f be a vector space endomorphism. Then, for every eigenvalue of
f there exists a unique eigenvector.

(g) ■T □F Let V be a finite-dimensional vector space, and let V ∗ be its dual space.
Then V ≅ V ∗.

(h) □T ■F Let V be the vector space of continuous functions f ∶ ℝ → ℝ such that
f (x + 1) = f (x) for all x ∈ ℝ. The map

(f, g) = ∫

1

0
f (x)g(x + 1

2
)dx

defines a scalar product over V .
(i) ■T □F Consider v1 ∈ ℝ3 with ‖

‖

v1‖‖ = 1. There is exactly one vector v ∈ ℝ3,
such that (v, v1) = 1 and ‖v‖ = 1.

(j) □T ■F Consider two endomorphisms f , g of a finite-dimensional euclidian
vector space. It holds that

f ∗g∗ = gf ⇔ fg = g∗f ∗.

Counterexample: Consider the matrices

A =
(

0 1
0 0

)

, B =
(

1 0
0 0

)

∈ End(ℝ2).

We have
AB =

(

0 0
0 0

)

.

Hence, BTAT = (AB)T = AB. However,

BA =
(

0 1
0 0

)

,

is not symmetric. Hence ATBT = (BA)T ≠ BA.



4. (14 Points) Write your answer directly on the exam sheet. You do not have to justify your
answer.

(a) Compute the determinant of

A� =

⎛

⎜

⎜

⎜

⎝

1 −� �2 −�3
1 2� 4�2 8�3
1 � �2 �3
1 −2� 4�2 −8�3

⎞

⎟

⎟

⎟

⎠

für � ∈ ℂ. det(A�) =

Solution: 72�6.

(b) For which � ∈ ℂ (give all of them) is the matrix

A� =
⎛

⎜

⎜

⎝

1 −1 0
� −1 0
2 1 �

⎞

⎟

⎟

⎠

∈M3,3(ℂ) invertible? � ∈

Solution: � ∈ ℂ ∖ {0, 1}.

(c) Let A� be the same as in (b), and let � be such that A� is invertible. Compute the
inverse of A�. (Your answer will depend on the variable �.)

A−1
� =

Solution:

A−1 =

⎛

⎜

⎜

⎜

⎝

1
1−�

1
�−1

0
�

1−�
1
�−1

0
�+2

(�−1)�
3

�−�2
1
�

⎞

⎟

⎟

⎟

⎠

(d) Compute the eigenvalues of the matrix

⎛

⎜

⎜

⎝

0 −4 6
−3 5 0
2 −4 1

⎞

⎟

⎟

⎠

∈M3,3(ℝ). Antwort:



Solution: �1 = 0, �2 = 3 + 2
√

7, �3 = 3 − 2
√

7.

(e) Let A =
⎛

⎜

⎜

⎝

1 0 3
−1 � −2
2 −� 2

⎞

⎟

⎟

⎠

and b =
⎛

⎜

⎜

⎝

−3
1
2

⎞

⎟

⎟

⎠

. Find all x ∈ ℝ3 such that Ax = b, for

� ∈ ℝ ∖ {0}.

x ∈

Solution: x =
⎛

⎜

⎜

⎝

3
0
−2

⎞

⎟

⎟

⎠

.

(f) Compute the minimal polynomial of the matrix

A =
⎛

⎜

⎜

⎝

0 1 0
1 0 0
1 −1 1

⎞

⎟

⎟

⎠

. Antwort:

Solution: The minimal polynomial of A is (x − 1)(x + 1).

(g) Let T ∶ ℝ2 → ℝ[x] be the unique linear map such that T (5, 2) = 11 + 22x and
T (1, 7) = 33 − 11x. Compute T (1, 4).

T (1, 4) =

Solution: T (1, 4) = 19 − 4x.



5. (10 Points) Consider the vector subspaces

V1 =

⟨

⎛

⎜

⎜

⎝

1
2
3

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

3
−4
5

⎞

⎟

⎟

⎠

⟩

and

V2 =
{

⎛

⎜

⎜

⎝

x
y
z

⎞

⎟

⎟

⎠

∈ ℝ3|
|

|

|

x + y + z = 0
}

in V = ℝ3.

(a) (2 Points) Determine the dimension of V1, V2 and V1 ∩ V2.
(b) (3 Points) Find a basis of V1 ∩ V2.
(c) (3 Points) Find a basis of the orthogonal complement of V1∩V2 with respect to the

standard scalar product over V = ℝ3.
(d) (2 Points) Find a linear map f ∶ ℝ3 → ℝ3 with Ker(f ) = V1 ∩ V2.

Solution:

(a) We have dim(V1) = 2 since the 2 vectors generating V1 are linearly independent.
We observe that dim(V2) ⩾ 2 since (1,−1, 0)T ∈ V2 and (1, 0,−1)T ∈ V2 are
linearly independent. Moreover, V2 ⊊ ℝ3 because for example (1, 0, 0)T ∉ V2. So
2 ⩽ V2 < 3, hence dim(V2) = 2. Finally assume that a general vector of V1

v ∶= a
⎛

⎜

⎜

⎝

1
2
3

⎞

⎟

⎟

⎠

+ b
⎛

⎜

⎜

⎝

3
−4
5

⎞

⎟

⎟

⎠

is in V2. It must hold that 6a + 4b = 0 ⟹ a = − 2
3
b. And vice-versa, if a = − 2

3
b

then v ∈ V2. Therefore,

V1 ∩ V2 =

⎧

⎪

⎨

⎪

⎩

b ⋅
⎡

⎢

⎢

⎣

−2
3

⎛

⎜

⎜

⎝

1
2
3

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

3
−4
5

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

∶ b ∈ ℝ
⎫

⎪

⎬

⎪

⎭

,

which implies that it has dimension 1.
(b) By the above computation,

⎧

⎪

⎨

⎪

⎩

v0 ∶=
⎛

⎜

⎜

⎝

7∕3
−16∕3

3

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

is a basis of V1 ∩ V2.



(c) Since x + y + z = 0 for all (x, y, z)T ∈ V1 ∩ V2, we immediately have (1, 1, 1)T ∈
(V1 ∩ V2)⟂. Now note that for

u ∶=
⎛

⎜

⎜

⎝

1
0

−7∕9

⎞

⎟

⎟

⎠

,

we have

⟨v0, u⟩ = 0 and u ∉ span
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

.

So, since (V1 ∩ V2)⟂ is two-dimensional, {u, (1, 1, 1)T } is a basis of (V1 ∩ V2)⟂.
(d) In (c), we have shown that

⟨v0, u⟩ = 0 and that ⟨v0, (1, 1, 1)T ⟩ = 0.

Now, define

f ∶ ℝ3 → ℝ3, v↦ ⟨v, u⟩u + ⟨v, (1, 1, 1)T ⟩(1, 1, 1)T .

This map is clearly linear, and, by the above observation, we have v0 ∈ Ker(f ).
Moreover,

f
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1
−1
0

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= u and f
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

0
1
0

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

.

Since {u, (1, 1, 1)T } ⊂ Im(f ) is a basis of (V1 ∩ V2)⟂, we have (V1 ∩ V2)⟂ ⊆ Im(f ).
So dim(Im(f )) ⩾ 2. On the other hand, since v0 ∈ Ker(f ), dim(Ker(f )) ⩾ 1
and, by the rank-nullity formula, dim(Im(f ))+dim(Ker(f )) = 3. This implies that
dim(Im(f )) = 2 and dim(Ker(f )) = 1. Hence, Ker(f ) = span(v0) = V1 ∩ V2.

6. (7 Points) LetM be a finite non-empty set and V ∶= {f ∶ M → K} be the set of all
maps to K. It is well known that V is a vector space over K when endowed with the
following operations:

(f + g)(x) ∶= f (x) + g(x), ∀f, g ∈ V , x ∈M,
(af )(x) ∶= af (x), ∀f ∈ V , a ∈ K, x ∈M.

(a) (2 Points) Determine the dimension of V .
(b) (3 Points) Fix an m ∈M and show that the set

Um ∶= {f ∈ V ∣ f (m) = 0}

is a vector subspace of V . Additionally, compute the dimension of Um.



(c) (2 Points) Determine a linear complement of Um in V .

Solution: Let us denoteM = {a1, a2,… , an} for some integer n ⩾ 0.

(a) Consider the set of maps  =
{

fi ∶M → K ∣ 1 ⩽ i ⩽ n
}

defined such that

fi(aj) =
{

1, i = j
0, i ≠ j

Anymap in V can be written as aK-linear combination of the fi’s, in other words
is a generating set forV . Moreover, anyK-linear combination

∑n
i=1 bifi(x) vanishes

on the whole ofM if and only if all of its coefficients vanish. Hence,  is a basis
of V and dim(V ) = || = n.

(b) Clearly, the zero map belongs to Um. Let f, g ∈ Um and � ∈ K. Using the vector
space operations given above, we observe that

(f + �g)(m) = f (m) + �g(m) = 0.

It follows that Um is closed under addition and scalar multiplication, which in turn
shows that it is a subspace.
Up to reordering, we may assume that the m we fixed is equal to a1. Note that Um
is at least (n − 1)-dimensional since for all i ∈ {2,… , n}, fi ∈ Um. However,
f1 ∉ Um. Hence

n − 1 ⩽ dim(Um) < n ⟹ dim(Um) = n − 1.

This implies that  ∖ {f1} is a basis for Um.
(c) We continue to assume here that m = a1. ConsiderW ∶= ⟨f1⟩. Since  is a basis

and {f2,… , fn} ⊆ Um, we have

V = W + Um.

Now, let ℎ ∈ W ∩ Um. Since ℎ ∈ W , ℎ = �1f1 for some �1 ∈ K. Moreover, by
(b), there exist �2,… , �n such that ℎ =

∑n
i=2 �ifi. It follows that

�1f1 =
n
∑

i=2
�ifi,

which contradicts the linear independence of  except if ℎ = 0. It follows that
W ∩ Um = {0}.

7. (10 Points) Consider the complex matrices

�0 =
(

1 0
0 1

)

�1 =
(

0 1
1 0

)

�2 =
(

0 −i
i 0

)

�3 =
(

1 0
0 −1

)

B =
(

1 1
0 1

)



(a) (2 Points) Show that the tuple (�0, �1, �2, �3) defines a basis of the complex vector
spaceM2,2(ℂ) of 2 × 2 matrices.

(b) (1 Point) Show that the map

T ∶M2,2(ℂ) →M2,2(ℂ)
X ↦ XB − BX

is linear.
(c) (3 Points) Compute the representationmatrix of T with respect to the basis (�0, �1, �2, �3).
(d) (4 Points) Determine a basis ofM2,2(ℂ) that trigonalizes T .

Solution:

(a) The spaceM2,2(ℂ) is 4-dimensional over ℂ. Hence we just need to show that the
�i’s are linearly independent over ℂ. Assume that there exist �, �, , � ∈ ℂ such
that

��0 + ��1 + �2 + ��3 = 0

if and only if

� + � = 0
� − i = 0
� + i = 0
� − � = 0

⟺

2� = 0
� = �
2� = 0
 = −i�

⟺ 0 = � = � =  = �.

This proves that the �i’s form a basis, which we denote .
(b) LetM,N ∈M2,2(ℂ) and � ∈ ℂ. We have

T (M + �N) = (M + �N)B − B(M + �N) =MB + �NB − BM − B(�N)
=MB − BM + �(NB − BN)
= T (M) + �T (N).

This shows that T is linear.
(c) We compute the image of each basis element via T . We have

T�0 = 0,

T �1 =
(

−1 0
0 1

)

= −�3,

T �2 =
(

−i 0
0 i

)

= −i�3,

T �3 =
(

0 2
0 0

)

= �1 + i�2.



It follows that

[T ] =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 1
0 0 0 i
0 −1 −i 0

⎞

⎟

⎟

⎟

⎠

.

(d) The characteristic polynomial of T is x4 ∈ ℂ[x]. Hence its single eigenvalue is
� = 0 and it has algebraic multiplicity 4. To compute a basis of M2,2(ℂ) that
trigonalizes T , we want to find a basis for the generalized eigenspace ẼigT (0). We
have

([T ])
2 =

⎛

⎜

⎜

⎜

⎝

0 0 0 0
0 −1 −i 0
0 −i 1 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

, ([T ])
3 = 0.

So,
{0} ⊆ Ker([T ]) ⊆ Ker(([T ])

2) ⊊ Ker(([T ])
3) =M2,2(ℂ).

We compute that (1, 0, 0, 0)T , (0, 0, 0, 1)T generate Ker(([T ])
2). It follows that

v0 ∶=

⎛

⎜

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎟

⎠

∈ Ker(([T ])
3) ∖ Ker(([T ])

2)

⟹

⎛

⎜

⎜

⎜

⎝

0
0
0
−1

⎞

⎟

⎟

⎟

⎠

= Av0 ∈ Ker(([T ])
2) ∖ Ker([T ])

⟹

⎛

⎜

⎜

⎜

⎝

0
−1
−i
0

⎞

⎟

⎟

⎟

⎠

= A2v0 ∈ Ker([T ]).

To complete our basis, we choose (1, 0, 0, 0)T ∈ Ker([T ]). The change of basis
matrix

⎛

⎜

⎜

⎜

⎝

0 0 0 1
−1 0 1 0
−i 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎟

⎠

trigonalizes T .



8. (11 Points) Let f be an endomorphism of a finite-dimensional unitary vector space
(V , ⟨⋅, ⋅⟩) over ℂ. Assume that f n = idV for some n ⩾ 1.

(a) (2 Points) Show that the expression

⟨⟨v,w⟩⟩ ∶=
n−1
∑

i=0
⟨f i(v), f i(w)⟩

defines (a possibly different) inner product ⟨⟨⋅, ⋅⟩⟩ on V .
(b) (2 Points) Which properties does f have with respect to ⟨⟨⋅, ⋅⟩⟩? Deduce from this

that f is diagonalisable.
(c) (2 Points) Show again, using the minimal polynomial, that f is diagonalisable.
(d) (5 Points) Consider the case V = ℂ2 with the standard inner product. Determine

⟨⟨⋅, ⋅⟩⟩ and an orthonormal basis of eigenvectors for the endomorphism f ∶ v ↦
Av where

A =
(

0 1
−1 1

)

.

Solution:

(a) Let v1, v2, w ∈ V , and let � ∈ ℂ. We have

⟨⟨v1 + �v2, w⟩⟩ =
n−1
∑

i=0
⟨f i(v1 + �v2), f i(w)⟩

=
n−1
∑

i=0
⟨f i(v1) + �f i(v2), f i(w)⟩

=
n−1
∑

i=0
⟨f i(v1), f i(w)⟩ + �

n−1
∑

i=0
⟨f i(v2), f i(w)⟩

= ⟨⟨v1, w⟩⟩ + �⟨⟨v2, w⟩⟩.

We used the facts that f i is linear for 0 ⩽ i ⩽ n − 1, and that the standard her-
mitian product is linear in the first variable to obtain the chain of equalities above.
Similarly, we use linearity of f i and sesquilinearity of the standard hermitian pro-
duct in the second variable to prove sequilinearity of the expression in the second
variable. By the hermitian property of the standard hermitian product and by the
anti-linearity of complex conjugation, we obtain that the exression is hermitian,
i.e.

∀v,w ∈ V ∶ ⟨⟨v,w⟩⟩ = ⟨⟨w, v⟩⟩.
Finally, let v ∈ V ∖ {0}. We have

⟨⟨v, v⟩⟩ =
n−1
∑

i=0
⟨f i(v), f i(v)⟩ = ⟨v, v⟩ +

n−1
∑

i=1
⟨f i(v), f i(v)⟩.



By positivity of the standard hermitian product, the first term above is strictly po-
sitive and the remaining terms in the sum are non-negative. Hence,

⟨⟨v, v⟩⟩ > 0.

(b) We observe that

⟨⟨f (v), w⟩⟩ =
n−1
∑

i=0
⟨f i+1(v), f i(w)⟩

=
n
∑

i=1
⟨f i(v), f i−1(w)⟩

=
n−1
∑

i=0
⟨f i(v), f i(f n−1(w))⟩

= ⟨⟨v, f n−1(w)⟩⟩,

where we used that f n = idV ⟹ f i−1 = f i+n−1 for all i ∈ {0,… , n − 1}. This
implies that f ∗ = f n−1 = f−1 with respect to ⟨⟨⋅, ⋅⟩⟩. This implies that f is an
isometry, so that it is normal. Hence f is diagonalisable by the Spectral Theorem
over ℂ. Indeed, we have

⟨⟨f (v), f (w)⟩⟩ = ⟨⟨v, f ∗◦f (w)⟩⟩ = ⟨⟨v,w⟩⟩

and
f◦f−1 = idV = f−1◦f.

(c) Let n0 be the smallest positive integer n such that f n0 = idV . Then f is a root of
the polynomial

xn0 − 1 ∈ ℂ[x].

This polynomial factors as

(x − 1)(xn0−1 + xn0−2 +⋯ + 1) =
n0−1
∏

k=0
(x − �k),

where � = e2�i∕n0 ∈ ℂ. Hence the minimal polynomial of f , which must divide
the above polynomial, factors into distinct linear factors over ℂ. It follows that f
is diagonalisable.

(d) First of all, we compute that f 6 = idV and that 6 is the smallest integer to satisfy
this property. We write out the definition of ((⋅, ⋅)) and compute that it is given by
the hermitian matrix

(

8 −4
−4 8

)

.



The characteristic polynomial of f is given by

x2 − x + 1 ∈ ℂ[x].

Hence the eigenvalue-eigenvector pairs of f are
(

�1 =
1 + i

√

3
2

, v1 =
(

1
�1

)

)

,

(

�2 =
1 − i

√

3
2

, v2 =
(

1
�2

)

)

.

We compute that

((v2, v1)) =
(

1 �2
)

(

8 −4
−4 8

)(

1
�1

)

= 8(1 − �2 + �22) = 0.

Here we used that �1 = �2 and that �2 is a root of x2−x+1. So, our basis of eigen-
vectors is already orthogonal with respect to ⟨⟨⋅, ⋅⟩⟩. We only need to normalize
each eigenvector. We compute that ⟨⟨v1, v1⟩⟩ = 12 = ⟨⟨v2, v2⟩⟩. It follows that

{

1

2
√

3
v1,

1

2
√

3
v2

}

is an orthonormal basis of eigenvectors of f with respect to ⟨⟨⋅, ⋅⟩⟩.

9. (5 Points) Let U and V be finite dimensional vector spaces over a field K. Let f ∈
End(U ) and g ∈ End(V ), and consider the endomorphism f ⊗ g ∶ U ⊗V → U ⊗V .
Express Trace(f ⊗ g) in terms of Trace(f) and Trace(g).
Solution: Let  = {u1,… , um}, respectively  = {v1,… , vn}, be a basis of U , respec-
tively V . Then, a basis for the tensor product U ⊗ V is given by

 = {ui ⊗ vk ∣ 1 ⩽ i ⩽ m, 1 ⩽ k ⩽ n}.

Let A = (aij)i,j=1,…,m = [f ] and B = (bkl)k,l=1,…,n = [g] . Then, by definition

(f ⊗ g)(ui ⊗ vk) = f (ui)⊗ g(vk)

=

(

m
∑

j=1
ajiuj

)

⊗

(

n
∑

l=1
blkvl

)

=
m
∑

j=1

n
∑

l=1
ajiblk(uj ⊗ vl).

So, the diagonal entries of [f ⊗ g] are given by

{aiibkk ∣ 1 ⩽ i ⩽ m, 1 ⩽ k ⩽ n}.

Since the trace does not depend on a choice of basis, we obtain

tr(f ⊗ g) =
m
∑

i=1

n
∑

k=1
aiibkk =

(

m
∑

i=1
aii

)(

n
∑

k=1
bkk

)

= tr(f )tr(g).
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