Lineare Algebra I/II - Mock exam

1. (5 points)

(a)

(b)

(2 points) Give the definition of the symmetric group on n-elements .S, . For a per-
mutation o € .S, give the defintion of sign(c). You do not have to show that sign(o)
is well defined.

(3 points) Leto € S, andlet A € M, ,(K) be the matrix obtained from the identity
matrix I, by permuting its rows using the permutation ¢. Prove that det(A) =

sign(o).

Solution:

(a)

(b)

The definition of S, is

S,={c:{l,...,n} = {1,...,n} | o1is bijective}.
Let o € S,. We have seen in the lectures that ¢ can always be written as a compo-
sition of finitely many transpositions, i.e. ¢ = 7, --- 7,,, where 7|, ..., 7,, are trans-
positions. Then sign(o) is defined to be (—1)".

We prove this by induction on the number of transpositions m used to decompose
o. First assume that m = 1. Then o exchanges two rows of the identity. Hence, by
properties of the determinant, we have det(A) = —det(/,) = sign(o).

Now assume that m > 1 and that we have shown the claim for all permutations
that can be decomposed as a product of at most m — 1 transpositions. Assume that
o =1, - T,,, Where the 7,’s are transpositions. Let us denote B the matrix obtained
by permuting the rows of the identity matrix using 7, --- 7,,. It follows from the
induction hypothesis that det(B) = sign(z, -+ 7,)) = (—1)"~!. Now, note that A is
obtained by permuting two rows of B using 7,. Hence,

det(A) = —det(B) = (—1)" = sign(o).

2. (5 points) Let V be a finite dimensional vector space over the field K. Let T € End (V')
and let 4;, 4, € K be two distinct eigenvalues of T'. Denote by Eig;(4,) the eigenspace

of 4

(a)
(b)

and by E\iér(%) the generalized eigenspace of 4;, i = 1,2.

(2 points) Prove that Eig,(4,) N Eig;(4,) = {0}.

(3 points) Assume that the characteristic polynomlal pr(x) of T splits as a product
of linear factors in K[ x]. Prove that Eng(ﬁ )N Eng(ﬁz) {0}.

Solution:



(a) Assume by contradiction that there exists a non-zero vector v € Eigr(A,)NEig;(4,).
Then,
Mv=Tv=4Lv = (41 —AHv=0 = i, =4,

which is a contradiction.

(b) Let 4 € K be an eigenvalue of T'. We first claim that every eigenvector v of T
which belongs to Eig,;(4) must have eigenvalue A. Indeed, if yu is the eigenvalue
of v, then Tv = pv, hence T*v = p*v for all k > 0. It follows that

(Aid, — T)*v = (A — w)*v, forall k > 0.

In particular, for n := dim(}V) we have (did,, — T)"v = (4 — u)"v. On the other
hand, by a known result

Eig; (1) = Ker((did, — T)"),

hence (4 — u)"v = 0. As v # 0, it follows that (A — )" = 0, hence 4 = u. This
proves the claim.

Let A be as above. Recall that E\i:gT(/l) is a T-invariant subspace. Consider T, :=
Tlﬁ’r( - By a known result, pTA(x) divides p,(x). Since p,(x) splits as a product
of linear factors in [K[x], so does pr, (x). As A1is the only eigenvalue of T',, it follows
that pr, (x) has the form

pr,(x) = (A= x)"%,

for some r, > 1.

We are now ready to prove the statement of the problem. Put U := IFZ\iTgT(/ll) N
Eng(/%) and assume by contradiction that U # {0}. Then 7 := dim(U) > 1.
Clearly U C V is a T-invariant subspace because for i = 1,2, E\i:gT(/li) are T'-
invariant. Put T, :=T'|,€ End(U). Note that the characteristic polynomial pr, (%)
of T}, has degree £ > 1 hence is not the constant polynomial. By a known result,
pr, (x) divides both pr, (x) and Pr, (x). But this is impossibe since we have seen
that

pr, ()= (G =X, by (0= (= 0)",

and A, # A,. This yields a contradiction.

3. (10 Points) For each statement, mark with a cross whether it is true (T) or false (F).
Correct answers are awarded +1 point, incorrect answers or no answer 0 points.

0 V3 0

(a) T (JF The matrix B = \/51- 0 0 |1s diagonalisable over C.
0 0 -3

(b) OOT MF Every diagonalisable matrix A € M, () consists of n linearly inde-
pendent column vectors.
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(c) OJT WF

(d) WT [JF
() MT [F

() 0T WF
() AT [JF
(h) OJT WF

() WT OJF

(¢ OT WF

Every matrix A € M, ,(R), whose eigenvalues are all positive, is sym-
metric.
Every matrix A € SO(3) satisfies tr(A) < 3.

Let A € M, 4(C) be a matrix with characteristic polynomial p,(x) =

(x + )*(x — \/5)()6 + 2). Then A is diagonalisable if and only if
dim(Ker(A +il,)) = 2.

Let f be a vector space endomorphism. Then, for every eigenvalue of
f there exists a unique eigenvector.

Let V' be a finite-dimensional vector space, and let V'* be its dual space.
Then V = V™.

Let V' be the vector space of continuous functions f : R — R such that
f(x+1)= f(x) for all x € R. The map

1
(f.g) = / F0g(x + %)dx
0

defines a scalar product over V.

Consider v, € R? with ||v, || = 1. There is exactly one vector v € R,
such that (v,v,) = 1 and [|v]| = 1.

Consider two endomorphisms f, g of a finite-dimensional euclidian
vector space. It holds that

ffg&f=egfefeg=gr"

Counterexample: Consider the matrices

(01 (10 )
A= (8 )= 0) e

00
= (0 0)

Hence, BT AT = (AB)" = AB. However,

0 1
BA‘<0 o>’

is not symmetric. Hence AT BT = (BA)T # BA.

We have



4. (14 Points) Write your answer directly on the exam sheet. You do not have to justify your
answer.

(a) Compute the determinant of

1 -2 A2 =2
2 3

A, = i 2/1’1 4/1’12 8/1’13 fiir 2 € C. det(A,) =
1 —24 422 —82°

Solution: 72 A°.

(b) For which a € C (give all of them) is the matrix

1 -1 0
A,=la —1 0] € M;,(C) invertible? a €
2 1 «

Solution: « € C~ {0, 1}.

(c) Let A, be the same as in (b), and let @ be such that A, is invertible. Compute the
inverse of A,. (Your answer will depend on the variable a.)

Al =
Solution:
1 1
o R
a+2 3001
(a=Da a—a® «
(d) Compute the eigenvalues of the matrix
0 -4 6
-3 5 0]|e M;;(R). Antwort:
2 -4 1




Solution: A, =0, A, =3 +21/7, A, =3 —24/7.

1 0 3 -3
(e) Let A=|-1 a —2|andb =| 1 |. Find all x € R3 such that Ax = b, for
2 —a 2
a € R~ {0}.
X €
3
Solution: x =] 0
-2
(f) Compute the minimal polynomial of the matrix
0O 1 O
A=|1 0 O0}. Antwort:
1 -1 1

Solution: The minimal polynomial of A is (x — 1)(x + 1).

(g) Let T : R? — R[x] be the unique linear map such that T'(5,2) = 11 + 22x and
T(1,7)=33 - 11x. Compute T'(1,4).

T1,4)=

Solution: T(1,4) =19 — 4x.



5. (10 Points) Consider the vector subspaces

and

X
V2={ y|eRr’
z

x+y+z=0}

inV =R3.
(a) (2 Points) Determine the dimension of V, V, and V|, N V.

(b) (3 Points) Find a basis of V; N V.

(c¢) (3 Points) Find a basis of the orthogonal complement of V; NV, with respect to the
standard scalar product over V' = R?>.

(d) (2 Points) Find a linear map f : R® — R? with Ker(f) =V, n V..
Solution:

(a) We have dim(V,) = 2 since the 2 vectors generating V; are linearly independent.
We observe that dim(V,) > 2 since (1,—1,0)" € V, and (1,0,—1)T € V, are
linearly independent. Moreover, V, € R? because for example (1,0,0)" & V,. So
2 £V, < 3, hence dim(V,) = 2. Finally assume that a general vector of V|

3

1
vi=al|2|+b|-4
3 5

isin V,. It must hold that 6a +4b =0 = a = —%b. And vice-versa, if a = —%b
then v € V,. Therefore,

) 1 3
vinV,=4b- ~3 21+|-4||:beRy,
3 5
which implies that it has dimension 1.
(b) By the above computation,
7/3
vy, i=|—-16/3
3

isabasisof V; NnV,.



(c) Since x + y+ z = 0 for all (x, y, z)T € V| nV,, we immediately have (1, 1,1)! €
(V, n V,)*. Now note that for

1
u:.=| 0 |,
-7/9
we have
1
(vg,u) =0 and u & span||1
1

So, since (V; N V,)* is two-dimensional, {u, (1,1, 1)"} is a basis of (V; n V,)*.

(d) In (c), we have shown that
(vy,uy = 0 and that (v,,(1,1,1)") =0.
Now, define
f iR SR v (vyu)u+ (v, (1,1, D71, 1, DT,

This map is clearly linear, and, by the above observation, we have v, € Ker(f).

VEr,
1 0 1
t=1ll=u and rl|1{{=]1].
0 0 1

Since {u, (1,1, )T} C Im(f) is a basis of (V,; N V,)*, we have (V, N V,)* C Im(f).
So dim(Im(f)) > 2. On the other hand, since v, € Ker(f), dim(Ker(f)) > 1
and, by the rank-nullity formula, dim(Im(f)) + dim(Ker(f)) = 3. This implies that
dim(Im(f)) = 2 and dim(Ker(f)) = 1. Hence, Ker(f) = span(v,) =V, n V,.

6. (7 Points) Let M be a finite non-empty set and V' := {f : M — K} be the set of all
maps to K. It is well known that V" is a vector space over K when endowed with the
following operations:

(f+8)x) =f(x)+gx), Vf,geV.xeM,
(af)(x) i=afx), VfeV,aelK,xe M.

(a) (2 Points) Determine the dimension of V.

(b) (3 Points) Fix an m € M and show that the set

U, :={feV]fim=0}

is a vector subspace of V. Additionally, compute the dimension of U,,,.



(c¢) (2 Points) Determine a linear complement of U, in V.
Solution: Let us denote M = {a,, a,, ..., a,} for some integer n > 0.

(a) Consider the set of maps B = { it M->K|I<i< n} defined such that

.
f"(a")z{ ey

Any map in V' can be written as a [K-linear combination of the f,’s, in other words 3
is a generating set for V. Moreover, any [-linear combination " | b, f;(x) vanishes
on the whole of M if and only if all of its coefficients vanish. Hence, B3 is a basis
of V and dim(V') = | B| = n.

(b) Clearly, the zero map belongs to U,,. Let f,g € U,, and @ € K. Using the vector
space operations given above, we observe that

(f +ag)im) = f(m)+ ag(m) = 0.

It follows that U, is closed under addition and scalar multiplication, which in turn
shows that it is a subspace.

Up to reordering, we may assume that the m we fixed is equal to a,. Note that U,
is at least (n — 1)-dimensional since for all i € {2,...,n}, f; € U,,. However,
f1 € U,. Hence

n—1<dmU,) <n = dimU,)=n-1.

This implies that B~ { f,} is a basis for U,,.

(c) We continue to assume here that m = a,. Consider W := (f,). Since B is a basis
and { f5, ..., f,} € U,,, we have

V=W+U,,

Now, leth € W nU,,. Since h € W, h = «a, f, for some a; € K. Moreover, by
(b), there exist a,, ..., a, such that h = Y a, f;. It follows that

a] fl = Z aifi7
i=2
which contradicts the linear independence of B except if A = 0. It follows that

wnU, = {0}

7. (10 Points) Consider the complex matrices

(0 (b 9) =0 0) w0 %) == (0 0) 2= (0 })



(a) (2 Points) Show that the tuple (o, 0,, 0,, 05) defines a basis of the complex vector
space M, ,(C) of 2 X 2 matrices.

(b) (1 Point) Show that the map

T : M,,(C) - M,,(C)
X~ XB- BX

is linear.
(c¢) (3 Points) Compute the representation matrix of 7" with respect to the basis (6, 64, 0,, 65).

(d) (4 Points) Determine a basis of M, ,(C) that trigonalizes T'.
Solution:

(a) The space M,,(C) is 4-dimensional over C. Hence we just need to show that the
o;’s are linearly independent over C. Assume that there exist @, #,y,6 € C such

that
acy+ po, +yo, + 603 =0
if and only if
a+6 =0 26 = 0
Jriy =0 = ap o o S0=a=p=y=s
a—-6 = 0 y = —if

This proves that the ¢,’s form a basis, which we denote C.
(b) Let M, N € M,,(C) and a« € C. We have

T(M +aN)=(M +aN)B— B(M +aN)=MB+aNB—- BM — B(aN)
= MB- BM +a(NB - BN)
=T(M)+ aT(N).

This shows that 7 is linear.

(c) We compute the image of each basis element via T'. We have

To,=0,



It follows that

TS =

o O O
oS O O

0
1
il
0

S o oo

-1 —i

(d) The characteristic polynomial of T is x* € C[x]. Hence its single eigenvalue is
A = 0 and it has algebraic multiplicity 4. To compute a basis of M,,(C) that

trigonalizes T', we want to find a basis for the generalized eigenspace Eig;(0). We

have
0O 0 0 O
c2 |0 -1 =i O 3
(=g . o] (mei=o.
0O 0 0 O
So,

{0} C Ker(IT15) € Ker(([T15)%) G Ker(([T19)) = M,,(O).
We compute that (1, 0,0,0)7, (0,0,0, 1)" generate Ker(([T]g)Z). It follows that

0
1
bo=1o| € Ker(([T15)) ~ Ker(([T19)%)
0
0
0
= o |=Av € Ker(([T19)%) ~ Ker([T1%)
-1
0
-1
= | _, [= A% € Ker(ITIQ).
0
To complete our basis, we choose (1,0,0,0)" € Ker([T ]g). The change of basis
martrix
0O 0 01
-1 0 10
—-i 0 00
0O -1 00

trigonalizes T'.



8. (11 Points) Let f be an endomorphism of a finite-dimensional unitary vector space
(V,(-,)) over C. Assume that f" = id,, for some n > 1.
(a) (2 Points) Show that the expression

n—1

(v, w)) 1= YUS W), fi(w))
i=0

defines (a possibly different) inner product ({-,-)) on V.

(b) (2 Points) Which properties does f have with respect to ({-, -))? Deduce from this
that f is diagonalisable.

(c) (2 Points) Show again, using the minimal polynomial, that f is diagonalisable.

(d) (5 Points) Consider the case V' = C? with the standard inner product. Determine
({-,-)) and an orthonormal basis of eigenvectors for the endomorphism f : v

Av where
0 1
= (0

(a) Letv,,v,,w €V, and let @ € C. We have

Solution:

n—1

(o) +avy, )y = Y (f1(v, +av,), f'(w))
i=0

n—1

= Y0+ af (), f'(w))
i=0

n—1 n—1

= YUL W), [y +a Y fi(wy), fi(w))
i=0 i=0

= (0, w)) + a{{vy, w)).

We used the facts that /' is linear for 0 < i < n — 1, and that the standard her-
mitian product is linear in the first variable to obtain the chain of equalities above.
Similarly, we use linearity of f' and sesquilinearity of the standard hermitian pro-
duct in the second variable to prove sequilinearity of the expression in the second
variable. By the hermitian property of the standard hermitian product and by the
anti-linearity of complex conjugation, we obtain that the exression is hermitian,
ie.

Yo,weV . ((v,w)) = {(w,v)).
Finally, let v € V' ~ {0}. We have

n—1 n—1

(v.0)) = DAF W) @) = (v,o)+ D (f @), f1©).
i=0 i=1



(b)

(©)

(d)

By positivity of the standard hermitian product, the first term above is strictly po-
sitive and the remaining terms in the sum are non-negative. Hence,

((v,v)) > 0.

We observe that

n—1

(f@),w)) = YU W), flw))
i=0

= Y (F'@), £~ w))
i=1

n—1

= Y (Fl@). £ w)))
i=0
= (v, [ w))),

where we used that /" = id, = f=! = f*=!foralli € {0,...,n— 1}. This
implies that f* = f"! = f~! with respect to ((-,-)). This implies that f is an
isometry, so that it is normal. Hence f is diagonalisable by the Spectral Theorem
over C. Indeed, we have

(f ), f(w))) = (v, ffof(w))) = (v, w))

and

fof' =idy, = fof.

Let n, be the smallest positive integer n such that f" = id,. Then f is a root of
the polynomial

x" —1 € C[x].
This polynomial factors as
ny—1
(x = D 4 x02 ) = [J = €5,
k=0

where ¢ = e**/" € C. Hence the minimal polynomial of f, which must divide
the above polynomial, factors into distinct linear factors over C. It follows that f
is diagonalisable.

First of all, we compute that ¢ = id, and that 6 is the smallest integer to satisfy
this property. We write out the definition of ((, -)) and compute that it is given by

the hermitian matrix
8 —4
-4 8 )



The characteristic polynomial of f is given by
x> —x+1eC[x].

Hence the eigenvalue-eigenvector pairs of f are

(). (2m()

We compute that

- 1
((vy,0))) = (1 /12) (_84 84> </l_1> =8(1—-4,+ /1%) =0.

Here we used that /1_1 = A, and that 4, is a root of x> — x + 1. So, our basis of eigen-
vectors is already orthogonal with respect to (-, -)). We only need to normalize
each eigenvector. We compute that ((v,,v,)) = 12 = ({(v,, v,)). It follows that

Ul’ —U2
243 243

is an orthonormal basis of eigenvectors of f with respect to ({-, -)).

9. (5 Points) Let U and V be finite dimensional vector spaces over a field K. Let f €
End(U) and g € End(V'), and consider the endomorphism f @ g : UQV - U Q V.
Express Trace(f ® g) in terms of Trace(f) and Trace(g).

Solution: Let B = {u,, ...,u,,}, respectively C = {v,,...,v,}, be a basis of U, respec-
tively V. Then, a basis for the tensor product U @ V is given by

D={u®u, |1<i<m 1<k<n}.
Let A = (a;,); .. = 15 and B = (b)), o—,.., = [g]¢. Then, by definition
(f ®@&)u; ®vy) = fu) ® g(vy)

m n

= Z Z a;by(u; ® vy).

j=1 ¢=1
So, the diagonal entries of [ f & g]g are given by
{a;b |1 <i<m, 1 <k<n}.
Since the trace does not depend on a choice of basis, we obtain

tr(f @) =D D ayby = <2 a,.l.) (Z bkk) = tr(f)tr(g).
k=1

i=1 k=1 i=1
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