Lineare Algebra I/II - Mock exam

1. (5 points)
(a) (2 points) Give the definition of the symmetric group on n-elements S_{n}. For a permutation $\sigma \in S_{n}$ give the defintion of $\operatorname{sign}(\sigma)$. You do not have to show that $\operatorname{sign}(\sigma)$ is well defined.
(b) (3 points) Let $\sigma \in S_{n}$ and let $A \in M_{n \times n}(K)$ be the matrix obtained from the identity matrix I_{n} by permuting its rows using the permutation σ. Prove that $\operatorname{det}(A)=$ $\operatorname{sign}(\sigma)$.
2. (5 points) Let V be a finite dimensional vector space over the field \mathbb{K}. Let $T \in \operatorname{End}(V)$ and let $\lambda_{1}, \lambda_{2} \in \mathbb{K}$ be two distinct eigenvalues of T. Denote by $\operatorname{Eig}_{T}\left(\lambda_{i}\right)$ the eigenspace of λ_{i} and by $\widetilde{E i g}_{T}\left(\lambda_{i}\right)$ the generalized eigenspace of $\lambda_{i}, i=1,2$.
(a) (2 points) Prove that $\operatorname{Eig}_{T}\left(\lambda_{1}\right) \cap \operatorname{Eig}_{T}\left(\lambda_{2}\right)=\{0\}$.
(b) (3 points) Assume that the characteristic polynomial $p_{T}(x)$ of T splits as a product of linear factors in $\mathbb{K}[x]$. Prove that $\widetilde{\operatorname{Eig}}_{T}\left(\lambda_{1}\right) \cap \widetilde{\operatorname{Eig}}_{T}\left(\lambda_{2}\right)=\{0\}$.
3. (10 Points) For each statement, mark with a cross whether it is true (T) or false (F). Correct answers are awarded +1 point, incorrect answers or no answer 0 points.
(a) $\square \mathrm{T} \quad \square \mathrm{F} \quad$ The matrix $B=\left(\begin{array}{ccc}0 & \sqrt{3} i & 0 \\ \sqrt{3} i & 0 & 0 \\ 0 & 0 & -3\end{array}\right)$ is diagonalisable over \mathbb{C}.
(b) $\square \mathrm{T} \square \mathrm{F} \quad$ Every diagonalisable matrix $A \in M_{n, n}(\mathbb{K})$ consists of n linearly independent column vectors.
(c) $\square \mathrm{T} \square \mathrm{F} \quad$ Every matrix $A \in M_{n, n}(\mathbb{R})$, whose eigenvalues are all positive, is symmetric.
(d) $\square \mathrm{T} \square \mathrm{F} \quad$ Every matrix $A \in \mathrm{SO}(3)$ satisfies $\operatorname{tr}(A) \leqslant 3$.
(e) $\square \mathrm{T} \square \mathrm{F} \quad$ Let $A \in M_{4,4}(\mathbb{C})$ be a matrix with characteristic polynomial $p_{A}(x)=$ $(x+i)^{2}(x-\sqrt{2})(x+2)$. Then A is diagonalisable if and only if $\operatorname{dim}\left(\operatorname{Ker}\left(A+i 1_{4}\right)\right)=2$.
(f) $\square \mathrm{T} \square \mathrm{F} \quad$ Let f be a vector space endomorphism. Then, for every eigenvalue of f there exists a unique eigenvector.
(g) $\square \mathrm{T} \square \mathrm{F} \quad$ Let V be a finite-dimensional vector space, and let V^{*} be its dual space. Then $V \cong V^{*}$.
(h)
$\square \mathrm{T}$ $\square \mathrm{F}$ Let V be the vector space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. The map

$$
(f, g)=\int_{0}^{1} f(x) g\left(x+\frac{1}{2}\right) d x
$$

defines a scalar product over V.
(i) $\square \mathrm{T} \square \mathrm{F} \quad$ Consider $v_{1} \in \mathbb{R}^{3}$ with $\left\|v_{1}\right\|=1$. There is exactly one vector $v \in \mathbb{R}^{3}$, such that $\left(v, v_{1}\right)=1$ and $\|v\|=1$.
(j) $\square \mathrm{T} \square \mathrm{F} \quad$ Consider two endomorphisms f, g of a finite-dimensional euclidian vector space. It holds that

$$
f^{*} g^{*}=g f \Leftrightarrow f g=g^{*} f^{*}
$$

4. (14 Points) Write your answer directly on the exam sheet. You do not have to justify your answer.
(a) Compute the determinant of

$$
A_{\lambda}=\left(\begin{array}{cccc}
1 & -\lambda & \lambda^{2} & -\lambda^{3} \\
1 & 2 \lambda & 4 \lambda^{2} & 8 \lambda^{3} \\
1 & \lambda & \lambda^{2} & \lambda^{3} \\
1 & -2 \lambda & 4 \lambda^{2} & -8 \lambda^{3}
\end{array}\right) \quad \text { für } \lambda \in \mathbb{C} . \quad \operatorname{det}\left(A_{\lambda}\right)=\square
$$

(b) For which $\alpha \in \mathbb{C}$ (give all of them) is the matrix

$$
A_{\alpha}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
\alpha & -1 & 0 \\
2 & 1 & \alpha
\end{array}\right) \in M_{3,3}(\mathbb{C}) \text { invertible? }
$$

\square
(c) Let A_{α} be the same as in (b), and let α be such that A_{α} is invertible. Compute the inverse of A_{α}. (Your answer will depend on the variable α.)

(d) Compute the eigenvalues of the matrix

$$
\left(\begin{array}{ccc}
0 & -4 & 6 \\
-3 & 5 & 0 \\
2 & -4 & 1
\end{array}\right) \in M_{3,3}(\mathbb{R})
$$

Antwort: \square
(e) Let $A=\left(\begin{array}{ccc}1 & 0 & 3 \\ -1 & \alpha & -2 \\ 2 & -\alpha & 2\end{array}\right)$ and $b=\left(\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right)$. Find all $x \in \mathbb{R}^{3}$ such that $A x=b$, for $\alpha \in \mathbb{R} \backslash\{0\}$.

(f) Compute the minimal polynomial of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

Antwort: \square
(g) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}[x]$ be the unique linear map such that $T(5,2)=11+22 x$ and $T(1,7)=33-11 x$. Compute $T(1,4)$.

$$
T(1,4)=\square
$$

5. (10 Points) Consider the vector subspaces

$$
V_{1}=\left\langle\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right)\right\rangle
$$

and

$$
V_{2}=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, x+y+z=0\right\}
$$

in $V=\mathbb{R}^{3}$.
(a) (2 Points) Determine the dimension of V_{1}, V_{2} and $V_{1} \cap V_{2}$.
(b) (3 Points) Find a basis of $V_{1} \cap V_{2}$.
(c) (3 Points) Find a basis of the orthogonal complement of $V_{1} \cap V_{2}$ with respect to the standard scalar product over $V=\mathbb{R}^{3}$.
(d) (2 Points) Find a linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{Ker}(f)=V_{1} \cap V_{2}$.
6. (7 Points) Let M be a finite non-empty set and $V:=\{f: M \rightarrow \mathbb{K}\}$ be the set of all maps to \mathbb{K}. It is well known that V is a vector space over \mathbb{K} when endowed with the following operations:

$$
\begin{aligned}
(f+g)(x) & :=f(x)+g(x), \forall f, g \in V, x \in M, \\
(a f)(x) & :=a f(x), \forall f \in V, a \in \mathbb{K}, x \in M .
\end{aligned}
$$

(a) (2 Points) Determine the dimension of V.
(b) (3 Points) Fix an $m \in M$ and show that the set

$$
U_{m}:=\{f \in V \mid f(m)=0\}
$$

is a vector subspace of V. Additionally, compute the dimension of U_{m}.
(c) (2 Points) Determine a linear complement of U_{m} in V.
7. (10 Points) Consider the complex matrices

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(a) (2 Points) Show that the tuple ($\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$) defines a basis of the complex vector space $M_{2,2}(\mathbb{C})$ of 2×2 matrices.
(b) (1 Point) Show that the map

$$
\begin{aligned}
T: M_{2,2}(\mathbb{C}) & \rightarrow M_{2,2}(\mathbb{C}) \\
X & \mapsto X B-B X
\end{aligned}
$$

is linear.
(c) (3 Points) Compute the representation matrix of T with respect to the basis ($\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$).
(d) (4 Points) Determine a basis of $M_{2,2}(\mathbb{C})$ that trigonalizes T.
8. (11 Points) Let f be an endomorphism of a finite-dimensional unitary vector space $(V,\langle\cdot, \cdot\rangle)$ over \mathbb{C}. Assume that $f^{n}=i d_{V}$ for some $n \geqslant 1$.
(a) (2 Points) Show that the expression

$$
\langle\langle v, w\rangle\rangle:=\sum_{i=0}^{n-1}\left\langle f^{i}(v), f^{i}(w)\right\rangle
$$

defines (a possibly different) inner product $\langle\langle\cdot, \cdot\rangle\rangle$ on V.
(b) (2 Points) Which properties does f have with respect to $\langle\langle\cdot, \cdot\rangle\rangle$? Deduce from this that f is diagonalisable.
(c) (2 Points) Show again, using the minimal polynomial, that f is diagonalisable.
(d) (5 Points) Consider the case $V=\mathbb{C}^{2}$ with the standard inner product. Determine $\langle\langle\cdot, \cdot\rangle\rangle$ and an orthonormal basis of eigenvectors for the endomorphism $f: v \mapsto$ $A v$ where

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

9. (5 Points) Let U and V be finite dimensional vector spaces over a field \mathbb{K}. Let $f \in$ $\operatorname{End}(U)$ and $g \in \operatorname{End}(V)$, and consider the endomorphism $f \otimes g: U \otimes V \rightarrow U \otimes V$. Express Trace $(f \otimes g)$ in terms of Trace(f) and Trace (g).
