Lineare Algebra I/II - Mock exam

- 1. (5 points)
 - (a) (2 points) Give the definition of the symmetric group on *n*-elements S_n . For a permutation $\sigma \in S_n$ give the definition of sign(σ). You do not have to show that sign(σ) is well defined.
 - (b) (3 points) Let $\sigma \in S_n$ and let $A \in M_{n \times n}(K)$ be the matrix obtained from the identity matrix I_n by permuting its rows using the permutation σ . Prove that det $(A) = \operatorname{sign}(\sigma)$.
- 2. (5 points) Let V be a finite dimensional vector space over the field K. Let $T \in End(V)$ and let $\lambda_1, \lambda_2 \in \mathbb{K}$ be two distinct eigenvalues of T. Denote by $Eig_T(\lambda_i)$ the eigenspace of λ_i and by $\widetilde{Eig_T}(\lambda_i)$ the generalized eigenspace of λ_i , i = 1, 2.
 - (a) (2 points) Prove that $Eig_T(\lambda_1) \cap Eig_T(\lambda_2) = \{0\}$.
 - (b) (3 points) Assume that the characteristic polynomial $p_T(x)$ of T splits as a product of linear factors in $\mathbb{K}[x]$. Prove that $\widetilde{Eig}_T(\lambda_1) \cap \widetilde{Eig}_T(\lambda_2) = \{0\}$.
- 3. (10 Points) For each statement, mark with a cross whether it is true (T) or false (F). Correct answers are awarded +1 point, incorrect answers or no answer 0 points.

(a)
$$\Box T \Box F$$
 The matrix $B = \begin{pmatrix} 0 & \sqrt{3}i & 0 \\ \sqrt{3}i & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ is diagonalisable over \mathbb{C} .

- (b) $\Box T \Box F$ Every diagonalisable matrix $A \in M_{n,n}(\mathbb{K})$ consists of *n* linearly independent column vectors.
- (c) $\Box T \Box F$ Every matrix $A \in M_{n,n}(\mathbb{R})$, whose eigenvalues are all positive, is symmetric.
- (d) $\Box T \Box F$ Every matrix $A \in SO(3)$ satisfies $tr(A) \leq 3$.
- (e) $\Box T \Box F$ Let $A \in M_{4,4}(\mathbb{C})$ be a matrix with characteristic polynomial $p_A(x) = (x + i)^2(x \sqrt{2})(x + 2)$. Then A is diagonalisable if and only if dim(Ker $(A + i1_4)$) = 2.
- (f) $\Box T \Box F$ Let f be a vector space endomorphism. Then, for every eigenvalue of f there exists a unique eigenvector.
- (g) $\Box T \Box F$ Let V be a finite-dimensional vector space, and let V^* be its dual space. Then $V \cong V^*$.

(h) $\Box T \Box F$ Let *V* be the vector space of continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x+1) = f(x) for all $x \in \mathbb{R}$. The map

$$(f,g) = \int_0^1 f(x)g(x+\frac{1}{2})dx$$

defines a scalar product over V.

- (i) $\Box T \Box F$ Consider $v_1 \in \mathbb{R}^3$ with $||v_1|| = 1$. There is exactly one vector $v \in \mathbb{R}^3$, such that $(v, v_1) = 1$ and ||v|| = 1.
- (j) $\Box T \Box F$ Consider two endomorphisms f, g of a finite-dimensional euclidian vector space. It holds that

$$f^*g^* = gf \Leftrightarrow fg = g^*f^*.$$

- 4. (14 Points) Write your answer directly on the exam sheet. You do not have to justify your answer.
 - (a) Compute the determinant of

$$A_{\lambda} = \begin{pmatrix} 1 & -\lambda & \lambda^2 & -\lambda^3 \\ 1 & 2\lambda & 4\lambda^2 & 8\lambda^3 \\ 1 & \lambda & \lambda^2 & \lambda^3 \\ 1 & -2\lambda & 4\lambda^2 & -8\lambda^3 \end{pmatrix} \quad \text{für } \lambda \in \mathbb{C}. \qquad \det(A_{\lambda}) =$$

(b) For which $\alpha \in \mathbb{C}$ (give all of them) is the matrix

$$A_{\alpha} = \begin{pmatrix} 1 & -1 & 0 \\ \alpha & -1 & 0 \\ 2 & 1 & \alpha \end{pmatrix} \in M_{3,3}(\mathbb{C}) \text{ invertible}? \qquad \alpha \in \boxed{$$

(c) Let A_{α} be the same as in (b), and let α be such that A_{α} is invertible. Compute the inverse of A_{α} . (Your answer will depend on the variable α .)

(d) Compute the eigenvalues of the matrix

$$\begin{pmatrix} 0 & -4 & 6 \\ -3 & 5 & 0 \\ 2 & -4 & 1 \end{pmatrix} \in M_{3,3}(\mathbb{R}).$$
 Antwort:

(e) Let
$$A = \begin{pmatrix} 1 & 0 & 3 \\ -1 & \alpha & -2 \\ 2 & -\alpha & 2 \end{pmatrix}$$
 and $b = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$. Find all $x \in \mathbb{R}^3$ such that $Ax = b$, for $\alpha \in \mathbb{R} \setminus \{0\}$.

(f) Compute the minimal polynomial of the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Antwort:

(g) Let $T : \mathbb{R}^2 \to \mathbb{R}[x]$ be the unique linear map such that T(5,2) = 11 + 22x and T(1,7) = 33 - 11x. Compute T(1,4).

$$T(1,4) =$$

5. (10 Points) Consider the vector subspaces

$$V_1 = \left\langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\-4\\5 \end{pmatrix} \right\rangle$$

and

$$V_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \, \middle| \, x + y + z = 0 \right\}$$

in $V = \mathbb{R}^3$.

- (a) (2 Points) Determine the dimension of V_1 , V_2 and $V_1 \cap V_2$.
- (b) (3 Points) Find a basis of $V_1 \cap V_2$.
- (c) (3 Points) Find a basis of the orthogonal complement of $V_1 \cap V_2$ with respect to the standard scalar product over $V = \mathbb{R}^3$.
- (d) (2 Points) Find a linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ with $\text{Ker}(f) = V_1 \cap V_2$.

6. (7 Points) Let M be a finite non-empty set and $V := \{f : M \to \mathbb{K}\}$ be the set of all maps to \mathbb{K} . It is well known that V is a vector space over \mathbb{K} when endowed with the following operations:

$$(f+g)(x) := f(x) + g(x), \ \forall f, g \in V, x \in M,$$
$$(af)(x) := af(x), \ \forall f \in V, a \in \mathbb{K}, x \in M.$$

- (a) (2 Points) Determine the dimension of V.
- (b) (3 Points) Fix an $m \in M$ and show that the set

$$U_m := \{ f \in V \mid f(m) = 0 \}$$

is a vector subspace of V. Additionally, compute the dimension of U_m .

- (c) (2 Points) Determine a linear complement of U_m in V.
- 7. (10 Points) Consider the complex matrices

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- (a) (2 Points) Show that the tuple (σ₀, σ₁, σ₂, σ₃) defines a basis of the complex vector space M_{2,2}(C) of 2 × 2 matrices.
- (b) (1 Point) Show that the map

$$\begin{array}{l} T \ \colon M_{2,2}(\mathbb{C}) \rightarrow M_{2,2}(\mathbb{C}) \\ X \mapsto XB - BX \end{array}$$

is linear.

- (c) (3 Points) Compute the representation matrix of T with respect to the basis ($\sigma_0, \sigma_1, \sigma_2, \sigma_3$).
- (d) (4 Points) Determine a basis of $M_{2,2}(\mathbb{C})$ that trigonalizes T.

- 8. (11 Points) Let f be an endomorphism of a finite-dimensional unitary vector space $(V, \langle \cdot, \cdot \rangle)$ over \mathbb{C} . Assume that $f^n = id_V$ for some $n \ge 1$.
 - (a) (2 Points) Show that the expression

$$\langle \langle v, w \rangle \rangle := \sum_{i=0}^{n-1} \langle f^i(v), f^i(w) \rangle$$

defines (a possibly different) inner product $\langle \langle \cdot, \cdot \rangle \rangle$ on V.

- (b) (2 Points) Which properties does f have with respect to $\langle \langle \cdot, \cdot \rangle \rangle$? Deduce from this that f is diagonalisable.
- (c) (2 Points) Show again, using the minimal polynomial, that f is diagonalisable.
- (d) (5 Points) Consider the case $V = \mathbb{C}^2$ with the standard inner product. Determine $\langle \langle \cdot, \cdot \rangle \rangle$ and an orthonormal basis of eigenvectors for the endomorphism $f : v \mapsto Av$ where

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

9. (5 Points) Let U and V be finite dimensional vector spaces over a field K. Let $f \in End(U)$ and $g \in End(V)$, and consider the endomorphism $f \otimes g : U \otimes V \to U \otimes V$. Express Trace $(f \otimes g)$ in terms of Trace(f) and Trace(g).