Problems and suggested solution Question 1

Determine whether each of the following statements is true or false.
Throughout this exercise, we let V, W, and W^{\prime} be vector spaces over a field K, and let $U \subseteq V$ be a subspace of V.
1.MC1 [1 Point] Let W_{1} and W_{2} be linear complements of U in V. Then, W_{1} is isomorphic to W_{2}.
(A) True
(B) False

Solution:

True.
1.MC2 [1 Point] Let $f: V \rightarrow W$ and $g: W \rightarrow W^{\prime}$ be linear maps. Then $g \circ f \equiv 0$ implies $f \equiv 0 \vee g \equiv 0$.
(A) True
(B) False
1.MC3 [1 Point] Consider a subspace $V^{\prime} \subseteq V$ such that $U \subseteq V^{\prime}$. Then

$$
V / U / V^{\prime} / U \cong V / V^{\prime}
$$

(A) True
(B) False

Solution:

True.
1.MC4 [1 Point] The matrix

$$
\left(\begin{array}{ll}
2 & 0 \\
2 & 3
\end{array}\right)
$$

is invertible.
(A) True
(B) False

Solution:

True.
1.MC5 [1 Point] The set

$$
\left\{1, x+1,(x+1)^{2},(x+1)^{3}\right\} \subset K[x]
$$

is a basis for $K[x]_{3}$, the space of polynomials over K of degree at most 3 .
(A) True
(B) False

Solution:

True.
1.MC6 [1 Point] Let $V_{1}, V_{2} \subseteq V$ be subspaces. We have

$$
U+\left(V_{1} \cap V_{2}\right)=\left(U+V_{1}\right) \cap\left(U+V_{2}\right) .
$$

(A) True
(B) False

Solution:

False.
1.MC7 [1 Point] The set

$$
\left\{(t, 0,1),\left(0, t^{2}, 1\right),(1,0, t)\right\} \subset \mathbb{R}^{3}
$$

is linearly independent for all $t \in \mathbb{R}$.
(A) True
(B) False

Solution:

False.
1.MC8 [1 Point] Let $f: V \rightarrow W$ and $g: W \rightarrow W^{\prime}$ be linear maps. Assume that f is surjective. We have

$$
\operatorname{rank}(g \circ f)=\operatorname{rank}(g)
$$

(A) True
(B) False

Solution:

True.
1.MC9 [1 Point] Let $f: V \rightarrow W$ be an injective linear map. Then its dual map $f^{*}: W^{*} \rightarrow V^{*}$ is also injective.
(A) True
(B) False

Solution:

False.
1.MC10 [1 Point] Consider a linearly independent subset $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\} \subset V$, for some natural number $m \geq 1$, and let $w \in V$. Then

$$
\operatorname{dim} \operatorname{Sp}\left(v_{1}+w, v_{2}+w, \cdots, v_{m}+w\right)<m
$$

(A) True
(B) False

Solution:

False.

Question 2

Let V, W be vector spaces over a field K.
2.Q1 [1 Point] Give the definition of $\operatorname{Hom}(V, W)$.
2.Q2 [9 Points] Fix a subspace $U \subseteq V$ and consider the space

$$
H:=\left\{f \in \operatorname{Hom}(V, W)|f|_{U} \equiv 0\right\} .
$$

Show that H is isomorphic to $\operatorname{Hom}(V / U, W)$.
Remark. None of the spaces above are assumed to be finite-dimensional.

Solution:

1. By definition,

$$
\operatorname{Hom}(V, W)=\{f: V \rightarrow W \mid f \text { is a linear map }\}
$$

2. Denote $[v]$ the image of a vector $v \in V$ via the quotient map $V \rightarrow V / U$. Consider the map

$$
\begin{aligned}
& \phi: H \rightarrow \operatorname{Hom}(V / U, W) \\
& f \quad \mapsto \quad \phi(f):[v] \mapsto f(v)
\end{aligned}
$$

The map is well-defined since if $[v]=\left[v^{\prime}\right]$ in V / U, then there exists $u \in U$ such that

$$
f\left(v^{\prime}\right)=f(v+u)=f(v)+f(u)=f(v),
$$

as $f \in H$. We note that $\operatorname{ker}(\phi)=\{f \in H \mid \forall v \in V: f(v)=0\}$. Hence ϕ is injective.
Let $g: V / U \rightarrow W$ be a linear map. We consider the map

$$
\begin{array}{rlcc}
\tilde{g}: & & \rightarrow & W \\
v & \mapsto & g([v])
\end{array}
$$

By definition, $\tilde{g}(u)=g([0])=0$ for all $u \in U$. Hence $\tilde{g} \in H$ is a preimage of g through ϕ. This shows that ϕ is surjective.
To conclude that it is an isomorphism, we still need to show that ϕ is linear. Let $\alpha \in K$ and $f, g \in H$. For all $v \in V$, we have

$$
\phi(\alpha f+g)([v])=(\alpha f+g)(v)=\alpha f(v)+g(v)=\alpha \phi(f)([v])+\phi(g)([v]) .
$$

Therefore $\phi(\alpha f+g)=\alpha \phi(f)+\phi(g)$ in $\operatorname{Hom}(V, W)$, which shows that ϕ is linear and concludes the proof.

Question 3

Let K be a field and denote $K[x]_{3}$ the space of polynomials with coefficients in K of degree at most 3. Fix some $a \in K$ and consider the linear maps

$$
\text { Comp : } \begin{aligned}
K[x]_{3} & \rightarrow K[x]_{3} \\
p(x) & \mapsto p(a x)
\end{aligned}
$$

and

$$
\begin{aligned}
& D: K[x]_{3} \rightarrow K[x]_{3} \\
& p(x) \quad \mapsto \quad p^{\prime}(x)
\end{aligned}
$$

3.Q1 [6 Points] Write the matrices representing Comp and D, respectively, with respect to the standard basis for $K[x]_{3}$.
3.Q2 [4 Points] Write the matrix representing $D \circ$ Comp with respect to the standard basis of $K[x]_{3}$.

Solution:

1. Let us denote \mathcal{B} the standard basis of $K[x]_{3}$. From $\operatorname{Comp}\left(x^{k}\right)=a^{k} x^{k}$, we deduce that

$$
[\mathrm{Comp}]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a^{2} & 0 \\
0 & 0 & 0 & a^{3}
\end{array}\right)
$$

From $D\left(x^{k}\right)=k x^{k-1}$, we deduce that

$$
[D]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

2. You have seen that this amounts to computing the product of matrices $[D]_{\mathcal{B}}^{\mathcal{B}} \cdot[\operatorname{Comp}]_{\mathcal{B}}^{\mathcal{B}}$. We have

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a^{2} & 0 \\
0 & 0 & 0 & a^{3}
\end{array}\right)=\left(\begin{array}{cccc}
0 & a & 0 & 0 \\
0 & 0 & 2 a^{2} & 0 \\
0 & 0 & 0 & 3 a^{3} \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Question 4

Let V and W be vector spaces over a field K. Consider a linear map $f: V \rightarrow W$.
4.Q1 [2 Points] Define the rank of f.
4.Q2 [8 Points] Assume that V is finite-dimensional. State and prove the formula relating the dimension of V to the dimension of the kernel of f and the rank of f.

Solution:

1. The expected definition is

$$
\operatorname{rank}(f)=\operatorname{dim}(\operatorname{Im}(f))
$$

2. We state the rank-nullity theorem. For the linear map of K-vector spaces $f: V \rightarrow W$, with V finite-dimensional, we have

$$
\operatorname{dim} V=\operatorname{rank}(f)+\operatorname{dim}(\operatorname{ker}(f))
$$

It can be proved as follows: let n denote the dimension of V and let $\left\{u_{1}, \ldots, u_{r}\right\}$ be a basis of $\operatorname{ker}(f)$. It can be extended to a basis of V, which we denote $B=\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{n-r}\right\}$. Since $f\left(u_{i}\right)=0$ for $i=1, \ldots, r$, we have

$$
\operatorname{Im}(f)=\operatorname{Sp}\left(f\left(u_{1}\right), \ldots, f\left(u_{r}\right), f\left(v_{1}\right), \ldots, f\left(v_{n-r}\right)\right)=\operatorname{Sp}\left(f\left(v_{1}\right), \ldots, f\left(v_{n-r}\right)\right)
$$

We now prove that $\left\{f\left(v_{1}\right), \ldots, f\left(v_{n-r}\right)\right\}$ is a basis of $\operatorname{Im}(f)$ by showing that it is a linearly independent set. We assume for a contradiction that it isn't. Then there exist coefficients $\left\{a_{1}, \ldots, a_{n-r}\right\} \subset K$, not all vanishing, such that

$$
a_{1} f\left(v_{1}\right)+\cdots+a_{n-r} f\left(v_{n-r}\right)=0
$$

This is equivalent to

$$
\sum_{i=1}^{n-r} f\left(a_{i} v_{i}\right)=0 \Leftrightarrow f\left(\sum_{i=1}^{n-r} a_{i} v_{i}\right)=0
$$

which implies that $\sum_{i=1}^{n-r} a_{i} v_{i} \in \operatorname{ker}(f)=\operatorname{Sp}\left(u_{1}, \ldots, u_{r}\right)$. This yields a contradiction to the fact that B is a basis. So $\left\{f\left(v_{1}\right), \ldots, f\left(v_{n-r}\right)\right\}$ is a basis of $\operatorname{Im}(f)$ and thereupon, $\operatorname{rank}(f)=n-r$. We conclude that

$$
\operatorname{dim}(\operatorname{ker}(f))+\operatorname{rank}(f)=r+n-r=n=\operatorname{dim} V
$$

Question 5

Let V be a vector space over a field K.
5.Q1 [2 Points] Give the definition of a basis of V.
5.Q2 [8 Points] Assume that V is finite-dimensional. Let S be a generating set for V and let $T \subseteq S$ be a finite linearly independent set. Write a short algorithm or explain in a few sentences how we can obtain a basis \mathcal{B} of V that verifies $T \subseteq \mathcal{B} \subseteq S$.

Solution:

1. A basis of V is a linearly independent set of vectors that spans V.
2. Let r denote the cardinality of T and let $u_{i}, i=1, \ldots, r$, denote the elements of T. If T spans V, we are done since T is a basis, by definition. Else, repeat the following until T has been extended to span V.
Since $\operatorname{Sp}(T) \subsetneq V$, there exists a vector $v_{1} \in S \backslash T$. Check if $v_{1} \in \operatorname{Sp}(T)$. If it is, replace S with $S \backslash\left\{v_{1}\right\}$. If v_{1} isn't spanned by T, denote T_{1} the union $T \cup\left\{v_{1}\right\}$ and replace T with T_{1}.
Since V is finite-dimensional, this algorithm will return a finite set \mathcal{B} whose elements we denote $\left\{u_{1}, \ldots, u_{r}, w_{1}, \ldots, w_{n-r}\right\}$. By construction, $T \subset \mathcal{B} \subset S$. Moreover, \mathcal{B} is linearly independent and spans V, by construction, so \mathcal{B} is a basis of V.

Question 6

Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & \alpha & 3 \\
3 & \alpha & 2
\end{array}\right) \in M_{3 \times 3}(\mathbb{R}), \quad \alpha \in \mathbb{R}
$$

6.Q1 [6 Points] For which values of α is the matrix A invertible?
6.Q2 [4 Points] When A is not invertible, give a basis for the kernel of the linear map

$$
\begin{aligned}
T_{A}: \mathbb{R}^{3} & \rightarrow \mathbb{R}^{3} \\
v & \mapsto
\end{aligned}
$$

Solution:

1. We compute an inverse as follows:

$$
\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & \alpha & 3 & 0 & 1 & 0 \\
3 & \alpha & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & \alpha-2 & 3 & -2 & 1 & 0 \\
0 & \alpha-3 & 2 & -3 & 0 & 1
\end{array}\right) \rightarrow \cdots \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{\alpha}{2 \alpha-5} & \frac{2-\alpha}{2 \alpha-5} & \frac{\alpha-3}{2 \alpha-5} \\
0 & 1 & 0 & \frac{-5}{2 \alpha-5} & \frac{1}{2 \alpha-5} & \frac{1}{2 \alpha-5} \\
0 & 0 & 1 & \frac{\alpha}{2 \alpha-5} & \frac{\alpha-3}{2 \alpha-5} & \frac{2-\alpha}{2 \alpha-5}
\end{array}\right)
$$

Hence, A is invertible for $\alpha \in \mathbb{R} \backslash\{5 / 2\}$ and its inverse is given by

$$
A^{-1}=\frac{1}{2 \alpha-5}\left(\begin{array}{ccc}
\alpha & 2-\alpha & \alpha-3 \\
-5 & 1 & 1 \\
\alpha & \alpha-3 & 2-\alpha
\end{array}\right)
$$

2. We now let $\alpha=5 / 2$. We want to find a basis for the space

$$
\operatorname{ker} T_{A}=\left\{x \in \mathbb{R}^{3} \mid A \cdot x=0\right\}
$$

Let us first compute the space of solutions of $A \cdot x=0$. In order to do this, we perform rowreduction on A. This yields

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 & \frac{5}{2} & 3 & 0 \\
3 & \frac{5}{2} & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & \frac{1}{2} & 1 & 0 \\
0 & -\frac{1}{2} & -1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

So,

$$
\operatorname{ker} T_{A}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-z=0 \wedge y+2 z=0\right\}
$$

This is a one-dimensional subspace of \mathbb{R}^{3}. A basis is given by $\{(1,-2,1)\}$, for example.

