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Musterlösung Serie 14

Determinant

1. Compute the determinant of

B “

¨

˚

˚

˚

˚

˝

1 1 1 1 1
0 0 0 2 3
0 0 2 3 0
0 2 3 0 0
2 3 0 0 0

˛

‹

‹

‹

‹

‚

over R and over F5. Is B invertible?

Solution: We use Laplace expansion for the first column and obtain.

detpBq “ 1 ¨ det

¨

˚

˚

˝

0 0 2 3
0 2 3 0
2 3 0 0
3 0 0 0

˛

‹

‹

‚

` 2 ¨ det

¨

˚

˚

˝

1 1 1 1
0 0 2 3
0 2 3 0
2 3 0 0

˛

‹

‹

‚

.

We compute the left determinant by expanding the last row and obtain p´3q¨p´27q

and we compute the right determinant by expanding after the first column, which
yields 1 ¨ p´27q´ 2 ¨ p6 ´ 4 ` 9q. Together, this yields

detpBq “ 81 ` 2p´27 ` 14q “ 55.

Therefore, the matrix B is invertible over R but not over F5.

2. Each of the following expressions defines a function D on the set of 3ˆ 3 matrices
over the field of real numbers. In which of these cases is D a 3-linear function?

(a) D1pAq “ A11 ` A22 ` A33;

(b) D2pAq “ A2
11 ` 3A11A22;

(c) D3pAq “ A11A12A33;

(d) D4pAq “ A13A22A32 ` 5A12A22A32;

(e) D5pAq “ 0;

(f) D6pAq “ 1.
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Solution: Let

B “

¨

˝

1 1
1

1

˛

‚, C “

¨

˝

2 2
1

1

˛

‚.

These matrices will give us counterexamples for (a), (b), (c) and (f). Indeed, for
(a),

D1pCq “ 4 ‰ 6 “ 2p1 ` 1 ` 1q “ 2D1pBq.

For (b),
D2pCq “ 10 ‰ 8 “ 2p1 ` 3 ¨ 1 ¨ 1q “ 2D2pBq.

For (c),
D3pCq “ 4 ‰ 2 ¨ 1 ¨ 1 ¨ 1 “ 2D3pBq.

Finally, for (f),
D6pCq “ 1 ‰ 2 “ 2D6pBq.

We deduce that in these 4 cases, the map is not 3-linear.

We now denote the rows of a arbitrary matrix A by Ri, i “ 1, 2, 3 and view DpAq “

DpR1, R2, R3q as a function on the rows of 3 ˆ 3 real matrices. Let α “ pαiq
n
i“1 be

a row vector and let λ P R. Then, in the case of (d),

D4pλR1 ` α,R2, R3q “ pλA13 ` α3qA22A32 ` 5pλA12 ` α2qA22A32

“ λpA13A22A32 ` 5A12A22A32q ` pα3A22A32 ` 5α3A22A32q

“ λD4pR1, R2, R3q ` D4pα,R2, R3q.

This shows that D4 is linear in the first row and similar computations prove that
D4 is linear in the second and third row, hence that it is 3-linear.

Finally, for (e),

D5pλR1 ` α,R2, R3q “ 0 “ λ ¨ 0 ` 0 “ λD5pR1, R2, R3q ` D5pα,R2, R3q

and similarly for rows 2 and 3. This shows that D5 is 3-linear.
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3. (a) Let K be a field, let λ P K, and let A P MnˆnpKq. Show that:

i. For B such that A
λLiÑLi
ÝÝÝÝÝÑ B, detB “ λ detA;

ii. For B such that A
LiØLj
ÝÝÝÝÑ B, detB “ ´ detA;

iii. For B such that A
λLi`LjÑLj
ÝÝÝÝÝÝÝÑ B with i ‰ j, detB “ detA.

(b) The integers 2014, 1484, 3710 and 6996 are all multiples of 106. Show (without
brute-force calculations) that also

det

¨

˚

˚

˝

2 1 3 6
0 4 7 9
1 8 1 9
4 4 0 6

˛

‹

‹

‚

is a multiple of 106.

Lösung :

(a) See lecture notes, Prop. 4.2.3.

(b) We add p1000 ˆ p1. rowq ` 100 ˆ p2. rowq ` 10 ˆ p3. rowqq to the 4th row.
This does not change the determinant and we get

det

¨

˚

˚

˝

2 1 3 6
0 4 7 9
1 8 1 9
4 4 0 6

˛

‹

‹

‚

“ det

¨

˚

˚

˝

2 1 3 6
0 4 7 9
1 8 1 9

2014 1484 3710 6996

˛

‹

‹

‚

.

As every entry of the last row is divisible by 106, we get

det

¨

˚

˚

˝

2 1 3 6
0 4 7 9
1 8 1 9

2014 1484 3710 6996

˛

‹

‹

‚

“ 106 ¨ det

¨

˚

˚

˝

2 1 3 6
0 4 7 9
1 8 1 9
a1 a2 a3 a4

˛

‹

‹

‚

with integers a1, . . . , a4. As the determinant of a matrix over Z lies in Z, the
claim follows.

4. Compute the determinants of the following matrices

A “

¨

˚

˚

˝

0 0 0 1
´1 2 0 1
1 2 ´3 1
0 ´4 2 ´1

˛

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˝

0 1 0 0 0
´1 0 1 0 0
0 1 0 ´1 0
0 0 ´1 0 1
0 0 0 1 0

˛

‹

‹

‹

‹

‚

,
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C “

¨

˚

˚

˚

˚

˝

2 ´3 5 1 4
2 ´3 1 ´6 18
4 ´3 9 6 10

´2 4 ´6 ´1 ´1
´6 11 ´23 ´14 9

˛

‹

‹

‹

‹

‚

.

Solution: Gaussian eliminiation yields

detpAq “ ´4

detpBq “ 0

detpCq “ 24.

Alternatively one notices that the first column of B is a linear combination of the
thrird and fifth column, from which detpBq “ 0 follows.

5. Let An P Mpn ˆ n,Rq be the matrix

¨

˚

˚

˚

˚

˚

˝

2 1 0 . . . 0
1 2 1 . . . 0

0
. . . . . . . . .

...
... 1 2 1
0 . . . 0 1 2

˛

‹

‹

‹

‹

‹

‚

Prove that
det pAnq “ n ` 1.

Solution: We use induction over n. For n “ 1, 2, we obtain

det pA1q “ 2, det pA2q “ 4 ´ 1 “ 3,

which agrees with our claim. Hence let n ą 2 and assume that the claim is known
for all n1 ă n. Laplace expansion after the first column yields

det pAnq “ 2 ¨ det pAn´1q ´ det pAn´2q “ 2n ´ pn ´ 1q “ n ` 1.

Here we used the induction hypothesis, and for the second summand we expanded
after the first row.

6. Let K be a subfield of the complex numbers and n a positive integer. Let j1, . . . , jn
and k1, . . . , kn be positive integers not exceeding n. For an nˆn matrix A over K
define

DpAq “ Apj1, k1qApj2, k2q ¨ ¨ ¨Apjn, knq.

Prove that D is n-linear if and only if the integers j1, . . . , jn are distinct.
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Lösung : We first assume that jr “ js for some r ‰ s and show that D is not
n-linear in this case. Let B be be the matrix obtained by multiplying the jr-th
row of A by λ P K. Then,

DpBq “

n
ź

i“1
ji‰jr

Apji, kiq ¨

n
ź

k“1
jk“jr

pλApjr, krqq

“ λmDpAq,

where m ě 2 is the number of indices s for which js “ jr. Since in general
λmDpAq ‰ λDpAq, e.g. for λ “ 2 and non-zero matrix entries, this shows that D
is not n-linear.

Note. In the case of K :“ F2, the field with 2 elements, the scalars are the additive
identity 0K and the multiplicative identity 1K . It follows from the field axioms
(check it!) that @m ě 1 : 0mK “ 0K , and @m ě 0 : 1mK “ 1K . Hence such a map
D would be n-linear in this case. However, since F2 is not a subfield of C (to see
why, try to define an injective field homomorphism from F2 into C), this cannot
happen here.

Let us now assume that the ji’s are pairwise distinct. Let λ P K, let 1 ď r ď n, let
tαiu

n
i“1 Ă K, and consider B to be the matrix obtained by multiplying the jr-th

row of A by λ then adding to it the row-vector pαiq
n
i“1. We compute that

DpBq “

n
ź

i“1
i‰r

Apji, kiq ¨ pλApjr, krq ` αkrq

“ λDpAq ` DpCq,

where C is the matrix obtained by replacing the jr-th row of A by pαiq
n
i“1. This

shows that D is n-linear.
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Single Choice. In each exercise, exactly one answer is correct.

1. For which x P R do we have det

¨

˝

1 1 1
1 x 1
1 1 x

˛

‚“ 1?

(a) x “ ´2

(b)✓ x “ 2

(c) x “ ´1

(d) x “ 1

Solution: The determinant is px ´ 1q2, hence (b) is correct.

2. Let K be a field and MatnˆnpKq the vector space of nˆn-Matrizen over K. Which
assertion is wrong in general?

(a) A marix A P MatnˆnpKq over K is invertible if and only if detpAq ‰ 0.

(b) The determinant of an upper triangular matrix only depends on its diagonal
entries.

(c)✓ For every n ě 0 the determinant is a linear map MatnˆnpKq Ñ K.

(d) For every n ą 0 the determinant map MatnˆnpKq Ñ K is surjektive.

Solution: The determinant detpAq is linear in every column or resp. row if the
remaining rows or resp. columns are fixed, but not linear in A itself. For example,
we have detpλAq “ λn detpAq, which is in general not equal to λ detpAq ist. Hence
(c) is wrong.

We proved (a) and (b) in the lecture. Moreover, assertion (d) is correct, as the
matrix obtained from the identity by changing the upper left entry by λ has
determinant λ.

3. In general, which operation changes the determinant?

(a)✓ Exchanging two rows.

(b) Adding the multiple of one row to another

(c) Transpose.

(d) Replacement by similar matrix.

Solution: Exchanging two rows leads to a change of sign of the determinant.
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Multiple Choice Fragen.

1. Which of the following assertions are correct for arbitrary A,B P MnˆnpRq with
n ě 2?

(a)✓ We have detpABq “ detpAq detpBq.

(b)✓ From detpAq ‰ 0 it follows that the column vectors a1, ¨ ¨ ¨ , an of A are
linearly independent.

(c)✓ Es gilt detpABq “ detpBAq.

(d) For every non-zero real number λ we have detpλAq “ λ detpAq.

(e) We have detpA ` Bq “ detpAq ` detpBq.

2. Let det

ˆ

a b
c d

˙

“ 4. Which of the following statements are true?

(a) det

ˆ

2a 2b
2c 2d

˙

“ 8.

(b)✓ det

ˆ

a b
c ´ a d ´ b

˙

“ 4.

(c)✓ det

ˆ

a b
c ` 2a d ` 2b

˙

“ 4.

(d)✓ det

ˆ

a b
3c 3d

˙

“ 12.

Solution: Assertion (a) is wrong, because we have

det

ˆ

2a 2b
2c 2d

˙

“ 22 det

ˆ

a b
c d

˙

“ 22 ¨ 4 “ 16.

Assertion (b) is correct, because we have

det

ˆ

a b
c ´ a d ´ b

˙

“ det

ˆ

a b
c d

˙

´ det

ˆ

a b
a b

˙

“ 4.

Assertion (c) is correct, because we have

det

ˆ

a b
c ` 2a d ` 2b

˙

“ det

ˆ

a b
c d

˙

` 2 det

ˆ

a b
a b

˙

“ 4.

Assertion (d) is correct. This follows from the multilinearity of the determinant:

det

ˆ

a b
3c 3d

˙

“ 3 det

ˆ

a b
c d

˙

“ 12.
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