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Musterlösung Serie 15

Determinant

1. Let K be a commutative ring with identity. If A is a 2 ˆ 2 matrix over K, the
classical adjoint of A is the 2 ˆ 2 matrix adj A defined by

adjA “

ˆ

A22 ´A12

´A21 A11

˙

If det denotes the unique determinant function on 2 ˆ 2 matrices over K, show
that

(a) padjAqA “ ApadjAq “ pdetAqI;

(b) detpadjAq “ detpAq;

(c) adj pAtq “ padjAqt.

(At denotes the transpose of A.)

Lösung : Each of the above equations follows from straightforward computations.

2. (a) List explicitly the 24 permutations of degree 4, state which are odd and which
are even, and use this to give the complete Leibniz formula

detpAq “
ÿ

σ

psgnσqAp1, σ1q ¨ ¨ ¨Apn, σnq

for the determinant of a 4ˆ4 matrix. Notice that for n ě 4 it is not sufficient to
compute a combination of the diagonals of a matrix to obtain its determinant.

(b) For a general n P Ně1, how many even permutations are there in Sn?

Lösung :

Notation. We write pa1a2 ¨ ¨ ¨ arq for the cycle of length r that maps a1 to a2, a2 to
a3, ..., ar´1 to ar, and ar to a1. If σ1, σ2 are two cycles, we write their composition
σ2σ1.

(a) We count how many permutations of each type we should have. At the same
time, we identify whether they are even or odd by counting the number of
inversions (or crossings) as explained in the Abschnitt 4.3 of the lecture notes
in German. Below, odd permutations are denoted with an asterisk.

• There are
`

4
2

˘

“ 6 transpositions: p12q˚, p13q˚, p14q˚, p23q˚, p24q˚, p34q˚;
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• there are 4¨3¨2
3

“ 8 3-cycles: p123q, p213q, p124q, p214q, p234q, p324q, p134q, p314q;

• there are 4!
4

“ 6 4-cycles: p1234q˚, p1342q˚, p1243q˚, p1324q˚, p1432q˚, p1423q˚;

• there are 6
2

“ 3 products of 2 transpositions that are neither 3-cycles nor
4-cycles: p12qp34q, p13qp24q, p14qp23q. Note that neither of these can be
3-cycles nor 4-cycles since they are of order 2.

• Finally, there is the identity.

The Leibniz formula yields

detA “ ´ a12a21a33a44 ´ a13a22a31a44 ´ a14a22a33a41 ´ a11a23a32a44

´ a11a24a33a42 ´ a11a22a34a43 ` a12a23a31a44 ` a13a21a32a44

` a12a24a33a41 ` a14a21a33a42 ` a11a23a34a42 ` a11a24a32a43

` a13a22a34a41 ` a14a22a31a43 ´ a12a23a34a41 ´ a13a21a34a42

´ a12a24a31a43 ´ a13a24a32a41 ´ a14a21a32a43 ´ a14a23a31a42

` a12a21a34a43 ` a13a24a31a42 ` a14a23a32a41 ` a11a22a33a44.

(b) First note that when n “ 1, S1 “ tidu. Hence the number of even permuta-
tions is 1.

For n ě 2, we prove that Sn has as many even permutations as it has odd
permutations by building a bijection between even and odd permutations.
Let σ P Sn and consider pσp1qσp2qq ˝ σ. Then

ppσp1qσp2qq ˝ σqpiq “

$

&

%

σpiq, i P t3, . . . , nu ∖ t1, 2u

σp1q, i “ 2
σp2q, i “ 1

Note that

sgnppσp1qσp2qq ˝ σq “ sgnppσp1qσp2qqq ¨ sgnpσq “ ´ sgnpσq.

Hence, multiplying by pσp1qσp2qq defines a map

φ : teven permutations of Snu Ñ todd permutations of Snu

σ ÞÑ pσp1qσp2qq ˝ σ

This map is its own both-sided inverse and therefore is bijective, which shows
that Sn splits equally between even and odd permutations and therefore that
there are n!{2 of each.

Aliter : We use induction to prove that Sn contains n!
2
even permutations for

n ě 2. First notice that S2 contains 1 “
|S2|
2

even permutation (the identity)

and 1 “
|S2|
2

odd permutation (the only non-trivial one). Recall that you have
looked at S3 in the lectures and at S4 above and that they also equally split
in even and odd permutations.
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Assume now that n ą 2. Let σ P Sn and denote ai the image σpiq for i P

t1, . . . , nu. Then

ppannq ˝ σqpiq “

$

&

%

ai, i ‰ n ^ ai ‰ n
n, i “ n
an, ai “ n

Hence the permutation pannq˝σ can be viewed as an element of Sn´1 denoted
σ̃ satisfying

σ “ pannq ˝ σ̃.

This equality shows that σ̃ is uniquely determined by the choice of σ. Hence
we can define a map

φ : Sn Ñ Sn´1

σ ÞÑ φpσq, such that pan nq ˝ σ “ φpσq.

Observe that this map is surjective. Indeed, we can view any τ P Sn´1 as an
element of σ of Sn that maps n to n. Then

τ “ pnnq ˝ σ ùñ τ “ φpσq.

Additionally, observe that this map is n-to-1 since for any τ P Sn´1, for any
an P t1, . . . , nu, the permutation pan nqτ P Sn is a preimage of τ .

Finally, note that any even permutation τ P Sn´1 will have n´1 odd preimages
and 1 even preimage (which corresponds to τ viewed as an element of Sn)
and any odd permutation τ P Sn´1 will have n ´ 1 even preimages and 1
odd preimage. Hence, using our induction hypothesis, the number of even
permutations in Sn is

pn ´ 1q!

2
¨ 1 `

pn ´ 1q!

2
¨ pn ´ 1q “

n!

2
.

Aliter : We have showed that sgn : Sn Ñ t´1, 1u is a group homomorphism
(the set on the right defines group under multiplication). By the first isomor-
phism theorem, we have

Snäkerpsgnq – t´1, 1u.

Since every group involved is finite, their cardinalities also match and

2 “

∣∣∣Snäkerpsgnq

∣∣∣ “
|Sn|

|kerpsgnq|
“

n!

|kerpsgnq|
.

By definition, kerpsgnq is the group of even permutations. Hence there are n!
2

even permutations and thereupon an equal number of odd ones.
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3. An n ˆ n matrix A is called triangular if Aij “ 0 whenever i ą j or if Aij “ 0
whenever i ă j. Prove that the determinant of a triangular matrix is the product
A11A22 ¨ ¨ ¨Ann of its diagonal entries.

Lösung : Assume that A is upper triangular and consider the Leibniz formula

detA “
ÿ

σPSn

sgnpσq

n
ź

i“1

Api, σpiqq.

A is upper triangular, so if for a given σ P Sn Di P t1, . . . , nu s.t. σpiq ă i, the
above product vanishes. Let us therefore only consider permutations σ such that
@i P t1, . . . , nu : σpiq ě i.

For such a permutation, assume that there exists an index i P t2, . . . , nu such
that σpiq ą i, and let i0 be the smallest such index. Then σ maps ti0, . . . , nu to
ti0 ` 1, . . . nu. This is a contradiction since σ is a bijective map. We deduce that

detA “ sgnpidq

n
ź

i“1

Api, iq

“

n
ź

i“1

Api, iq.

Aliter : We prove it by induction on the size of the matrix n for upper triangular
matrices. For n “ 1, the equality clearly holds. For n “ 2, we have

det

ˆ

Ap1, 1q Ap1, 2q

0 Ap2, 2q

˙

“ Ap1, 1qAp2, 2q.

Assume that the formula holds for every upper triangular matrix of size n ´ 1.
Consider

A “

¨

˚

˚

˚

˝

Ap1, 1q Ap2, 2q ¨ ¨ ¨ Ap1, nq

0 Ap2, 2q ¨ ¨ ¨ Ap2, nq
...

...
...

0 0 ¨ ¨ ¨ Apn, nq

˛

‹

‹

‹

‚

We compute detA by expanding with respect to the first row and use our induction
hypothesis:

detA “ p´1q
2Ap1, 1q ¨ det

¨

˚

˚

˚

˝

Ap2, 2q Ap2, 3q ¨ ¨ ¨ Ap2, nq

0 Ap3, 3q ¨ ¨ ¨ Ap3, nq
...

...
...

0 0 ¨ ¨ ¨ Apn, nq

˛

‹

‹

‹

‚

“

n
ź

i“1

Api, iq.
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4. Let n P Ně2. Show that

det

¨

˚

˚

˚

˝

1 x1 x2
1 ¨ ¨ ¨ xn´1

1

1 x2 x2
2 ¨ ¨ ¨ xn´1

2
...

...
...

...
1 xn x2

n ¨ ¨ ¨ xn´1
n

˛

‹

‹

‹

‚

“
ź

1ďiăjďn

pxj ´ xiq.

Remark. Products of the sort are called a Vandermonde determinants and the
above matrix is called a Vandermonde matrix.

Lösung : We prove the formula by induction. First note that the formula holds for
n “ 2 since

det

ˆ

1 x1

1 x2

˙

“ x2 ´ x1.

Let us now consider the n-th Vandermonde matrix, denoted Vn, and assume that
the formula holds for the n ´ 1-st determinant. We substract the first row from
every other row (this operation preserved the determinant), then expand with
respect to the first column and obtain

detVn “ det

¨

˚

˚

˚

˝

1 x1 ¨ ¨ ¨ xn´1
1

0 x2 ´ x1 ¨ ¨ ¨ xn´1
2 ´ xn´1

1
...

...
...

0 xn ´ x1 ¨ ¨ ¨ xn´1
n ´ xn´1

1

˛

‹

‹

‹

‚

“ 1 ¨ det

¨

˚

˝

x2 ´ x1 ¨ ¨ ¨ xn´1
2 ´ xn´1

1
...

...
xn ´ x1 ¨ ¨ ¨ xn´1

n ´ xn´1
1

˛

‹

‚

.

Recall the formula

xm
´ ym “ px ´ yqpxm´1

` xm´2y ` ¨ ¨ ¨ ` xym´2
` ym´1

q.

For each i P t2, . . . , nu, we factor the i ´ 1-st row by pxi ´ x1q and we use the
n-linearity of the determinant to pull this factor out. We obtain

detVn “

n
ź

i“2

pxi ´ x1q det

¨

˚

˝

1 x2 ` x1 ¨ ¨ ¨
řn´2

k“0 x
k
1x

n´2´k
2

...
...

...

1 xn ` x1 ¨ ¨ ¨
řn´2

k“0 x
k
1x

n´2´k
n

˛

‹

‚

.

Note that

`

1 xi x2
i ¨ ¨ ¨ xn´2

i

˘

¨

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xm
1

xm´1
1
...
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

m
ÿ

k“0

xk
1x

m´k
i .
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Hence the last matrix can be written as the product of the Vandermonde matrix
¨

˚

˝

1 x2 ¨ ¨ ¨ xn´2
2

...
...

...
1 xn ¨ ¨ ¨ xn´2

n

˛

‹

‚

with the upper triangular matrix
¨

˚

˚

˚

˝

1 x1 x2
1 ¨ ¨ ¨ xn´2

1

0 1 x1 ¨ ¨ ¨ xn´3
1

...
...

...
...

0 0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

.

We use our induction hypothesis and the fact that the determinant of a product
of square matrices equals the product of the determinants, and conclude that

detVn “

n
ź

i“2

pxi ´ x1q ¨
ź

2ďjăkďn´1

pxk ´ xjq ¨ 1

“
ź

1ďiăjďn

xj ´ xi.

5. Let K be a field and let A,B,C,D P MnˆnpKq. Assume that A and C commute
and that detA ‰ 0. Show that

det

ˆ

A B
C D

˙

“ detpA ¨ D ´ C ¨ Bq

Hint. Consider the matrix
ˆ

In On

´C A

˙

.

Lösung : We compute that
ˆ

In On

´C A

˙

¨

ˆ

A B
C D

˙

“

ˆ

A B
´C ¨ A ` A ¨ C ´C ¨ B ` A ¨ D

˙

“

ˆ

A B
On ´C ¨ B ` A ¨ D

˙

,

where we used the fact that A and C commute to obtain the last equality. Using
the formula for the determinant of the product of two matrices and a result you’ve
seen in the lectures about block matrices of this shape, we obtain

detpInq detpAq det

ˆ

A B
C D

˙

“ detpAq detpA ¨ D ´ C ¨ Bq

ðñ det

ˆ

A B
C D

˙

“ detpA ¨ D ´ C ¨ Bq.
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6. Prove the following proposition using the Leibniz formula for determinants:

Proposition. Let K be a field, and let A,B P MnˆnpKq. Then

detpABq “ detpAq ¨ detpBq.

Hint. Denote teiu
n
i“1 the standard basis of Kn and write the matrix B as a list of

column blocks:

B “
`

řn
s1“1Bps1, 1qes1 ¨ ¨ ¨

řn
sn“1Bpsn, nqesn

˘

.

You will also need to prove the following lemma

Lemma. For any A P MnˆnpKq and any σ P Sn, we have

det
`

A ¨ eσp1q ¨ ¨ ¨ A ¨ eσpnq

˘

“ sgnpσq detpAq.

Lösung : We write the matrix B as a list of column blocks:

B “
`

řn
s1“1Bps1, 1qes1 ¨ ¨ ¨

řn
sn“1Bpsn, nqesn

˘

.

We can now write the product A ¨ B as list of column blocks:

A ¨ B “
`

řn
s1“1Bps1, 1qA ¨ es1 ¨ ¨ ¨

řn
sn“1Bpsn, nqA ¨ esn

˘

.

To compute the determinant, we expand with respect to each column:

detpABq “

n
ÿ

s1“1

¨ ¨ ¨

n
ÿ

sn“1

˜

n
ź

i“1

Bpsi, iq

¸

det
`

A ¨ es1 ¨ ¨ ¨ A ¨ esn
˘

Note that if for some i ‰ j : si “ sj, the si-th column of A appears several times
in the last matrix. Hence the determinant vanishes in this case. So we only need to
consider tuples ps1, . . . , snq for which i ÞÑ si is a bijection. Such tuples correspond
1-to-1 to the permutations Sn, therefore we can rewrite the last equation as

ÿ

σPSn

˜

n
ź

i“1

Bpσpiq, iq

¸

det
`

A ¨ eσp1q ¨ ¨ ¨ A ¨ eσpnq

˘

. (1)

We’ll use the following result to conclude:

Lemma 1. For any A P MnˆnpKq and any σ P Sn, we have

det
`

A ¨ eσp1q ¨ ¨ ¨ A ¨ eσpnq

˘

“ sgnpσq detpAq.
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Beweis. You have seen that any permutation can be written as a product of trans-
positions. We prove the lemma by induction on the number r of transpositions used
to decompose σ. Assume first that σ is a transposition. Then σ inverts 2 columns
of A. Hence, as seen in the previous exercise sheet,

det
`

A ¨ eσp1q ¨ ¨ ¨ A ¨ eσpnq

˘

“ ´ detA.

Assume now that σ is a product of r ą 1 transpositions, σ “ τrτr´1 . . . τ1. Denote
τr´1 ¨ ¨ ¨ τ1 by σ1. We have

det
`

A ¨ eσp1q ¨ ¨ ¨ A ¨ eσpnq

˘

“ det
`

A ¨ eτrσ1p1q ¨ ¨ ¨ A ¨ eτrσ1pnq

˘

.

Since τr permutes two columns of
`

A ¨ eσ1p1q ¨ ¨ ¨ A ¨ eσ1pnq

˘

, we have again
that

det
`

A ¨ eτrσ1p1q ¨ ¨ ¨ A ¨ eτrσ1pnq

˘

“ ´
`

A ¨ eσ1p1q ¨ ¨ ¨ A ¨ eσ1pnq

˘

We conclude using the induction hypothesis.

We plug the result we just obtained in (1) and obtained

detpABq “ detpAq
ÿ

σPSn

sgnpσq

˜

n
ź

i“1

Bpσpiq, iq

¸

“ detpAq detpBq.
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