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Characteristic polynomials, Eigenvectors, Eigenvalues

1. Consider the matrix A “

¨

˝

3 0 ´2
2 0 ´2
0 1 1

˛

‚over R.

(a) Determine the characteristic polynomial of A.

(b) Determine the eigenvalues of A.

(c) The geometric multiplicity of an eigenvector is the dimension of its eigenspace.
The arithmetic multiplicity of an eigenvector is the multiplicity of this eigen-
vector as a zero of the characteristic polynomial. Determine the arithmetic
and geometric multiplicity of all eigenvalues.

Solution:

(a) We use the determinant formula for 3 ˆ 3-matrices:

charApXq “ det pX ¨ I3 ´ Aq “ det

¨

˝

X ´ 3 0 2
´2 X 2
0 ´1 X ´ 1

˛

‚

“ pX ´ 3qXpX ´ 1q ` 4 ` 2pX ´ 3q

“ X3
´ 4X2

` 5X ´ 2.

(b) As the polyonial is monic and has coefficients in Z, all of its zeros in Q
are contained in Z and divide the constant coefficient ´2. Trying out yields
X “ 1. Polynomial division and the quadratic formula yield

charApXq “ pX ´ 1q
`

X2
´ 3X ` 2

˘

“ pX ´ 1q
2
pX ´ 2q.

Thus the eigenvalues are λ1 :“ 1 and λ2 :“ 2.

(c) The arithmetic multiplicity is the multiplicity of the eigenvalues as zeros of
the characteristic polynom. Thus the arithmetic multiplicity of λ1 is 2 and
that of λ2 is 1. The geometric multiplicity is the dimension of the eigenspace.
For the eigenvalue λ1, consider the matrix

λ1 ¨ I3 ´ A “

¨

˝

´2 0 2
´2 1 2
0 ´1 0

˛

‚.
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This matrix has rank 2, because the first two columns are linearly independent
and the last column is minus the first one. The kernel of the corresponding
linear map hence has dimension 3 ´ 2 “ 1. Therefore, the geometric multi-
plicity of λ1 is 1 . Since the eigenvalue λ2 has arithmetic multiplicity 1, the
geometric multiplicity is ď 1 and ą 0; thus, it is 1.

Aliter : Consider for λ2 the matrix

λ2 ¨ I3 ´ A “

¨

˝

´1 0 2
´2 2 2
0 ´1 1

˛

‚.

This matrix has rank 2, and thus the geometric multiplicity of λ2 is 3´2 “ 1.

2. Compute the characteristic polynomial, the eigenvalues and eigenvectors of the
following matrices over Q and check if they are diagonalizable.

(a) A :“

ˆ

1 ´1
2 4

˙

(b) B :“

¨

˝

2 2 3
1 2 1
2 ´2 1

˛

‚

(c) C :“

¨

˚

˚

˝

´4 ´3 ´1 ´7
´3 ´1 ´1 ´4
6 4 3 8
3 3 1 6

˛

‹

‹

‚

Solution:

(a) The matrix A has characteristic polynomial

charApXq “ X2
´ 5X ` 6 “ pX ´ 2qpX ´ 3q

and hence eigenvalues 2 and 3, both with arithmetic multiplicity 1. The ei-
genspaces Eλ,A corresponding to eigenvalue λ are

E2,A “

Bˆ

1
´1

˙F

, E3,A “

Bˆ

1
´2

˙F

.

As for both eigenvalues of A the geometric multiplicity is the arithmetic
multiplicity, the matrix A is diagonalizable.

(b) The matrix B has the characteristic polynomial

charBpXq “ X3
´ 5X2

` 2X ` 8 “ pX ´ 4qpX ´ 2qpX ` 1q.
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and thus its eigenvalues are 4, 2,´1, all of arithmetic multiplicity 1. Their
eigenspaces are

E4,B “

C

¨

˝

8
5
2

˛

‚

G

, E2,B “

C

¨

˝

2
3

´2

˛

‚

G

, E´1,B “

C

¨

˝

1
0

´1

˛

‚

G

.

As for every eigenvector of B the geometric multiplicity and the geometric
multiplicity ar ethe same, the matrix B is diagonalizable.

(c) The matrix C has characteristic polynomial

charCpXq “ X4
´ 4X3

` 3X2
` 4X ´ 4 “ pX ´ 1qpX ` 1qpX ´ 2q

2

and hence the eigenvalues 1,´1, 2 with arithmetic multiplicities 1, 1, 2. The
eigenspaces are

E1,C “

C

¨

˚

˚

˝

´1
´1
1
1

˛

‹

‹

‚

G

, E´1,C “

C

¨

˚

˚

˝

´2
´1
2
1

˛

‹

‹

‚

G

, E2,C “

C

¨

˚

˚

˝

´1
´1
2
1

˛

‹

‹

‚

G

.

The eigenvalue 2 has arithmetic multiplicity 2 and geometric multiplicity 1.
Therefore, the matrix C is not diagonalizable.

3. For an arbitrary invertible n ˆ n-matrix A, write the characteristic polynomial of
A´1 in terms of the characteristic polynomial of A.

Solution: We have

charA´1pXq “ det
`

X ¨ In ´ A´1
˘

“ det
`

p´Xq ¨ A´1
¨
`

X´1
¨ In ´ A

˘˘

“ p´Xq
n det

`

A´1
˘

det
`

X´1
¨ In ´ A

˘

“
p´Xqn

detpAq
¨ charA

`

X´1
˘

.

4. Let K8 be the vectorspace of all infinite sequences in K, and let K8
0 be the

subspace of all sequences where all but finitely many elements are 0.

(a) Determine all eigenvalues and eigenvectors of the endomorphism

T : K8
Ñ K8, px0, x1, x2, . . .q ÞÑ px1, x2, x3, . . .q .

(b) Do the same for the induced endomorphism K8
0 Ñ K8

0 .

(c) Construct an endomorphism of K8
0 with eigenvalues 0, 1, 2, 3, . . .
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(d) Construct an endomorphism of K8
0 which has no Eigenvalues.

Solution:

(a) Let x “ pxiqiě0 P F and λ P K be such that

Tx “ λx

Then we have λxn “ xn`1 for all n ě 0, which by induction yields xn “ λnx0

for all n. The vector x is thus a multiple of

vλ :“
`

1, λ, λ2, . . .
˘

‰ 0

On the other hand every non-zero multiple of vλ is an eigenvector of T with
eigenvalue λ. Hence every scalar λ P K is an eigenvalue of T with one-
dimensional eigenspace xvλy.

(b) Let
T0 “ T |F0

: F0 Ñ F0

be the restriction of T on F0. Because of (a), every eigenvector to the eigen-
value λ of T0 is equal to cvλ for c P Kˆ. But

cvλ “ pc, cλ, . . . , cλn, . . .q

is contained in F0 if and only if λ “ 0. Hence T0 has eigenvalue 0 with
eigenspace xv0y hat and no other eigenvalues.

(c) Consider the linear map

U : F0 Ñ F0, pxnqně0 ÞÑ pn ¨ xnqně0

For every k ě 0 the vector vk :“ pδknqně0 is an eigenvector of U with eigen-
value k. As the set tvk | k ě 0u is a basis of F0, there are up to scalars no
other eigenvectors, hence no other eigenvalues.

(d) Consider the linear map

M : F0 Ñ F0, px0, x1, x2, . . .q ÞÑ p0, x0, x1, x2, . . .q

Let x “ pxnqně0 P F0 be a vector with Mx “ λx for λ P K. Then

x0 “ λx1 “ ¨ ¨ ¨ “ λnxn “ . . .

As there exists an m ě 0 with xk “ 0 for all k ě m, we have x0 “ x1 “ ¨ ¨ ¨ “

xm “ 0 , hence x “ 0. The endomorphism M therefore has no eigenvectors
and thus no eigenvalues.
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5. Let A be a nilpotent n ˆ n real matrix. This means that there exists m ě 1 with
Am “ O. Show that the only possible eigenvalue of A is 0. When exactly is 0 an
eigenvalue of A?

Solution: Let λ P K be an eigenvalue of A with eigenvector v. Then we have
Av “ λv, and by induction we get Akv “ λkv for all k ě 0. By assumption we
have λmv “ Amv “ Ov “ 0. As v ‰ 0, we get λ “ 0. Hence λ “ 0 is the only
possible eigenvector A.

We prove that 0 is always an eigenvalue of A. If A were invertible, the matrix Am

would be the product of invertible matrices, contradicting Am “ O. Hence A is not
invertible. This implies that (the map “left multiplication by”) A has non-trivial
kernel and therefore that 0 is an eigenvalue of A.

Aliter : For n ě 1, we have A0 “ In ‰ O. The smallest natural number m ě 1
with Am “ 0 thus satisfies Am´1 ‰ 0. Hence there exists a vector v P Kn with
w :“ Am´1v ‰ 0. As

Aw “ Amv “ 0 ¨ v “ 0

we get that w is an eigenvector of A with eigenvalue 0.

6. Let V be a K-vectorspace and let F,G P EndpV q. Show:

(a) If v P V is an eigenvector of F ˝G with eigenvalue λ and Gpvq ‰ 0, then Gpvq

is an eigenvector of G ˝ F with eigenvalue λ.

(b) If V is finite-dimensional, the endomorphisms F ˝G and G˝F have the same
eigenvalues.

(c) Find a counterexample to (b) if V is not finite-dimensional.

Solution:

(a) Let v P V be an eigenvector of F ˝ G with eigenvalue λ with Gpvq ‰ 0. Then
we have

G ˝ F pGpvqq “ GpF ˝ Gpvqq “ Gpλvq “ λGpvq.

Hence Gpvq is an eigenvector of G ˝ F with eigenvalue λ.

(b) Let pλ, vq be an eigenvector-eigenvalue pair of F ˝ G. We differentiate the
cases Gpvq ‰ 0 and Gpvq “ 0.

If Gpvq ‰ 0, then λ is an eigenvalue of G ˝ F by (a).

If Gpvq “ 0, then λv “ pF ˝ Gqpvq “ F p0q “ 0. So, λ “ 0 and we must show
that 0 is an eigenvalue of G˝F . This is equivalent to G˝F having non-trivial
kernel, which happens if and only if G ˝ F is of rank ă dimpV q. Now,

rankpG ˝ F q ď minprankpGq, rankpF qq ă dimpV q

since G is an endomorphism of V with non–trivial kernel by assumption.
Hence, 0 is an eigenvalue of G ˝ F .
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This shows that every eigenvalue of F ˝ G is an eigenvalue of G ˝ F . The
converse inclusion is obtained by exchanging G and F above.

(c) Let V “ RN :“
␣

panqně0

(

be the vector space of all sequences in R. Define
linear maps F,G : V Ñ V by

F : pa0, a1, a2, . . .q ÞÑ p0, a1, a2, a3, . . .q

G : pa0, a1, a2, . . .q ÞÑ pa1, a2, . . .q .

Then G ˝ F is the identity with sole Eigenvalue 1, whereas F ˝ G has also
eigenvalue 0 because

pF ˝ Gqp1, 0, 0, ¨ ¨ ¨ q “ p0, 0, 0, ¨ ¨ ¨ q.
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