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Musterlosung Serie 17

EIGENVECTORS, EIGENVALUES

1. In each of the following cases, let T; be the endomorphism of R? which is repre-
sented by the matrix A; in the standard ordered basis for R?, and let U; be the
endomorphism of C? represented by A; in the standard ordered basis. Find the
characteristic polynomial for T; and that for U;, find the eigenvalues of each endo-
morphism, and for each such eigenvalue find a basis for the corresponding space
of eigenvectors.
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Solution: We have
chary, (X) = chary, (X) = X(X —1).

Hence both T7 and U; have real eigenvalues 0 and 1. We compute that

Eigy, (0) = < (ﬁ)) >R . Bign (1) = < <(13> >R

and similarly for U; but taking the span over C instead of R.

In the second case we have
charr, (X) = X?-3X +5¢€ R[X].

This polynomial doesn’t split into linear factors in R[X] hence the endomorphism
T, does not have any real eigenvalues. However, if we now consider U, € End(C?),
chary, (X) € C[X] splits into linear factors and takes A\; = 1(3 + 41/11) and
A2 = (3 —iv/11) for roots.

We use a handy trick to easily compute eigenvectors:

Eigenvector trick for 2 x 2 matrices. Let A be a 2 x 2 matriz, and let X be a
(real or complex) eigenvalue of A. Then

*

A=A = (?: 6) — (_j) s an eigenvector with eigenvalue A,
assuming the first row of A — Xy is non-zero.
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FExplanation. Indeed since A is an eigenvalue, A — Al5 has nontrivial kernel. It
follows that its rows are collinear, i.e. that the second row is a complex multiple

of the first one:
a fB a fp
= , e C.
<* *) <7a 75) or some 7y

So () is an obvious element of that kernel.

Applying this to A, and its eigenvalue A\{, we get

Ay — I — (2—/\1 3)

* *

which implies that Eig, (A1) is generated by

(53) = (o vin)

Similarly, we recover that Eigy;, (A2) is generated by

-3
<%(1 + i\/ll).)
We treat T3 and Us similarly as 77 and U;. Their characteristic polynomial splits
into linear factors in R[X]:
charg, (X) = chary,(X) = X(X — 2).

The eigenvalues are therefore 0 and 2. We find that

sws0=((2)) = (),

Similarly for Us over C.

. Let K be a field and let V' be a finite-dimensional vector space over K. Suppose
that 7" e End (V') is invertible. Prove that Eig,(\) = Eig,-1(1/)) for every A € K*.

Lésung: This easily follows from the definition:

Eigr(A) = {veV | Tv = \v}
={weV|w=A\T"w}

1
z{weV\szle}

1
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Remark. We didn’t use the assumption that V is finite-dimensional. In fact, this
statement also holds in infinite-dimensional vector spaces by the same proof.

. Consider the space C*(R) of smooth functions over R and the map
T: C*R) — C*R)
fooo=
Find the eigenvalues and the corresponding eigenfunctions (this is a synonym for
eigenvectors when working on a space whose elements are functions) of 7.

Solution: For A € K, we can get an idea of the solution by solving the linear
ordinary differential equation

d f(»)
dz

= M (z).
We have
1 df(z)

xdac

ffl R r=[aae

Substituting u for f(x) on the left-hand side, we obtain du = déc(f) dzx

fldUZ)\x—I—C, CeK
u

—  log(u) =Xz +C

—  log(f(z)) =z +C

—  f(z) = MTC.
Hence, the family {f(x) = f(0)e* | X € K} is a set of eigenfunctions of T' and, at
least formally, eigenfunctions should have the form f(x) = f(0)e*® for A € K.

To check that these are the only possible solutions We use the following trick:
consider a solution fy of the differential equation = Af(x) and define the
modified function

dz

go(z) = e fo ().

Now,

(ég;o( ) = =X M fo(x) + Ae N fo(x)
= (.

We deduce that go(z) is constant, hence for all x € R,
go(x) = 90(0) = fo(0) = fo(x) = fo(0)e*
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4.

5.

Let K = R, show that K does not admit any countable basis.

Hint: Use the fact that pairwise distinct eigenvalues correspond to a set of linearly
independent eigenvectors.

Solution: Let A € K and consider the sequence Ly := (1, A\, A2, \3,...). Apply the
shift operator
S K* — K*
(CL(), ay,as, as, ... ) — (al, as, as, . . )

to Ly and observe that (A, Ly) is an eigenvalue-eigenvector pair for S. Hence S
admits an uncountable number of eigenvalues since each A € K is one. Moreover,
as seen in the lectures, since these eigenvalues are distinct, the set {L, | A € K}
is linearly independent. Using Serie 6 exercise 5, we conclude that K® does not
admit any countable basis.

(a) Let f be an endomorphism of a finite-dimensional vector space V', and let
V=V®&...®V, with f-invariant subpaces V;. Show, that the arithmetic,
resp. geometric multiplicities of an eigenvalue A € K of f is equal to the
sum of the arithmetic, resp. geometric multiplies of A as an eigenvalue of the
endomorphisms f|y. of V;.

(b) Deduce that f is diagonalizable if and only if f|y, is diagonalizable for every
1.

(c) Let f and g be endomorphisms for the same finite dimensional vector space
V. Show that f and g are simultaneously diagonalizable (meaning that there
exists a basis of eigenvectors of f which are all also eigenvectors of g) if and
only if they commute and are diagonalizable.

Hint: To prove the the backward direction, first show that each eigenspace
of f is g-invariant, i.e. that ¢ maps eigenvectors of f to eigenvectors of f in
the same eigenspace.

Lésung:

(a) For every 1 < i < r choose an ordered basis B; of V;. Joined in ascending
order, these form a basis B of V. The transformation matrix of f with respect
to B is then a block diagonal matrix with diagonal blocks M gj( flv;) for
1 < @ < r. The characteristic polynomial of f thus is the product of the
characteristic polynomials of f

vy L.e.

char(X) = Hcharﬂvi (X) (1)

For every A € K the arithmetic multiplicity of A as eigenvalue of f is there-
fore equal to the sum over 1 < ¢ < r of the arithmetic multiplicity of A as
eigenvalue of fly;.



Now consider an arbitrary vector v = vy + - - - + v, with v; € V;. Then we have
f)=f(v1)+...+ f(v,) with f(v;) e V;and as V = V1 ®... @V, is a direct

sum, we get
f(vl)++f(vr) :f(/U) :AU:)\U1++>\UT
if and only if f(v;) = Av; for all 1.

Important. Here, we really need both the fact that the V;’s are f-invariant
and that V =V, ® ... @V, is a direct sum to justify

flor+-+v)=flv)= v < Vie{l,...,r}: f(v) = .

Indeed the backward implication follows directly by factorising by A but the
forward implication is in general false if both conditions are not satisfied.

Hence we have

Vi)

Eigy(f) = D Eig,(f
i=1
and thus ,
dim Eig, (f) = 2 dim Eig, (f

=1

vi)-

Therefore, the geometric multiplicity of A as eigenvalue of f is equal to the
sum over 1 < i < r of the geometric multiplicities of A as eigenvalue of f|y;.

By a theorem from the lecture an endomorphism of a finite dimensional vector
space is diagonalizable if and only if its characteristic polynomial splits into
linear factors and dor every of its eigenvalues the geometric multiplicity is
equal to the arithmetic multiplicity.

The formula (1) yields that char;(X) splits into linear factors if and only if
for chary,, (X) does for every i. Consider an arbitrary eigenvalue A € K of
(f). Then we get from (a) and the fact, that the geometric multiplicity is
always < the arithmetic multiplicity, that these multiplicities are equal for f
if and only if they are equal for every f|y,. Hence f is diagonalizable if and
only if f|y, is for all 7.

Assume that f and g are simultaneously diagonalizable. Then f and g are of
course diagonalizable. Let vy, ..., v, be a basis of V' consisting of simultaneous
eigenvectors of f and g with eigenvalues A,..., A\, for f and pq,...,pu, for
g. For every element Y | a;v; € V, we have

/ (9 (Z ai“z’)) = f <Z Oéz’Mi”z’) = Zaz‘ﬂz‘)\z‘vi
i=1 i=1 i=1
= iai&mw =g (i Oéz‘/\z'Ui) =g (f (i Oéi%’)) .
i=1 i=1 i=1
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Thus f and g commute.

Now assume that f and g commute and are both diagonalizable. As f is dia-
gonalizable, there exist eigenvalues Aq,..., A, of f with V' = @!_, Eig,.(f).
For every 1 < i <r and v € Eig, (f) commutativity of f and g yields:

flg(v)) = g(f(v)) = g(Aiv) = Nig(v)

and thus g(v) € Eig,,(f). The eigenspaces of f are hence g-invariant. As g is
also diagonalizable, the map g|mig, (f) is also diagonalizable for every 1 <i <r

according to (b). Thus there exists a basis B; of Eig, (f) from eigenvectors
of g. Together, we get that B := B; u --- U B, is a basis of V consisting
of simultaneous eigenvectors of f and g; hence f and ¢ are simultaneously
diagonalizable.

6. Let K be a field and let V be an n-dimensional vector space over K (n > 0).

(a) Let T be a diagonalizable endomorphism of V' with (not necessarily distinct)
eigenvalues \; for 1 <@ < n. Show that

Te(T) = Z A; and that det(T) = n i

i=1 i=1

For 0 < k < n, let ¢, be the coefficient of z* in the characteristic polynomial
of T'. Give a formula for ¢, in terms of the eigenvalues of 7.

(b) Let B € Msy2(R) be diagonalizable with Tr(B) = 0. Show that det(B) < 0.
Solution:

(a) We know that we can factor the characteristic polynomial of 7" as

n

chary(X) = | [(\i — X).

i=1
It follows from this formula that

Cr = (—1)k Z >\i1/\i2 ce )\in—k

{i17i27-~~7in71€}€{1 7777 n}nik
1-#1s for r#s

In particular,

n
Co = 1_[ )\z
i=1



You have seen in the lectures that ¢y = det(T) and ¢, ; = (—=1)""' Tr(T).
This shows what we wanted.

Aliter: Since T is diagonalizable, by definition there exists a basis B of V
such that

You have seen in the lectures that the trace and the determinant do not
depend of the choice of basis, hence by a direct computation we have

To(T) = Te([T]5) = . A and  det(T) = det([T]5) = 1‘[ A

i=1 i=1
Since B is diagonalizable, we can use (a) and observe that
Tr(B) =0<= A+ X =0<= A\ = =)y,
where \; denote the eigenvalues of B. Hence, using (a) again,
det(B) = =\ <0

since A\? > 0.



