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Musterlösung Serie 17

Eigenvectors, Eigenvalues

1. In each of the following cases, let Ti be the endomorphism of R2 which is repre-
sented by the matrix Ai in the standard ordered basis for R2, and let Ui be the
endomorphism of C2 represented by Ai in the standard ordered basis. Find the
characteristic polynomial for Ti and that for Ui, find the eigenvalues of each endo-
morphism, and for each such eigenvalue find a basis for the corresponding space
of eigenvectors.

A1 “

ˆ

1 0
0 0

˙

, A2 “

ˆ

2 3
´1 1

˙

, A3 “

ˆ

1 1
1 1

˙

.

Solution: We have

charT1pXq “ charU1pXq “ XpX ´ 1q.

Hence both T1 and U1 have real eigenvalues 0 and 1. We compute that

EigT1
p0q “

Bˆ

0
1

˙F

R
, EigT1

p1q “

Bˆ

1
0

˙F

R

and similarly for U1 but taking the span over C instead of R.
In the second case we have

charT2pXq “ X2
´ 3X ` 5 P RrXs.

This polynomial doesn’t split into linear factors in RrXs hence the endomorphism
T2 does not have any real eigenvalues. However, if we now consider U2 P EndpC2q,
charU2pXq P CrXs splits into linear factors and takes λ1 “ 1

2
p3 ` i

?
11q and

λ2 “ 1
2
p3 ´ i

?
11q for roots.

We use a handy trick to easily compute eigenvectors:

Eigenvector trick for 2 ˆ 2 matrices. Let A be a 2 ˆ 2 matrix, and let λ be a
(real or complex) eigenvalue of A. Then

A ´ λI2 “

ˆ

α β
˚ ˚

˙

ùñ

ˆ

´β
α

˙

is an eigenvector with eigenvalue λ,

assuming the first row of A ´ λI2 is non-zero.
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Explanation. Indeed since λ is an eigenvalue, A ´ λI2 has nontrivial kernel. It
follows that its rows are collinear, i.e. that the second row is a complex multiple
of the first one:

ˆ

α β
˚ ˚

˙

“

ˆ

α β
γα γβ

˙

, for some γ P C.

So p ´β
α q is an obvious element of that kernel.

Applying this to A2 and its eigenvalue λ1, we get

A2 ´ λ1I2 “

ˆ

2 ´ λ1 3
˚ ˚

˙

which implies that EigU2
pλ1q is generated by

ˆ

´3
2 ´ λ1

˙

“

ˆ

´3
1
2
p1 ´ i

?
11q

˙

.

Similarly, we recover that EigU2
pλ2q is generated by

ˆ

´3
1
2
p1 ` i

?
11q.

˙

We treat T3 and U3 similarly as T1 and U1. Their characteristic polynomial splits
into linear factors in RrXs:

charT3pXq “ charU3pXq “ XpX ´ 2q.

The eigenvalues are therefore 0 and 2. We find that

EigT3
p0q “

Bˆ

´1
1

˙F

R
, EigT3

p2q “

Bˆ

1
1

˙F

R
.

Similarly for U3 over C.

2. Let K be a field and let V be a finite-dimensional vector space over K. Suppose
that T P EndpV q is invertible. Prove that EigT pλq “ EigT´1p1{λq for every λ P K˚.

Lösung : This easily follows from the definition:

EigT pλq “ tv P V | Tv “ λvu

“ tw P V | w “ λT´1wu

“

"

w P V |
1

λ
w “ T´1w

*

“ EigT´1

ˆ

1

λ

˙

.
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Remark. We didn’t use the assumption that V is finite-dimensional. In fact, this
statement also holds in infinite-dimensional vector spaces by the same proof.

3. Consider the space C8pRq of smooth functions over R and the map

T : C8pRq Ñ C8pRq

f ÞÑ f 1

Find the eigenvalues and the corresponding eigenfunctions (this is a synonym for
eigenvectors when working on a space whose elements are functions) of T .

Solution: For λ P K, we can get an idea of the solution by solving the linear
ordinary differential equation

d fpxq

dx
“ λfpxq.

We have

1

fpxq

d fpxq

dx
“ λ

ùñ

ż

1

fpxq

d fpxq

dx
dx “

ż

λ dx

Substituting u for fpxq on the left-hand side, we obtain du “
d fpxq

dx
dx

ż

1

u
du “ λx ` C, C P K

ùñ logpuq “ λx ` C

ùñ logpfpxqq “ λx ` C

ùñ fpxq “ eλx`C .

Hence, the family tfpxq “ fp0qeλx | λ P Ku is a set of eigenfunctions of T and, at
least formally, eigenfunctions should have the form fpxq “ fp0qeλx for λ P K.

To check that these are the only possible solutions, we use the following trick:
consider a solution f0 of the differential equation d fpxq

dx
“ λfpxq and define the

modified function
g0pxq “ e´λxf0pxq.

Now,

d g0
dx

pxq “ ´λe´λxf0pxq ` λe´λxf0pxq

“ 0.

We deduce that g0pxq is constant, hence for all x P R,

g0pxq “ g0p0q “ f0p0q ô f0pxq “ f0p0qeλx.
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4. Let K “ R, show that K8 does not admit any countable basis.

Hint : Use the fact that pairwise distinct eigenvalues correspond to a set of linearly
independent eigenvectors.

Solution: Let λ P K and consider the sequence Lλ :“ p1, λ, λ2, λ3, . . . q. Apply the
shift operator

S : K8 Ñ K8

pa0, a1, a2, a3, . . . q ÞÑ pa1, a2, a3, . . . q

to Lλ and observe that pλ, Lλq is an eigenvalue-eigenvector pair for S. Hence S
admits an uncountable number of eigenvalues since each λ P K is one. Moreover,
as seen in the lectures, since these eigenvalues are distinct, the set tLλ | λ P Ku

is linearly independent. Using Serie 6 exercise 5, we conclude that K8 does not
admit any countable basis.

5. (a) Let f be an endomorphism of a finite-dimensional vector space V , and let
V “ V1 ‘ . . . ‘ Vr with f -invariant subpaces Vi. Show, that the arithmetic,
resp. geometric multiplicities of an eigenvalue λ P K of f is equal to the
sum of the arithmetic, resp. geometric multiplies of λ as an eigenvalue of the
endomorphisms f |Vi

of Vi.

(b) Deduce that f is diagonalizable if and only if f |Vi
is diagonalizable for every

i.

(c) Let f and g be endomorphisms for the same finite dimensional vector space
V . Show that f and g are simultaneously diagonalizable (meaning that there
exists a basis of eigenvectors of f which are all also eigenvectors of g) if and
only if they commute and are diagonalizable.

Hint: To prove the the backward direction, first show that each eigenspace
of f is g-invariant, i.e. that g maps eigenvectors of f to eigenvectors of f in
the same eigenspace.

Lösung :

(a) For every 1 ď i ď r choose an ordered basis Bi of Vi. Joined in ascending
order, these form a basis B of V . The transformation matrix of f with respect
to B is then a block diagonal matrix with diagonal blocks MBi

Bi
pf |Vi

q for
1 ď i ď r. The characteristic polynomial of f thus is the product of the
characteristic polynomials of f |Vi

; i.e.

charf pXq “

r
ź

i“1

charf |Vi
pXq (1)

For every λ P K the arithmetic multiplicity of λ as eigenvalue of f is there-
fore equal to the sum over 1 ď i ď r of the arithmetic multiplicity of λ as
eigenvalue of f |Vi

.
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Now consider an arbitrary vector v “ v1 ` ¨ ¨ ¨ `vr with vi P Vi. Then we have
fpvq “ fpv1q ` . . .` fpvrq with fpviq P Vi and as V “ V1 ‘ . . .‘Vr is a direct
sum, we get

fpv1q ` . . . ` fpvrq “ fpvq “ λv “ λv1 ` ¨ ¨ ¨ ` λvr

if and only if fpviq “ λvi for all i.

Important. Here, we really need both the fact that the Vi’s are f -invariant
and that V “ V1 ‘ . . . ‘ Vr is a direct sum to justify

fpv1 ` ¨ ¨ ¨ ` vrq “ fpvq “ λv ô @i P t1, . . . , ru : fpviq “ λvi.

Indeed the backward implication follows directly by factorising by λ but the
forward implication is in general false if both conditions are not satisfied.

Hence we have

Eigλpfq “

r
à

i“1

Eigλpf |Vi
q

and thus

dimEigλpfq “

r
ÿ

i“1

dimEigλpf |Vi
q.

Therefore, the geometric multiplicity of λ as eigenvalue of f is equal to the
sum over 1 ď i ď r of the geometric multiplicities of λ as eigenvalue of f |Vi

.

(b) By a theorem from the lecture an endomorphism of a finite dimensional vector
space is diagonalizable if and only if its characteristic polynomial splits into
linear factors and dor every of its eigenvalues the geometric multiplicity is
equal to the arithmetic multiplicity.

The formula (1) yields that charf pXq splits into linear factors if and only if
for charf |Vi

pXq does for every i. Consider an arbitrary eigenvalue λ P K of
pfq. Then we get from (a) and the fact, that the geometric multiplicity is
always ď the arithmetic multiplicity, that these multiplicities are equal for f
if and only if they are equal for every f |Vi

. Hence f is diagonalizable if and
only if f |Vi

is for all i.

(c) Assume that f and g are simultaneously diagonalizable. Then f and g are of
course diagonalizable. Let v1, . . . , vn be a basis of V consisting of simultaneous
eigenvectors of f and g with eigenvalues λ1, . . . , λn for f and µ1, . . . , µn for
g. For every element

řn
i“1 αivi P V , we have

f

˜

g

˜

n
ÿ

i“1

αivi

¸¸

“ f

˜

n
ÿ

i“1

αiµivi

¸

“

n
ÿ

i“1

αiµiλivi

“

n
ÿ

i“1

αiλiµivi “ g

˜

n
ÿ

i“1

αiλivi

¸

“ g

˜

f

˜

n
ÿ

i“1

αivi

¸¸

.
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Thus f and g commute.

Now assume that f and g commute and are both diagonalizable. As f is dia-
gonalizable, there exist eigenvalues λ1, . . . , λr of f with V “

Àr
i“1 Eigλi

pfq.
For every 1 ď i ď r and v P Eigλi

pfq commutativity of f and g yields:

fpgpvqq “ gpfpvqq “ gpλivq “ λigpvq

and thus gpvq P Eigλi
pfq. The eigenspaces of f are hence g-invariant. As g is

also diagonalizable, the map g|Eigλi pfq is also diagonalizable for every 1 ď i ď r

according to (b). Thus there exists a basis Bi of Eigλi
pfq from eigenvectors

of g. Together, we get that B :“ B1 Y ¨ ¨ ¨ Y Br is a basis of V consisting
of simultaneous eigenvectors of f and g; hence f and g are simultaneously
diagonalizable.

6. Let K be a field and let V be an n-dimensional vector space over K (n ą 0).

(a) Let T be a diagonalizable endomorphism of V with (not necessarily distinct)
eigenvalues λi for 1 ď i ď n. Show that

TrpT q “

n
ÿ

i“1

λi and that detpT q “

n
ź

i“1

λi.

For 0 ď k ď n, let ck be the coefficient of xk in the characteristic polynomial
of T . Give a formula for ck in terms of the eigenvalues of T .

(b) Let B P M2ˆ2pRq be diagonalizable with TrpBq “ 0. Show that detpBq ď 0.

Solution:

(a) We know that we can factor the characteristic polynomial of T as

charT pXq “

n
ź

i“1

pλi ´ Xq.

It follows from this formula that

ck “ p´1q
k

ÿ

ti1,i2,...,in´kuPt1,...,nun´k

ir‰is for r‰s

λi1λi2 ¨ ¨ ¨λin´k

In particular,

c0 “

n
ź

i“1

λi

cn´1 “ p´1q
n´1

n
ÿ

i“1

λi.
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You have seen in the lectures that c0 “ detpT q and cn´1 “ p´1qn´1TrpT q.
This shows what we wanted.

Aliter: Since T is diagonalizable, by definition there exists a basis B of V
such that

rT s
B
B “

¨

˚

˚

˚

˝

λ1

λ2

. . .

λn

˛

‹

‹

‹

‚

.

You have seen in the lectures that the trace and the determinant do not
depend of the choice of basis, hence by a direct computation we have

TrpT q “ TrprT s
B
Bq “

n
ÿ

i“1

λi and detpT q “ detprT s
B
Bq “

n
ź

i“1

λi.

(b) Since B is diagonalizable, we can use (a) and observe that

TrpBq “ 0 ðñ λ1 ` λ2 “ 0 ðñ λ1 “ ´λ2,

where λi denote the eigenvalues of B. Hence, using (a) again,

detpBq “ ´λ2
1 ď 0

since λ2
1 ě 0.
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