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1. Let K be a field, let n ě 2, and let

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 ´c0
1 0 ¨ ¨ ¨ 0 ´c1
0 1 ¨ ¨ ¨ 0 ´c2
0 0 ¨ ¨ ¨ 0 ´c3
...

...
...

...
...

0 0 ¨ ¨ ¨ 1 ´cn´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

P MnˆnpKq.

Prove that
charApXq “ p´1q

n
pXn

` cn´1X
n´1

` ¨ ¨ ¨ ` c0q.

Hint : Use induction.

Solution: First note that for n “ 2:

det

ˆ

´X ´c0
1 ´X ´ c1

˙

“ X2
` c1X ` c0 “ p´1q

2
pX2

` c1X ` c0q.

Now assume that n ě 3 and that we have shown the statement for n ´ 1. Expand
the determinant with repsect to the first row to obtain

det

¨

˚

˚

˚

˚

˚

˚

˚

˝

´X 0 ¨ ¨ ¨ 0 ´c0
1 ´X ¨ ¨ ¨ 0 ´c1
0 1 ¨ ¨ ¨ 0 ´c2
0 0 ¨ ¨ ¨ 0 ´c3
...

...
...

...
...

0 0 ¨ ¨ ¨ 1 ´X ´ cn´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ p´Xq det

¨

˚

˚

˚

˚

˚

˚

˚

˝

´X 0 ¨ ¨ ¨ 0 ´c1
1 ´X ¨ ¨ ¨ 0 ´c2
0 1 ¨ ¨ ¨ 0 ´c3
0 0 ¨ ¨ ¨ 0 ´c4
...

...
...

...
...

0 0 ¨ ¨ ¨ 1 ´X ´ cn´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

` p´1q
n`1

p´c0q

“ p´Xqp´1q
n´1

pXn´1
` cn´1X

n´2
` ¨ ¨ ¨ ` c1q ` p´1q

nc0

“ p´1q
n
pXn

` cn´1X
n´1

` ¨ ¨ ¨ ` c0q,

which concludes the proof.
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2. Let A be a nˆn-matrix of rank r. Show that the degree of the minimal polynomial
of A is smaller or equal than r ` 1.

Solution: By the definition of rank, the image of LA is a subspace of dimension r.
Consider the restriction

F :“ LA|BildpLAq : BildpLAq Ñ BildpLAq.

The characteristic polynomial qpXq :“ charF pXq of F has degree r, and by Cayley
Hamilton, we have qpF q “ 0.

For ppXq :“ qpXq ¨ X, we get v P Kn

ppLAqpvq “ pqpLAq ˝ LAqpvq “ qpLAqpAvq “ qpF qpAvq “ 0,

and hence ppLAq “ 0. Thus, we have ppAq “ 0. By definition, the minimal polyno-
mial of A divides ppXq. Therefore the degree of the first is ď the degree of ppXq,
hence less or equal r ` 1.

3. Prove that every 2 ˆ 2 invertible real matrix belongs to one of the following cate-
gories:

• It is diagonalizable;

• it is trigonalizable with algebraic multiplicity 2 and geometric multiplicity 1;

• one can find a basis such that the matrix representation in that basis is
ˆ

a b
´b a

˙

with b ‰ 0.

Solution: First note that the characteristic polynomial of any such matrix, denoted
p, is a quadratic polynomial with real coefficients. If all of its roots are real, it splits
into linear factors in RrXs. In this case, we either have

• a diagonalizable matrix if the algebraic multiplicity equals the algebraic mul-
tiplicity for each root (see the first theorem of the lecture notes eigenvectors.c,
in English) or

• a trigonalizable matrix (see the first theorem on page 4 of the same lecture
notes).

Let us now address the case where the polynomial does not split into linear factors
over R. Then, by the fundamental theorem of algebra, it must admit a complex
root λ. Moreover, if we write ppXq “ X2 `c1X `c0, we have that ppλq “ 0 implies

0 “ ppλq “ λ2 ` c1λ ` c0 “ pλq
2

` c1λ ` c0 “ ppλq,

since the coefficients of p are real. Hence the complex conjugate of λ is the other
root of p. We are left to show that every such characteristic polynomial arises from
a rotation matrix. We prove the following result:
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Theorem. Let A be a 2ˆ 2 real matrix with a complex eigenvalue λ P C∖R, and
let v be a complex eigenvector corresponding to λ. Then, A “ CBC´1 for

C “

¨

˝

| |

ℜpvq ℑpvq

| |

˛

‚ and B “

ˆ

ℜpλq ℑpλq

´ℑpλq ℜpλq

˙

,

where

ℜ
ˆ

x ` iy
z ` iw

˙

“

ˆ

x
z

˙

and ℑ
ˆ

x ` iy
z ` iw

˙

“

ˆ

y
w

˙

.

In other words, C is similar to a rotation-scaling matrix.

Beweis. We first need to show that the vectors ℜpvq and ℑpvq are linearly inde-
pendent in order to prove that C is invertible. If not, there exist x, y P R such that
xℜpvq ` yℑpvq “ 0. Then

py ` ixqv “ yℜpvq ´ xℑpvq ` ipxℜpvq ` yℑpvqq

“ yℜpvq ´ xℑpvq P R2.

Hence, on one hand yℜpvq ´ xℑpvq is a complex multiple of v, therefore it is an
eigenvector of A with eigenvalue λ. On the other hand, it is a real eigenvector
of A, and since A is real, it can only correspond to a real eigenvalue. This is a
contradiction.

Let us denote λ “ a ` ib and v “
`

x`iy
z`iw

˘

. Since tℜpvq,ℑpvqu forms a basis of R2,

CBC´1
“ A ðñ

"

Aℜpvq “ CBC´1ℜpvq

Aℑpvq “ CBC´1ℑpvq

On one hand,

Aℜpvq ` iAℑpvq “ Av

“ λv

“ pa ` ibq

ˆ

x ` iy
z ` iw

˙

“

ˆ

ax ´ by
az ´ bw

˙

` i

ˆ

bx ` ay
bz ` aw

˙

.

On the other hand,

Ce1 “ ℜpvq ô e1 “ C´1ℜpvq ô CBe1 “ CBC´1ℜpvq

and similarly replacing e1 by e2 and ℜpvq by ℑpvq. Hence

CBC´1ℜpvq “ CBe1 “ C

ˆ

a
´b

˙

“

ˆ

ax ´ by
az ´ bw

˙

“ Aℜpvq

and similarly CBC´1ℑpvq “ Aℑpvq.
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4. Let K be a field, A P MnˆnpKq, and p P KrXs be a non-trivial polynomial such
that ppAq “ 0. Show that every eigenvalue of A is a root of p.

Hint : For an eigenvector v of A and a polynomial q over K, state and prove the
relationship between v and qpAq ¨ v.

Solution: We proceed as indicated in the hint and consider qpAq ¨v for a non-trivial
polynomial

qpXq “ bnX
n

` bn´1X
n´1

` ¨ ¨ ¨ ` b0 P KrXs

and an eigenvector v of A. We have

qpAq ¨ v “ bnA
n

¨ v ` bn´1A
n´1

¨ v ` ¨ ¨ ¨ ` b0In ¨ v

“ bnλ
nv ` bn´1λ

n´1v ` ¨ ¨ ¨ ` b0v

“ pbnλ
n

` bn´1λ
n´1

` ¨ ¨ ¨ ` b0qv

Now assume that ppXq “ cnX
n ` cn´1X

n´1 ` ¨ ¨ ¨ ` c0 P KrXs ∖ t0u is such that
ppAq “ 0. We have

pcnλ
n

` cn´1λ
n´1

` ¨ ¨ ¨ ` c0qv “ ppAq ¨ v “ 0.

Hence cnλ
n ` cn´1λ

n´1 ` ¨ ¨ ¨ ` c0 “ 0, i.e. λ is a root of p.

5. (a) Let A be a nˆn-matrix. Prove that the subspace xIn, A,A
2, . . . y of MnˆnpKq

has dimension ď n.

(b) Let A :“

¨

˝

1 2 3
2 3 1
3 1 2

˛

‚. Find a polynomial ppXq with ppAq “ A´1.

Solution:

(a) Solution: The subspace W :“ xIn, A,A
2, . . . , An´1y of MnˆnpKq is generated

by n elements and thus has dimension ď n. Thus, it is enough to show that
W “ xIn, A,A

2, . . . y.The inclusion
”
Ă“ is already clear, hence we need to

show

Claim: For all k ě 0, we have Ak P W .

We prove by induction on k.

Induction start: For k ď n ´ 1 this holds by construction of W .

Oops: In the case of n “ 0 this claim is empty, hence no start. But then
MnˆnpKq is the zero space and the space in question as well, hence has
dimension n “ 0, as desired. Now let n ě 1.

Induction step: Let k ě n.

Induction hypothesis: The Claim is true for all smaller values of k.
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The characteristic polynomial ofA is monic of degree n; write it as charApXq “

Xn `
řn´1

i“0 aiX
i. By Cayley-Hamilton, we have charApAq “ 0, thus

An
“ ´

n´1
ÿ

i“0

aiA
i.

Multiplying with Ak´n yields

Ak
“ ´

n´1
ÿ

i“0

aiA
i`k´n

“ ´

k´1
ÿ

j“k´n

aj´k`nA
j.

By induction hypothesis all multiples of Aj on the right side are contained
in W ; thus Ak also lies in W , which we wanted to show.

(b) The characteristic polynomial of A is

charApXq “ ´X3
` 6X2

` 3X ´ 18

By Cayley-Hamilton, we have

charApAq “ ´A3
` 6A2

` 3A ´ 18I3 “ 0,

also

I3 “ ´
1

18
A3

`
1

3
A2

`
1

6
A “

ˆ

´
1

18
A2

`
1

3
A2

`
1

6
I3

˙

¨ A.

In particular, we get that A is invertible and

A´1
“ ´

1

18
A2

`
1

3
A `

1

6
I3.

6. Prove or disprove: There exists a real n ˆ n-matrix A satisfying

A2
` 2A ` 5In “ 0

if and only if n is even.

Solution: The claim is true!

”
ñ“: The real polynoial ppXq :“ X2 ` 2X ` 5 has the complex zeros ´1 ˘ 2i;
these are not real. Now let A be a n ˆ n-matrix with ppAq “ 0 and n odd. Then
the characteristic polynomial of A had odd degree n, and thus has a real zero λ.
This is an eigenvalue of A, with corresponding Eigenvector v. For this we have

0 “ ppAqv “ pA2
` 2A ` 5Inqv “ pλ2

` 2λ ` 5qv “ P pλqv,

and hence P pλq “ 0. This is a contradiction to p not having a real zero.
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”
ð“: By Cayley-Hamilton, every 2 ˆ 2-matrix A2 with characteristic polynomial
ppXq satisfies the desired equation, for example the companion matrix A2 :“
`

´2 1
´5 0

˘

. For arbitrary n ě 0 let A be the n ˆ n-matrix

A :“

¨

˚

˝

A2

. . .

A2

˛

‹

‚

,

then we have

A2
` 2A ` 5In “

¨

˚

˝

A2 ` 2A2 ` 5I2
. . .

A2 ` 2A2 ` 5I2

˛

‹

‚

“ 0.

6


