Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 18

Diagonalizabiltiy, Cayley-Hamilton

1. Let K be a field, let $n \geqslant 2$, and let

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
0 & 0 & \cdots & 0 & -c_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{array}\right) \in M_{n \times n}(K)
$$

Prove that

$$
\operatorname{char}_{A}(X)=(-1)^{n}\left(X^{n}+c_{n-1} X^{n-1}+\cdots+c_{0}\right)
$$

Hint: Use induction.
Solution: First note that for $n=2$:

$$
\operatorname{det}\left(\begin{array}{cc}
-X & -c_{0} \\
1 & -X-c_{1}
\end{array}\right)=X^{2}+c_{1} X+c_{0}=(-1)^{2}\left(X^{2}+c_{1} X+c_{0}\right)
$$

Now assume that $n \geqslant 3$ and that we have shown the statement for $n-1$. Expand the determinant with repsect to the first row to obtain

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
-X & 0 & \cdots & 0 & -c_{0} \\
1 & -X & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
0 & 0 & \cdots & 0 & -c_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -X-c_{n-1}
\end{array}\right) \\
= & (-X) \operatorname{det}\left(\begin{array}{ccccc}
-X & 0 & \cdots & 0 & -c_{1} \\
1 & -X & \cdots & 0 & -c_{2} \\
0 & 1 & \cdots & 0 & -c_{3} \\
0 & 0 & \cdots & 0 & -c_{4} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -X-c_{n-1}
\end{array}\right)+(-1)^{n+1}\left(-c_{0}\right) \\
= & (-X)(-1)^{n-1}\left(X^{n-1}+c_{n-1} X^{n-2}+\cdots+c_{1}\right)+(-1)^{n} c_{0} \\
= & (-1)^{n}\left(X^{n}+c_{n-1} X^{n-1}+\cdots+c_{0}\right),
\end{aligned}
$$

which concludes the proof.
2. Let A be a $n \times n$-matrix of rank r. Show that the degree of the minimal polynomial of A is smaller or equal than $r+1$.
Solution: By the definition of rank, the image of L_{A} is a subspace of dimension r. Consider the restriction

$$
F:=\left.L_{A}\right|_{\operatorname{Bild}\left(L_{A}\right)}: \operatorname{Bild}\left(L_{A}\right) \rightarrow \operatorname{Bild}\left(L_{A}\right) .
$$

The characteristic polynomial $q(X):=\operatorname{char}_{F}(X)$ of F has degree r, and by Cayley Hamilton, we have $q(F)=0$.

For $p(X):=q(X) \cdot X$, we get $v \in K^{n}$

$$
p\left(L_{A}\right)(v)=\left(q\left(L_{A}\right) \circ L_{A}\right)(v)=q\left(L_{A}\right)(A v)=q(F)(A v)=0,
$$

and hence $p\left(L_{A}\right)=0$. Thus, we have $p(A)=0$. By definition, the minimal polynomial of A divides $p(X)$. Therefore the degree of the first is \leqslant the degree of $p(X)$, hence less or equal $r+1$.
3. Prove that every 2×2 invertible real matrix belongs to one of the following categories:

- It is diagonalizable;
- it is trigonalizable with algebraic multiplicity 2 and geometric multiplicity 1 ;
- one can find a basis such that the matrix representation in that basis is

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \quad \text { with } b \neq 0
$$

Solution: First note that the characteristic polynomial of any such matrix, denoted p, is a quadratic polynomial with real coefficients. If all of its roots are real, it splits into linear factors in $\mathbb{R}[X]$. In this case, we either have

- a diagonalizable matrix if the algebraic multiplicity equals the algebraic multiplicity for each root (see the first theorem of the lecture notes eigenvectors.c, in English) or
- a trigonalizable matrix (see the first theorem on page 4 of the same lecture notes).

Let us now address the case where the polynomial does not split into linear factors over \mathbb{R}. Then, by the fundamental theorem of algebra, it must admit a complex root λ. Moreover, if we write $p(X)=X^{2}+c_{1} X+c_{0}$, we have that $p(\lambda)=0$ implies

$$
0=\overline{p(\lambda)}=\overline{\lambda^{2}+c_{1} \lambda+c_{0}}=(\bar{\lambda})^{2}+c_{1} \bar{\lambda}+c_{0}=p(\bar{\lambda}),
$$

since the coefficients of p are real. Hence the complex conjugate of λ is the other root of p. We are left to show that every such characteristic polynomial arises from a rotation matrix. We prove the following result:

Theorem. Let A be a 2×2 real matrix with a complex eigenvalue $\lambda \in \mathbb{C} \backslash \mathbb{R}$, and let v be a complex eigenvector corresponding to λ. Then, $A=C B C^{-1}$ for

$$
C=\left(\begin{array}{cc}
\mid & \mid \\
\Re(v) & \Im(v) \\
\mid & \mid
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
\Re(\lambda) & \Im(\lambda) \\
-\Im(\lambda) & \Re(\lambda)
\end{array}\right)
$$

where

$$
\Re\binom{x+i y}{z+i w}=\binom{x}{z} \quad \text { and } \quad \Im\binom{x+i y}{z+i w}=\binom{y}{w} .
$$

In other words, C is similar to a rotation-scaling matrix.
Beweis. We first need to show that the vectors $\Re(v)$ and $\Im(v)$ are linearly independent in order to prove that C is invertible. If not, there exist $x, y \in \mathbb{R}$ such that $x \Re(v)+y \Im(v)=0$. Then

$$
\begin{aligned}
(y+i x) v & =y \Re(v)-x \Im(v)+i(x \Re(v)+y \Im(v)) \\
& =y \Re(v)-x \Im(v) \in \mathbb{R}^{2} .
\end{aligned}
$$

Hence, on one hand $y \Re(v)-x \Im(v)$ is a complex multiple of v, therefore it is an eigenvector of A with eigenvalue λ. On the other hand, it is a real eigenvector of A, and since A is real, it can only correspond to a real eigenvalue. This is a contradiction.

Let us denote $\lambda=a+i b$ and $v=\binom{x+i y}{z+i w}$. Since $\{\Re(v), \Im(v)\}$ forms a basis of \mathbb{R}^{2},

$$
C B C^{-1}=A \Longleftrightarrow\left\{\begin{array}{l}
A \Re(v)=C B C^{-1} \Re(v) \\
A \Im(v)=C B C^{-1} \Im(v)
\end{array}\right.
$$

On one hand,

$$
\begin{aligned}
A \Re(v)+i A \Im(v) & =A v \\
& =\lambda v \\
& =(a+i b)\binom{x+i y}{z+i w} \\
& =\binom{a x-b y}{a z-b w}+i\binom{b x+a y}{b z+a w} .
\end{aligned}
$$

On the other hand,

$$
C e_{1}=\Re(v) \Leftrightarrow e_{1}=C^{-1} \Re(v) \Leftrightarrow C B e_{1}=C B C^{-1} \Re(v)
$$

and similarly replacing e_{1} by e_{2} and $\Re(v)$ by $\Im(v)$. Hence

$$
C B C^{-1} \Re(v)=C B e_{1}=C\binom{a}{-b}=\binom{a x-b y}{a z-b w}=A \Re(v)
$$

and similarly $C B C^{-1} \Im(v)=A \Im(v)$.
4. Let K be a field, $A \in M_{n \times n}(K)$, and $p \in K[X]$ be a non-trivial polynomial such that $p(A)=0$. Show that every eigenvalue of A is a root of p.
Hint: For an eigenvector v of A and a polynomial q over K, state and prove the relationship between v and $q(A) \cdot v$.
Solution: We proceed as indicated in the hint and consider $q(A) \cdot v$ for a non-trivial polynomial

$$
q(X)=b_{n} X^{n}+b_{n-1} X^{n-1}+\cdots+b_{0} \in K[X]
$$

and an eigenvector v of A. We have

$$
\begin{aligned}
q(A) \cdot v & =b_{n} A^{n} \cdot v+b_{n-1} A^{n-1} \cdot v+\cdots+b_{0} I_{n} \cdot v \\
& =b_{n} \lambda^{n} v+b_{n-1} \lambda^{n-1} v+\cdots+b_{0} v \\
& =\left(b_{n} \lambda^{n}+b_{n-1} \lambda^{n-1}+\cdots+b_{0}\right) v
\end{aligned}
$$

Now assume that $p(X)=c_{n} X^{n}+c_{n-1} X^{n-1}+\cdots+c_{0} \in K[X] \backslash\{0\}$ is such that $p(A)=0$. We have

$$
\left(c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{0}\right) v=p(A) \cdot v=0 .
$$

Hence $c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{0}=0$, i.e. λ is a root of p.
5. (a) Let A be a $n \times n$-matrix. Prove that the subspace $\left\langle I_{n}, A, A^{2}, \ldots\right\rangle$ of $M_{n \times n}(K)$ has dimension $\leqslant n$.
(b) Let $A:=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right)$. Find a polynomial $p(X)$ with $p(A)=A^{-1}$.

Solution:

(a) Solution: The subspace $W:=\left\langle I_{n}, A, A^{2}, \ldots, A^{n-1}\right\rangle$ of $M_{n \times n}(K)$ is generated by n elements and thus has dimension $\leqslant n$. Thus, it is enough to show that $W=\left\langle I_{n}, A, A^{2}, \ldots\right\rangle$. The inclusion „$\subset^{"}$ is already clear, hence we need to show
Claim: For all $k \geqslant 0$, we have $A^{k} \in W$.
We prove by induction on k.
Induction start: For $k \leqslant n-1$ this holds by construction of W.
Oops: In the case of $n=0$ this claim is empty, hence no start. But then $M_{n \times n}(K)$ is the zero space and the space in question as well, hence has dimension $n=0$, as desired. Now let $n \geqslant 1$.
Induction step: Let $k \geqslant n$.
Induction hypothesis: The Claim is true for all smaller values of k.

The characteristic polynomial of A is monic of degree n; write it as $\operatorname{char}_{A}(X)=$ $X^{n}+\sum_{i=0}^{n-1} a_{i} X^{i}$. By Cayley-Hamilton, we have $\operatorname{char}_{A}(A)=0$, thus

$$
A^{n}=-\sum_{i=0}^{n-1} a_{i} A^{i}
$$

Multiplying with A^{k-n} yields

$$
A^{k}=-\sum_{i=0}^{n-1} a_{i} A^{i+k-n}=-\sum_{j=k-n}^{k-1} a_{j-k+n} A^{j}
$$

By induction hypothesis all multiples of A^{j} on the right side are contained in W; thus A^{k} also lies in W, which we wanted to show.
(b) The characteristic polynomial of A is

$$
\operatorname{char}_{A}(X)=-X^{3}+6 X^{2}+3 X-18
$$

By Cayley-Hamilton, we have

$$
\operatorname{char}_{A}(A)=-A^{3}+6 A^{2}+3 A-18 I_{3}=0
$$

also

$$
I_{3}=-\frac{1}{18} A^{3}+\frac{1}{3} A^{2}+\frac{1}{6} A=\left(-\frac{1}{18} A^{2}+\frac{1}{3} A^{2}+\frac{1}{6} I_{3}\right) \cdot A .
$$

In particular, we get that A is invertible and

$$
A^{-1}=-\frac{1}{18} A^{2}+\frac{1}{3} A+\frac{1}{6} I_{3} .
$$

6. Prove or disprove: There exists a real $n \times n$-matrix A satisfying

$$
A^{2}+2 A+5 I_{n}=0
$$

if and only if n is even.
Solution: The claim is true!
" \Rightarrow ": The real polynoial $p(X):=X^{2}+2 X+5$ has the complex zeros $-1 \pm 2 i$; these are not real. Now let A be a $n \times n$-matrix with $p(A)=0$ and n odd. Then the characteristic polynomial of A had odd degree n, and thus has a real zero λ. This is an eigenvalue of A, with corresponding Eigenvector v. For this we have

$$
0=p(A) v=\left(A^{2}+2 A+5 I_{n}\right) v=\left(\lambda^{2}+2 \lambda+5\right) v=P(\lambda) v,
$$

and hence $P(\lambda)=0$. This is a contradiction to p not having a real zero.
$» \Leftarrow$ ": By Cayley-Hamilton, every 2×2-matrix A_{2} with characteristic polynomial $p(X)$ satisfies the desired equation, for example the companion matrix $A_{2}:=$ $\left(\begin{array}{cc}-2 & 1 \\ -5 & 0\end{array}\right)$. For arbitrary $n \geqslant 0$ let A be the $n \times n$-matrix

$$
A:=\left(\begin{array}{lll}
A_{2} & & \\
& \ddots & \\
& & A_{2}
\end{array}\right)
$$

then we have

$$
A^{2}+2 A+5 I_{n}=\left(\begin{array}{ccc}
A_{2}+2 A_{2}+5 I_{2} & & \\
& \ddots & \\
& & A_{2}+2 A_{2}+5 I_{2}
\end{array}\right)=0 .
$$

