Musterlösung Serie 19

Scalar products, bilinear forms

1. For which values of $a \in \mathbb{R}$ does the expression

$$
\langle x, y\rangle:=x_{1} y_{1}+a x_{1} y_{2}+a x_{2} y_{1}+7 x_{2} y_{2},
$$

where $x=\binom{x_{1}}{x_{2}}$ and $y=\binom{y_{1}}{y_{2}}$, define an inner product on \mathbb{R}^{2} ?
Lösung: We check directly that $\langle\cdot, \cdot\rangle$ is a symmetric bilinear form on \mathbb{R}^{2}; i.e. by considering the studying the symmetric representation matrix $\left(\begin{array}{ll}1 & a \\ a & 7\end{array}\right)$. We compute

$$
\begin{aligned}
\langle x, x\rangle & =x_{1}^{2}+2 a x_{1} x_{2}+7 x_{2}^{2} \\
& =x_{1}^{2}+2 a x_{1} x_{2}+a^{2} x_{2}^{2}-a^{2} x_{2}^{2}+7 x_{2}^{2} \\
& =\left(x_{1}+a x_{2}\right)^{2}+\left(7-a^{2}\right) x_{2}^{2} .
\end{aligned}
$$

If $\langle\cdot, \cdot\rangle$ is positive definite, we get with $x=\binom{-a}{1} \neq 0$, that $7-a^{2}>0$ holds; hence $|a|<\sqrt{7}$. Conversely, if we have $|a|<\sqrt{7}$, we get from the upper computation $\langle x, x\rangle>0$ for all $x \neq 0$ and hence $\langle\cdot, \cdot\rangle$ is positive definite. Hence $\langle\cdot, \cdot\rangle$ is an inner product if and only if $|a|<\sqrt{7}$.
2. Let V be the vector space of real polynomials of degree at most n.
(a) Show that the expression

$$
\langle p, q\rangle:=\int_{0}^{\infty} p(t) q(t) e^{-t} d t
$$

defines an inner product on V.
(b) Find the matrix of the inner product with respect to the basis $1, x, \ldots, x^{n}$.

Lösung:

(a) We know from analysis that these improper integral converge. Linearity of the integral yields that $\langle\cdot, \cdot\rangle$ is a bilinear form, which is obviously symmetric. Now let $p \in V \backslash\{0\}$ be arbitrary. Choose a point $x_{0}>0$ with $p\left(x_{0}\right) \neq 0$. As p induces a continuous function, we get $|p(x)| \geqslant c:=\frac{1}{2}\left|p\left(x_{0}\right)\right|>0$ on an interval $[a, b] \subset \mathbb{R}^{\geqslant 0}$ with $x_{0} \in[a, b]$. As the function $t \mapsto e^{-t}$ is strictly decreasing and $e^{-t}>0$ holds for all t, we get

$$
\langle p, p\rangle=\int_{0}^{\infty} p(t)^{2} e^{-t} d t \geqslant \int_{a}^{b} p(t)^{2} e^{-t} d t \geqslant c \cdot e^{-b} \cdot(b-a)>0 .
$$

Hence $\langle\cdot, \cdot\rangle$ is positive definite and thus a scalar product.
(b) For all $k \in \mathbb{Z}^{\geqslant 0}$ consider

$$
a(k):=\int_{0}^{\infty} t^{k} e^{-t} d t
$$

Then

$$
a(0)=\int_{0}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{\infty}=1
$$

and for $k \geqslant 1$ partial integration yields

$$
a(k)=\int_{0}^{\infty} t^{k} e^{-t} d t=-\left.t^{k} e^{-t}\right|_{0} ^{\infty}-\int_{0}^{\infty} k t^{k-1}\left(-e^{-t}\right) d t=k \cdot a(k-1) .
$$

By induction over k we get $a(k)=k$!. Now let $A:=\left(a_{i j}\right)_{i, j}$ be the representation matrix of the scalar product $\langle\cdot, \cdot\rangle$ with respect to the ordered basis $\left(1, x, \ldots, x^{n}\right)$. Then

$$
a_{i j}=\left\langle x^{i-1}, x^{j-1}\right\rangle=a(i+j-2)=(i+j-2)!.
$$

3. Let $V=\mathbb{R}^{2}$ endowed with the standard scalar product, and for $i=1,2$, let $v_{i} \in V \backslash\{0\}$. Show that the formula

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\|v_{1}\right\|\left\|v_{2}\right\| \cos \left(\widehat{v_{1}, v_{2}}\right),
$$

defining the cosinus of an angle is rotation-invariant. In other words show that, for any rotation of the plane $R: V \rightarrow V$, we have

$$
\cos \left(\widehat{v_{1}, v_{2}}\right)=\cos \left(\widehat{R v_{1}, R} v_{2}\right)
$$

which is what we would expect from a good definition of the angle between 2 vectors.
Solution: Let $v_{1}, v_{2} \in V$ be pair of non-vanishing vectors, and let $\theta \in[0,2 \pi)$. We show that the rotation matrix

$$
\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

rotating the plane by θ preserves the scalar product, and therefore also leaves the norm unchanged. Indeed, for any pair of vectors $v, w \in V$, we have

$$
\begin{aligned}
& \left\langle\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) v,\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) w\right\rangle \\
= & \left(\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot v\right)^{T} \cdot\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot w \\
= & v^{T} \cdot\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)^{T} \cdot\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot w \\
= & v^{T} \cdot I_{2} \cdot w \\
= & \langle v, w\rangle .
\end{aligned}
$$

This shows

$$
\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}=\frac{\left\langle R v_{1}, R v_{2}\right\rangle}{\left\|R v_{1}\right\|\left\|R v_{2}\right\|} \Longrightarrow \cos \left(\widehat{v_{1}, v_{2}}\right)=\cos \left(\widehat{R v_{1}, R} v_{2}\right) .
$$

4. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Show that:
(a) The matrix $A^{T} A$ is symmetric.
(b) The matrix $A^{T} A$ is positive-definite if and only if A is invertible.
(c) It holds that $\operatorname{Rang}\left(A^{T} A\right)=\operatorname{Rang}(A)$.

Lösung: Assertion (a) follows from $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.
As a preparation, we compute for every $v \in \mathbb{R}^{n}$

$$
\begin{equation*}
v^{T} \cdot\left(A^{T} A\right) \cdot v=\left(v^{T} A^{T}\right) \cdot A v=(A v)^{T} A v=\|A v\|^{2} \tag{*}
\end{equation*}
$$

where || \|| is the standard euclidean norm on \mathbb{R}^{n}.
If A is invertible, it follows that $A v \neq 0$ and thus $v^{T} \cdot\left(A^{T} A\right) \cdot v=\|A v\|^{2}>$ 0 . Therefore, the matrix $A^{T} A$ is positive definite. Conversely, if $A^{T} A$ is positive definite, we get $\|A v\|^{2}=v^{T} \cdot\left(A^{T} A\right) \cdot v>0$ and hence $A v \neq 0$. Thus the linear map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, v \mapsto A v$ has trivial kernel and hence A is invertible. So (b) is proved.
For (c) we start by claiming $\operatorname{kernel}\left(L_{A}\right)=\operatorname{kernel}\left(L_{A^{T} A}\right)$.
Proof: For all $v \in \mathbb{R}^{n}$ with $A v=0$, we have $A^{T} A v=A^{T} 0=0$; i.e. „ $\subset^{"}$ holds. Conversely, let $A^{T} A v=0$. From (*) we then get $\|A v\|^{2}=v^{T} \cdot\left(A^{T} A\right) \cdot v=v^{T} 0=0$. As the euclidean norm is positive definite $A v=0$, also $v \in \operatorname{Kern}\left(L_{A}\right)$. This shows the inclusion „ゝ", and the claim is proved. q.e.d.
The claim yields

$$
\begin{aligned}
\operatorname{rank}(A) & =\operatorname{dim} \operatorname{Im}\left(L_{A}\right)=n-\operatorname{dim} \operatorname{ker}\left(L_{A}\right) \\
& =n-\operatorname{dim} \operatorname{ker}\left(L_{A^{T} A}\right)=\operatorname{dim} \operatorname{Im}\left(L_{A^{T} A}\right)=\operatorname{rank}\left(A^{T} A\right)
\end{aligned}
$$

5. (a) Let $\|\cdot\|$ be a norm on the \mathbb{R}-vector space V. Show that the norm is induced by an inner product $\langle\cdot, \cdot\rangle$ on V if and only if it satisfies the parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

for all $x, y \in V$.
(b) Let V be a finite-dimensional \mathbb{R} vector space. Consider the following map:

$$
\|\cdot\|_{1}: \begin{array}{cc}
V & \rightarrow \\
v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) & \stackrel{\mathbb{R}_{\geqslant 0}}{\mapsto} \sum_{i=1}^{n} \mid v_{i}
\end{array}
$$

Check that $\|\cdot\|_{1}$ defines a norm on V and prove that it does not come from a scalar product.

Lösung:

(a) If $\|x\|^{2}=\langle x, x\rangle$, we have

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \\
\|x-y\|^{2} & =\langle x-y, x-y\rangle \\
& =\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle \\
& =\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2}
\end{aligned}
$$

hence

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Conversely, let ||•|| be a norm on V satisfying the parallelogram identity(PI).
Define

$$
\langle x, y\rangle:=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

where the last equation follows from (PI). This map satisfies $\langle x, y\rangle=\langle y, x\rangle$ and $\|x\|^{2}=\langle x, x\rangle$ for all $x, y \in V$. As $\|\cdot\|$ is already positive definite, it remains to show that $\langle\cdot, \cdot\rangle$ is bilinear. By symmetry, it is enough to show that the map is linear in the first variable.
For arbitrary $x, x^{\prime}, y \in V$ we compute

$$
\begin{aligned}
\left\langle x+x^{\prime}, y\right\rangle & =\frac{1}{4}\left(\left\|(x+y)+x^{\prime}\right\|^{2}-\left\|x+x^{\prime}-y\right\|^{2}\right) \\
& \stackrel{(\mathrm{PI})}{=} \frac{1}{4}\left(2\|x+y\|^{2}+2\left\|x^{\prime}\right\|^{2}-\left\|x+y-x^{\prime}\right\|^{2}-\left\|x+x^{\prime}-y\right\|^{2}\right) \\
& \stackrel{(\mathrm{PI})}{=} \frac{1}{4}\left(2\|x+y\|^{2}+2\left\|x^{\prime}\right\|^{2}-2\|x\|^{2}-2\left\|x^{\prime}-y\right\|^{2}\right) \\
& =\frac{1}{4}\left(2\|x+y\|^{2}-2\|x\|^{2}-2\left\|x^{\prime}\right\|^{2}+4\left\|x^{\prime}\right\|^{2}-2\left\|x^{\prime}-y\right\|^{2}\right) \\
& \stackrel{(\text { PI })}{=} \frac{1}{4}\left(2\|x+y\|^{2}-2\|x\|^{2}-2\left\|x^{\prime}\right\|^{2}+2\left\|x^{\prime}+y\right\|^{2}-4\|y\|^{2}\right) \\
& =\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}+\left\|x^{\prime}+y\right\|^{2}-\left\|x^{\prime}\right\|^{2}-\|y\|^{2}\right) \\
& =\langle x, y\rangle+\left\langle x^{\prime}, y\right\rangle .
\end{aligned}
$$

Hence the map is additive in the first variable. We study its behaviour under scalar multiplication in an inderect way. First, we prove the following assertions for all $n \in \mathbb{Z}^{>0}$ and all $x, y \in V$:
(i) From

$$
0=\langle 0, y\rangle=\langle x+(-x), y\rangle=\langle x, y\rangle+\langle-x, y\rangle
$$

we get $\langle-x, y\rangle=-\langle x, y\rangle$.
(ii) Additivity yields by induction $\langle n x, y\rangle=n\langle x, y\rangle$.
(iii) From (ii) with $\frac{1}{n} x$ instead of x we get

$$
\langle x, y\rangle=\left\langle n \frac{1}{n} x, y\right\rangle=n\left\langle\frac{1}{n} x, y\right\rangle,
$$

and hence $\left\langle\frac{1}{n} x, y\right\rangle=\frac{1}{n}\langle x, y\rangle$.
All three assertions together now yield

$$
\left\langle\frac{p}{q} \cdot x, y\right\rangle=\frac{p}{q} \cdot\langle x, y\rangle
$$

for all $\frac{p}{q} \in \mathbb{Q}$ and all $x, y \in V$.
Now fix arbitrary $x, y \in V$. The subspace U spanned by this elements is then is isomorphic to \mathbb{R}^{n} for $n \leqslant 2$. The restriction of $\|\cdot\|$ to U is again a norm and thus corresponds to a norm on \mathbb{R}^{n}. In the lecture we saw that this norm is a Lipschitz-continuous function on \mathbb{R}^{n}. In particular, it is continuous. Hence, the restriction of $\langle\cdot, \cdot\rangle$ on $U \times U$ corresponds to a continuous function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. This implies the continuity of

$$
\mathbb{R} \rightarrow \mathbb{R}, t \mapsto\langle t x, y\rangle-t\langle x, y\rangle .
$$

The upper equation shows, that this function vanishes on \mathbb{Q}. As it is continuous, it vanishes on \mathbb{R}. Hence, we get

$$
\langle t x, y\rangle=t\langle x, y\rangle
$$

for all $t \in \mathbb{R}$. Therefore $\langle\cdot, \cdot\rangle$ is linear in the first variable, and we are done.
(b) To show that $\|\cdot\|_{1}$ is not induced by an scalar product, we just need to find a pair a vectors for which $\|\cdot\|_{1}$ does not satisfy the parallelogram identity. Let $x=(1,0,0, \ldots, 0)^{T}, y=(0,1,0, \ldots, 0)^{T}$. We have

$$
\begin{aligned}
\|x+y\|_{1}^{2} & =(1+1)^{2}=4 \\
\|x-y\|_{1}^{2} & =(1+1)^{2}=4 \\
2\|x\|_{1}^{2} & =2 \\
2\|y\|_{1}^{2} & =2 .
\end{aligned}
$$

So the parallelogram identity is not satisfied.
6. Let $K=\mathbb{R}, V=M_{n \times n}(K)$, and consider the map

$$
\begin{array}{ccc}
V \times V & \rightarrow & K \\
(A, B) & \mapsto & \operatorname{Tr}\left(A^{T} B\right) .
\end{array}
$$

Show that it defines an inner product on V and find an orthonormal basis with respect to this inner product. The induced norm is called the Hilbert-Schmidt norm. Give a formula form the norm of a matrix $A \in V$ in terms of its entries.
Solution: The basic rules of matrix multiplication imply that the map $(A, B) \mapsto$ $A^{T} B$ is bilinear. As the trace map is linear, the given map is bilinear. From

$$
\langle A, B\rangle=\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left(\left(A^{T} B\right)^{T}\right)=\operatorname{Tr}\left(B^{T}\left(A^{T}\right)^{T}\right)=\operatorname{Tr}\left(B^{T} A\right)=\langle B, A\rangle
$$

we get that it is also symmetric. Now write $A=\left(v_{1}, \ldots, v_{n}\right)$ with column vectors v_{i}. Then A^{T} is the matrix with rows $v_{1}^{T}, \ldots, v_{n}^{T}$ and thus

$$
A^{T} A=\left(v_{i}^{T} v_{j}\right)_{i, j=1, . ., n}
$$

The trace is defined as sum of the diagonal entries; hence

$$
\langle A, A\rangle=\operatorname{Tr}\left(A^{T} A\right)=\sum_{i=1}^{n} v_{i}^{T} v_{i} .
$$

Here every summand $v_{i}^{T} v_{i}$ is the square of the absolute value of v_{i} with respect to the standard scalar product on \mathbb{R}^{n} and hence $\geqslant 0$. Thus $\langle A, A\rangle \geqslant 0$. For $A \neq 0$ at least for one i we have $v_{i} \neq 0$, so at least one summand is >0 and therefore $\langle A, A\rangle>0$. In summary, we showed that $\langle\cdot, \cdot\rangle$ is a scalar product.
The set of all $n \times n$-elementary matrices forms a basis of $\operatorname{Mat}_{n \times n}(\mathbb{R})$. Direct computations show

$$
\left\langle E_{i j}, E_{k \ell}\right\rangle= \begin{cases}1 & \text { if }(i, j)=(k, \ell), \\ 0 & \text { else }\end{cases}
$$

hence this is an orthonormal basis
Aliter: We identify $\operatorname{Mat}_{n \times n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$, by listing the coefficients of a matrix in a fixed order. This is an isomorphism of vector spaces. For two $n \times n$-matrices $A=\left(a_{i j}\right)_{i, j}$ and $B=\left(b_{i j}\right)_{i, j}$ a direct computation shows

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j} .
$$

Under the mentioned isomorphism $\langle\cdot, \cdot\rangle$ corresponds to the standard scalar product on $\mathbb{R}^{n^{2}}$; and hence this is also a scalar product. Moreover, the $n \times n$-elementary matrices correspond exactly to the standard basis vectors of $\mathbb{R}^{n^{2}}$; and as these form an orthonormal basis, the same holds true for $n \times n$-elementary matrices.
We denote the induced norm $\|\cdot\|$. Let us denote $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}, A^{T}=\left(\tilde{a}_{i j}\right)_{1 \leqslant i, j \leqslant n}$, $A^{T} A=\left(c_{i j}\right)_{1 \leqslant i, j \leqslant n}$. We have

$$
c_{i j}=\sum_{k=1} \tilde{a}_{i k} a_{k j}=\sum_{k=1} a_{k i} a_{k j} .
$$

Hence $c_{i i}=\sum_{k=1}^{n} a_{k i}^{2}$ and

$$
\|A\|^{2}=\operatorname{Tr}\left(A^{T} A\right)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{k i}^{2}
$$

is simply the Euclidian norm of A viewed as an element of $\mathbb{R}^{n^{2}}$.

