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Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 19
Scalar products, bilinear forms

1. For which values of a P R does the expression

xx, yy :“ x1y1 ` ax1y2 ` ax2y1 ` 7x2y2,

where x “
`

x1

x2

˘

and y “
`

y1
y2

˘

, define an inner product on R2?

Lösung : We check directly that x¨, ¨y is a symmetric bilinear form on R2; i.e. by
considering the studying the symmetric representation matrix

`

1 a
a 7

˘

. We compute

xx, xy “ x2
1 ` 2ax1x2 ` 7x2

2

“ x2
1 ` 2ax1x2 ` a2x2

2 ´ a2x2
2 ` 7x2

2

“ px1 ` ax2q
2

` p7 ´ a2qx2
2.

If x¨, ¨y is positive definite, we get with x “
`

´a
1

˘

‰ 0, that 7 ´ a2 ą 0 holds; hence

|a| ă
?
7. Conversely, if we have |a| ă

?
7, we get from the upper computation

xx, xy ą 0 for all x ‰ 0 and hence x¨, ¨y is positive definite. Hence x¨, ¨y is an inner
product if and only if |a| ă

?
7.

2. Let V be the vector space of real polynomials of degree at most n.

(a) Show that the expression

xp, qy :“

ż 8

0

pptqqptqe´t dt

defines an inner product on V .

(b) Find the matrix of the inner product with respect to the basis 1, x, . . . , xn.

Lösung :

(a) We know from analysis that these improper integral converge. Linearity of
the integral yields that x¨, ¨y is a bilinear form, which is obviously symmetric.
Now let p P V ∖ t0u be arbitrary. Choose a point x0 ą 0 with ppx0q ‰ 0.
As p induces a continuous function, we get |ppxq| ě c :“ 1

2
|ppx0q| ą 0 on

an interval ra, bs Ă Rě0 with x0 P ra, bs. As the function t ÞÑ e´t is strictly
decreasing and e´t ą 0 holds for all t, we get

xp, py “

ż 8

0

pptq2e´t dt ě

ż b

a

pptq2e´t dt ě c ¨ e´b
¨ pb ´ aq ą 0.

Hence x¨, ¨y is positive definite and thus a scalar product.
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(b) For all k P Zě0 consider

apkq :“

ż 8

0

tke´t dt.

Then

ap0q “

ż 8

0

e´t dt “ ´e´t
ˇ

ˇ

ˇ

8

0
“ 1,

and for k ě 1 partial integration yields

apkq “

ż 8

0

tke´t dt “ ´tke´t
ˇ

ˇ

ˇ

8

0
´

ż 8

0

ktk´1
p´e´t

q dt “ k ¨ apk ´ 1q.

By induction over k we get apkq “ k!. Now let A :“ paijqi,j be the repre-
sentation matrix of the scalar product x¨, ¨y with respect to the ordered basis
p1, x, . . . , xnq. Then

aij “ xxi´1, xj´1
y “ api ` j ´ 2q “ pi ` j ´ 2q! .

3. Let V “ R2 endowed with the standard scalar product, and for i “ 1, 2, let
vi P V ∖ t0u. Show that the formula

xv1, v2y “ ||v1|| ||v2|| cosp zv1, v2q,

defining the cosinus of an angle is rotation-invariant. In other words show that,
for any rotation of the plane R : V Ñ V , we have

cosp zv1, v2q “ cosp {Rv1, Rv2q,

which is what we would expect from a good definition of the angle between 2
vectors.

Solution: Let v1, v2 P V be pair of non-vanishing vectors, and let θ P r0, 2πq. We
show that the rotation matrix

ˆ

cospθq sinpθq

´ sinpθq cospθq

˙

rotating the plane by θ preserves the scalar product, and therefore also leaves the
norm unchanged. Indeed, for any pair of vectors v, w P V , we have

Bˆ

cospθq sinpθq

´ sinpθq cospθq

˙

v,

ˆ

cospθq sinpθq

´ sinpθq cospθq

˙

w

F

“

ˆˆ

cospθq sinpθq

´ sinpθq cospθq

˙

¨ v

˙T

¨

ˆ

cospθq sinpθq

´ sinpθq cospθq

˙

¨ w

“vT ¨

ˆ

cospθq sinpθq

´ sinpθq cospθq

˙T

¨

ˆ

cospθq sinpθq

´ sinpθq cospθq

˙

¨ w

“vT ¨ I2 ¨ w

“ xv, wy .

2



This shows

xv1, v2y

||v1|| ||v2||
“

xRv1, Rv2y

||Rv1|| ||Rv2||
ùñ cosp zv1, v2q “ cosp {Rv1, Rv2q.

4. Let A P MatnˆnpRq. Show that:

(a) The matrix ATA is symmetric.

(b) The matrix ATA is positive-definite if and only if A is invertible.

(c) It holds that RangpATAq “ RangpAq.

Lösung : Assertion (a) follows from pATAqT “ AT pAT qT “ ATA.

As a preparation, we compute for every v P Rn

p˚q vT ¨ pATAq ¨ v “ pvTAT
q ¨ Av “ pAvq

TAv “ }Av}
2,

where || || is the standard euclidean norm on Rn.

If A is invertible, it follows that Av ‰ 0 and thus vT ¨ pATAq ¨ v “ }Av}2 ą

0. Therefore, the matrix ATA is positive definite. Conversely, if ATA is positive
definite, we get }Av}2 “ vT ¨ pATAq ¨ v ą 0 and hence Av ‰ 0. Thus the linear
map LA : Rn Ñ Rn, v ÞÑ Av has trivial kernel and hence A is invertible. So (b) is
proved.

For (c) we start by claiming kernelpLAq “ kernelpLATAq.

Proof: For allv P Rn with Av “ 0, we have ATAv “ AT0 “ 0; i.e.
”
Ă“ holds.

Conversely, let ATAv “ 0. From p˚q we then get }Av}2 “ vT ¨ pATAq ¨ v “ vT0 “ 0.
As the euclidean norm is positive definite Av “ 0, also v P KernpLAq. This shows
the inclusion

”
Ą“, and the claim is proved. q.e.d.

The claim yields

rankpAq “ dim ImpLAq “ n ´ dimkerpLAq

“ n ´ dimkerpLATAq “ dim ImpLATAq “ rankpATAq.

5. (a) Let } ¨ } be a norm on the R-vector space V . Show that the norm is induced
by an inner product x¨, ¨y on V if and only if it satisfies the parallelogram
identity

}x ` y}
2

` }x ´ y}
2

“ 2}x}
2

` 2}y}
2

for all x, y P V .

(b) Let V be a finite-dimensional R vector space. Consider the following map:

||¨||1 : V Ñ Rě0

v “ pv1, v2, . . . , vnq ÞÑ
řn

i“1 |vi|

Check that ||¨||1 defines a norm on V and prove that it does not come from
a scalar product.

Lösung :
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(a) If ||x||2 “ xx, xy, we have

||x ` y||2 “ xx ` y, x ` yy

“ xx, xy ` 2xx, yy ` xy, yy

“ ||x||2 ` 2xx, yy ` ||y||2

||x ´ y||2 “ xx ´ y, x ´ yy

“ xx, xy ´ 2xx, yy ` xy, yy

“ ||x||2 ´ 2xx, yy ` ||y||2 ,

hence
||x ` y||2 ` ||x ´ y||2 “ 2 ||x||2 ` 2 ||y||2 .

Conversely, let ||¨|| be a norm on V satisfying the parallelogram identity(PI).
Define

xx, yy :“
1

2

`

||x ` y||2 ´ ||x||2 ´ ||y||2
˘

“
1

4

`

||x ` y||2 ´ ||x ´ y||2
˘

,

where the last equation follows from (PI). This map satisfies xx, yy “ xy, xy

and ||x||2 “ xx, xy for all x, y P V . As ||¨|| is already positive definite, it
remains to show that x¨, ¨y is bilinear. By symmetry, it is enough to show that
the map is linear in the first variable.

For arbitrary x, x1, y P V we compute

xx ` x1, yy “
1

4
p||px ` yq ` x1||2 ´ ||x ` x1

´ y||2q

(PI)
“

1

4
p2 ||x ` y||2 ` 2 ||x1||2 ´ ||x ` y ´ x1||2 ´ ||x ` x1

´ y||2q

(PI)
“

1

4
p2 ||x ` y||2 ` 2 ||x1||2 ´ 2 ||x||2 ´ 2 ||x1

´ y||2q

“
1

4
p2 ||x ` y||2 ´ 2 ||x||2 ´ 2 ||x1||2 ` 4 ||x1||2 ´ 2 ||x1

´ y||2q

(PI)
“

1

4
p2 ||x ` y||2 ´ 2 ||x||2 ´ 2 ||x1||2 ` 2 ||x1

` y||2 ´ 4 ||y||2q

“
1

2
p||x ` y||2 ´ ||x||2 ´ ||y||2 ` ||x1

` y||2 ´ ||x1||2 ´ ||y||2q

“ xx, yy ` xx1, yy.

Hence the map is additive in the first variable. We study its behaviour un-
der scalar multiplication in an inderect way. First, we prove the following
assertions for all n P Zą0 and all x, y P V :

(i) From
0 “ x0, yy “ xx ` p´xq, yy “ xx, yy ` x´x, yy

we get x´x, yy “ ´xx, yy.
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(ii) Additivity yields by induction xnx, yy “ nxx, yy.

(iii) From (ii) with 1
n
x instead of x we get

xx, yy “ xn
1

n
x, yy “ nx

1

n
x, yy,

and hence x 1
n
x, yy “ 1

n
xx, yy.

All three assertions together now yield

x
p

q
¨ x, yy “

p

q
¨ xx, yy

for all p
q

P Q and all x, y P V .

Now fix arbitrary x, y P V . The subspace U spanned by this elements is then
is isomorphic toRn for n ď 2. The restriction of ||¨|| to U is again a norm and
thus corresponds to a norm on Rn. In the lecture we saw that this norm is
a Lipschitz-continuous function on Rn. In particular, it is continuous. Hence,
the restriction of x¨, ¨y on U ˆ U corresponds to a continuous function on
Rn ˆ Rn. This implies the continuity of

R Ñ R, t ÞÑ xtx, yy ´ txx, yy.

The upper equation shows, that this function vanishes on Q. As it is conti-
nuous, it vanishes on R. Hence, we get

xtx, yy “ txx, yy

for all t P R. Therefore x¨, ¨y is linear in the first variable, and we are done.

(b) To show that ||¨||1 is not induced by an scalar product, we just need to find a
pair a vectors for which ||¨||1 does not satisfy the parallelogram identity. Let
x “ p1, 0, 0, . . . , 0qT , y “ p0, 1, 0, . . . , 0qT . We have

||x ` y||21 “ p1 ` 1q
2

“ 4

||x ´ y||21 “ p1 ` 1q
2

“ 4

2 ||x||21 “ 2

2 ||y||21 “ 2.

So the parallelogram identity is not satisfied.

6. Let K “ R, V “ MnˆnpKq, and consider the map

V ˆ V Ñ K
pA,Bq ÞÑ TrpATBq.
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Show that it defines an inner product on V and find an orthonormal basis with
respect to this inner product. The induced norm is called the Hilbert-Schmidt
norm. Give a formula form the norm of a matrix A P V in terms of its entries.

Solution: The basic rules of matrix multiplication imply that the map pA,Bq ÞÑ

ATB is bilinear. As the trace map is linear, the given map is bilinear. From

xA,By “ TrpATBq “ TrppATBq
T

q “ TrpBT
pAT

q
T

q “ TrpBTAq “ xB,Ay

we get that it is also symmetric. Now write A “ pv1, . . . , vnq with column vectors
vi. Then AT is the matrix with rows vT1 , . . . , v

T
n and thus

ATA “
`

vTi vj
˘

i,j“1,..,n
.

The trace is defined as sum of the diagonal entries; hence

xA,Ay “ TrpATAq “

n
ÿ

i“1

vTi vi.

Here every summand vTi vi is the square of the absolute value of vi with respect to
the standard scalar product on Rn and hence ě 0. Thus xA,Ay ě 0. For A ‰ 0
at least for one i we have vi ‰ 0, so at least one summand is ą 0 and therefore
xA,Ay ą 0. In summary, we showed that x¨, ¨y is a scalar product.

The set of all n ˆ n-elementary matrices forms a basis of MatnˆnpRq. Direct com-
putations show

xEij, Ekℓy “

"

1 if pi, jq “ pk, ℓq,
0 else,

hence this is an orthonormal basis

Aliter: We identify MatnˆnpRq with Rn2
, by listing the coefficients of a matrix in

a fixed order. This is an isomorphism of vector spaces. For two n ˆ n-matrices
A “ paijqi,j and B “ pbijqi,j a direct computation shows

xA,By “

n
ÿ

i“1

n
ÿ

j“1

aijbij.

Under the mentioned isomorphism x¨, ¨y corresponds to the standard scalar product
on Rn2

; and hence this is also a scalar product. Moreover, the n ˆ n-elementary
matrices correspond exactly to the standard basis vectors of Rn2

; and as these
form an orthonormal basis, the same holds true for n ˆ n-elementary matrices.

We denote the induced norm ||¨||. Let us denote A “ paijq1ďi,jďn, A
T “ pãijq1ďi,jďn,

ATA “ pcijq1ďi,jďn. We have

cij “
ÿ

k“1

ãikakj “
ÿ

k“1

akiakj.
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Hence cii “
řn

k“1 a
2
ki and

||A||2 “ TrpATAq “

n
ÿ

i“1

cii “

n
ÿ

i“1

n
ÿ

k“1

a2ki

is simply the Euclidian norm of A viewed as an element of Rn2
.
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