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Musterlosung Serie 19

SCALAR PRODUCTS, BILINEAR FORMS

1. For which values of a € R does the expression

(x,y) := T1Y1 + aT1Y2 + aToy1 + TTaYs,

where z = (i;) and y = (gi), define an inner product on R??

Lisung: We check directly that (-, -) is a symmetric bilinear form on R?; i.e. by
considering the studying the symmetric representation matrix (i (;) We compute

(x,r) = z7 4 20ar175 + T3
= 2%+ 2ax,70 + 0’75 — a’ry + T
= (21 +axp)* + (7 — a?)z3.

If (-,-) is positive definite, we get with z = (_f) # 0, that 7 — a? > 0 holds; hence
la] < /7. Conversely, if we have |a| < /7, we get from the upper computation
{x,xy > 0 for all x # 0 and hence (-, -) is positive definite. Hence (-, -) is an inner
product if and only if |a| < /7.

2. Let V be the vector space of real polynomials of degree at most n.

(a) Show that the expression

P = LOO p(t)q(t)e tdt

defines an inner product on V.

(b) Find the matrix of the inner product with respect to the basis 1,x, ..., z".

Lésung:

(a) We know from analysis that these improper integral converge. Linearity of
the integral yields that {-,-) is a bilinear form, which is obviously symmetric.
Now let p € V'~ {0} be arbitrary. Choose a point zy > 0 with p(xy) # 0.
As p induces a continuous function, we get |p(z)| = ¢ := %|p(zo)] > 0 on
an interval [a,b] < R>? with zg € [a,b]. As the function ¢t — e~ is strictly
decreasing and e~ > 0 holds for all ¢, we get

© b
W = | pereta = | pepeta = et p-a) > 0

0 a

Hence (-, -) is positive definite and thus a scalar product.

1



(b) For all k € Z*° consider

Then

O o
a(0) = J e tdt =—e7t =1,
0

and for k > 1 partial integration yields
0 0 0
a(k) = J the™tdt = —tFe™| — J kt" T (—e ™) dt = k- a(k — 1).
0 0 0

By induction over k we get a(k) = kl. Now let A := (a;;);; be the repre-
sentation matrix of the scalar product ¢, -) with respect to the ordered basis
(1,z,...,2"). Then

a; =" =ali+5—-2)=(i+j—2).

3. Let V = R? endowed with the standard scalar product, and for i = 1,2, let
v; € V . {0}. Show that the formula

(v1,v9) = ||v1]] |[va|| cos(v1, 12),

defining the cosinus of an angle is rotation-invariant. In other words show that,
for any rotation of the plane R : V — V', we have

— —_—
cos(vy, vg) = cos(Rvy, Rvg),

which is what we would expect from a good definition of the angle between 2
vectors.

Solution: Let vy, vy € V' be pair of non-vanishing vectors, and let 6 € [0, 27). We
show that the rotation matrix

(S5 i)

rotating the plane by 6 preserves the scalar product, and therefore also leaves the
norm unchanged. Indeed, for any pair of vectors v, w € V', we have

(20 sy, (o o)
(el ) Y (e O
= (Sl ) (5 )

=l I w

=(v,w).



5.

This shows
<’Ul, U2> <R’U17 R1)2> —

= = cos(v1, v2) = cos(Ruvy, Rus).

ol {[vall — [[Ror]][| Rus]

Let A € Mat,«,,(R). Show that:

(a) The matrix AT A is symmetric.
(b) The matrix AT A is positive-definite if and only if A is invertible.
(c) Tt holds that Rang(AT A) = Rang(A).

Lésung: Assertion (a) follows from (ATA)T = AT(AT)T = AT A.

As a preparation, we compute for every v € R"

(%) vl (ATA) v = (vTAT) Av = (Av)TAv = ||Av|?,
where || || is the standard euclidean norm on R”™.

If A is invertible, it follows that Av # 0 and thus v - (ATA) v = |Av|?* >
0. Therefore, the matrix AT A is positive definite. Conversely, if AT A is positive
definite, we get |Av|? = vT - (ATA) - v > 0 and hence Av # 0. Thus the linear
map L4: R” - R" v +— Av has trivial kernel and hence A is invertible. So (b) is
proved.

For (c) we start by claiming kernel(L4) = kernel(L 47 4).

Proof: For allv € R® with Av = 0, we have ATAv = AT0 = 0; i.e. ,c* holds.
Conversely, let AT Av = 0. From (*) we then get |Av|? = vT - (ATA)-v =070 = 0.
As the euclidean norm is positive definite Av = 0, also v € Kern(L,). This shows
the inclusion ,,o%, and the claim is proved. g.e.d.

The claim yields
rank(A) = dimIm(Ly) = n — dimker(L,)
= n—dimker(Lsr,) = dimIm(Lyry) = rank(ATA).

(a) Let | - || be a norm on the R-vector space V. Show that the norm is induced
by an inner product {-,-) on V if and only if it satisfies the parallelogram
identity

|2+ yl* + = — yl* = 2]=]* + 2]/
for all z,y e V.
(b) Let V be a finite-dimensional R vector space. Consider the following map:
1] - 4 - Ry
v=(01,09,...,0,) — D v

Check that [|-]|, defines a norm on V' and prove that it does not come from
a scalar product.

Lésung:



(a) If [|z||* = (x, x), we have

lz+yll* = @+yz+y)
(r,2) + 2z, y) + Y, y)
||2]|* + 2¢z, ) + ||yl|”
lz—yll* = @—yz—y
= (z,2) — Az, y) +<y, )
= [l = Za,p) + Iyl
hence
|z +yl* + |lz — yl* = 2|Jz|* + 2|ly[|* .

Conversely, let ||-|| be a norm on V satisfying the parallelogram identity (PI).
Define

(x,y) =

(Il +ylI” = llz =y,

| =

2 2 2
(e + oIl = ll=I]” = [lyll") =

N | —

where the last equation follows from (PI). This map satisfies (x,y) = (y, )
and ||z||> = (z,z) for all z,y € V. As ||-|| is already positive definite, it
remains to show that (-, -) is bilinear. By symmetry, it is enough to show that
the map is linear in the first variable.

For arbitrary z,2’,y € V we compute

oy = 1@+ 2P~ e+ i)
W@l i+ 20l by — I 4o — gl
@l i+ 22— 21fal P 2l — )
= L@l ylP 2l 20 + 4l 2l )

1 2 9 2 2 2
= Z(2H$+y!| = 2||z|[" = 2]|2"|]" + 2[]2" + y||” — 4|yl

1 2 2 2 2 2 2
= Ul +yll" =l = [lylI” + ]2+ yllI” = [I2]" = {ly[I")
= Lz + <y
Hence the map is additive in the first variable. We study its behaviour un-

der scalar multiplication in an inderect way. First, we prove the following
assertions for all n € Z~% and all z,y € V:

(i) From
0= <07y> = <l‘ + (—J,’),y> = <l‘,y> + <—C(J,y>
we get (—z,y) = —{(x,y).



(ii) Additivity yields by induction (nx,y) = n{z,y).

(iii) From (ii) with 2z instead of = we get

vy = () = o),

and hence (z,y) = ~(z,y).

All three assertions together now yield

<§-x,y>=§-<x,y>

for all § eQandall z,ye V.

Now fix arbitrary x,y € V. The subspace U spanned by this elements is then
is isomorphic toR™ for n < 2. The restriction of ||-|| to U is again a norm and
thus corresponds to a norm on R™. In the lecture we saw that this norm is
a Lipschitz-continuous function on R™. In particular, it is continuous. Hence,
the restriction of (-,-) on U x U corresponds to a continuous function on
R™ x R™. This implies the continuity of

R >R, t— {tx,y) — t{x,y).

The upper equation shows, that this function vanishes on Q. As it is conti-
nuous, it vanishes on R. Hence, we get

(tz,y) = Kz, y)

for all t € R. Therefore (-, -) is linear in the first variable, and we are done.

(b) To show that ||-||, is not induced by an scalar product, we just need to find a
pair a vectors for which ||-||, does not satisfy the parallelogram identity. Let
r=(1,0,0,...,0)", y =(0,1,0,...,0)T. We have

o+ yll = (1+1)* =

le—ylly = (1 +1)* =
2|all; =2
2|yl = 2.

So the parallelogram identity is not satisfied.

6. Let K =R, V = M,+,(K), and consider the map

VXV — K
(A,B) — Tr(ATB).



Show that it defines an inner product on V' and find an orthonormal basis with
respect to this inner product. The induced norm is called the Hilbert-Schmidt
norm. Give a formula form the norm of a matrix A € V' in terms of its entries.

Solution: The basic rules of matrix multiplication imply that the map (A, B) —
AT B is bilinear. As the trace map is linear, the given map is bilinear. From

(A, B) = Te(ATB) = Te((ATB)T) = Te(BT(AT)T) = Te(BTA) = (B, A

we get that it is also symmetric. Now write A = (vy,...,v,) with column vectors
v;. Then AT is the matrix with rows o{ ..., vl and thus

ATA = (v]v;

)z‘,j=1,..,n'

The trace is defined as sum of the diagonal entries; hence
(A, Ay = Te(ATA) = > o]
i=1

Here every summand v} v; is the square of the absolute value of v; with respect to
the standard scalar product on R” and hence > 0. Thus (A, A) > 0. For A # 0
at least for one ¢ we have v; # 0, so at least one summand is > 0 and therefore
(A, A) > 0. In summary, we showed that (-, -) is a scalar product.

The set of all n x n-elementary matrices forms a basis of Mat,,«,(R). Direct com-
putations show
1) = (k0),
Eij Bre) = { 0 else,

hence this is an orthonormal basis

Aliter: We identify Mat,«,(R) with R"*, by listing the coefficients of a matrix in
a fixed order. This is an isomorphism of vector spaces. For two n x n-matrices
A = (a;j);; and B = (b;;);; a direct computation shows

(A, By = > aijbi;.

i=1j=1

Under the mentioned isomorphism (-, -) corresponds to the standard scalar product
on R™; and hence this is also a scalar product. Moreover, the n x n-elementary
matrices correspond exactly to the standard basis vectors of R”; and as these
form an orthonormal basis, the same holds true for n x n-elementary matrices.

We denote the induced norm ||-||. Let us denote A = (a;j)1<ij<ns AT = (@ij)1<ij<ns
AT A = (¢ij)1<ij<n- We have

Cij = Z QikOkj = Z Qi Ok -
k=1

k=1
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Hence ¢; = Y_, a3, and

||A|| = Tr(ATA) =i =iiazi
i=1 i=1 k=1

is simply the Euclidian norm of A viewed as an element of R™’.



