Musterlösung Serie 20

GRAM-SCHMIDT, ORTHOGONALITY

1. Let V be a finite dimensional euclidean vector space and $S \subset V$ an orthnormal set. Show that we can extend S to an orthomormal basis of V.

Solution: Write $S = \{v_1, \ldots, v_m\}$ and extend (v_1, \ldots, v_m) to an ordered basis (v_1, \ldots, v_n) of V. Applying Gram-Schmidt yields an orthomnormal basis (b_1, \ldots, b_n) The construction implies $(b_1, \ldots, b_m) = (v_1, \ldots, v_m)$; thus $\{b_1, \ldots, b_n\}$ is an orthonormal basis of V, which contains S.

Aliter: By assumption S is an orthonormal basis $U := \langle S \rangle$. As V is finite dimensional, we get $V = U \oplus U^{\perp}$. Here U^{\perp} is again finite dimensional and thus admits an orthonormal basis T. We saw in the lecture that $S \cup T$ is then an orthonormal basis of V.

- 2. Let $A \in M_{n \times n}(\mathbb{R})$. Show:
 - (a) The matrix $A^T A$ is symmetric.
 - (b) The matrix $A^T A$ is positive definite if and only if A is invertible.
 - (c) We have $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.
 - (d) Assume that A is symmetric and that it admits $(\lambda_1, v_1), (\lambda_2, v_2)$ with $\lambda_1, \lambda_2 \neq 0$ as pairs of eigenvalue-eigenvector. Show that if $\lambda_1 \neq \lambda_2$ then $v_1 \perp v_2$.

Solution: Assertion (a) follows from $(A^T A)^T = A^T (A^T)^T = A^T A$.

Moreover, we have for every $v \in \mathbb{R}^n$

(*)
$$v^T \cdot (A^T A) \cdot v = (v^T A^T) \cdot Av = (Av)^T Av = ||Av||^2,$$

where || || is the standard Euclidean norm on \mathbb{R}^n .

If A is invertible, we get $Av \neq 0$ and hence $v^T \cdot (A^T A) \cdot v = ||Av||^2 > 0$; so $A^T A$ is positive definite. If on the other hand $A^T A$ is positive definite, we get $||Av||^2 = v^T \cdot (A^T A) \cdot v > 0$ and hence $Av \neq 0$. So the linear map $L_A \colon \mathbb{R}^n \to \mathbb{R}^n$, $v \mapsto Av$ has trivial kernel, and hence A is invertible. Thus we proved (b).

For (c) we start by claiming $\operatorname{Ker}(L_A) = \operatorname{Ker}(L_{A^T A})$.

Proof: For all $v \in \mathbb{R}^n$ with Av = 0, we have $A^T A v = A^T 0 = 0$; thus " \subset ". Conversely, let $A^T A v = 0$. By (*), we get $||Av||^2 = v^T \cdot (A^T A) \cdot v = v^T 0 = 0$. As the

Euclidean norm is positive definite, we get Av = 0, hence $v \in \text{Ker}(L_A)$. This shows $, \supset "$. q.e.d.

The claim yields

$$\operatorname{Rang}(A) = \dim \operatorname{Im}(L_A) = n - \dim \operatorname{Ker}(L_A)$$
$$= n - \dim \operatorname{Ker}(L_{A^T A}) = \dim \operatorname{Im}(L_{A^T A}) = \operatorname{rank}(A^T A).$$

To show (d), we compute that on one hand

$$\langle Av_1, Av_2 \rangle = \langle \lambda_1 v_1, \lambda_2 v_2 \rangle = \lambda_1 \lambda_2 \langle v_1, v_2 \rangle,$$

and on the other hand,

$$\langle Av_1, Av_2 \rangle = v_1^t A^t A v_2 = v_1^t A^2 v_2 = \lambda_2^2 v_1^t v_2 = \lambda_2^2 \langle v_1, v_2 \rangle,$$

where we used that A is symmetric to obtain the second equality. Hence

 $\lambda_2(\lambda_2 - \lambda_1)\langle v_1, v_2 \rangle = 0 \implies v_1 \perp v_2$

since we assumed that $\lambda_1 \neq \lambda_2$ and that $\lambda_1, \lambda_2 \neq 0$.

3. Compute a decomposition A = QR of the matrix

$$A = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$

into an orthogonal matrix Q and an upper triangular matrix R. Use this decomposition to solve the linear system Ax = b for $b = (0, 3, -3)^T$.

Lösung: Gram-Schmidt-Orthogonalisierungsverfahren yields the desired matrices

$$Q = \begin{pmatrix} -1/3 & 2/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \\ -2/3 & 1/3 & 2/3 \end{pmatrix} \quad \text{und} \quad R = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Multiplication of Ax = QRx = b on the left with the invertible matrix $Q^{-1} = Q^T$ yields the equivalent system of equations $Rx = Q^Tb = (4, 1, -1)^T$. As R is an upper triangular matrix, one quickly obtains the solution $x = (2, 1, -1)^T$.

- 4. Let U be the subspace of \mathbb{R}^3 with the standard inner product spanned by the two vectors $v_1 = (1, 1, 1)^T$ and $v_2 = (0, 2, 1)^T$.
 - (a) Determine an orthonormal basis of U and an orthonormal basis of U^{\perp} .
 - (b) Compute the representation matrices of the orthogonal projections $\mathbb{R}^3 \to U$ and $\mathbb{R}^3 \to U^{\perp}$ with respect to the standard basis of \mathbb{R}^3 and the bases from (a).

Lösung:

(a) A simple way of finding orthomal basis of U and U^{\perp} simultaneously is to apply Gram-Schmidt on the vectors v_1, v_2 and an additional vector $v_3 \in \mathbb{R}^3$, which supplements them to a basis, e.g. $v_3 = (1, 0, 0)^T$. This yields

$$w_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \qquad w_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \qquad w_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

Hence (w_1, w_2) is an orthonomal basis of U and w_3 one of U^T .

Alternatively, one uses Gram-Schmidt on (v_1, v_2) to compute an orthonormal basis (w_1, w_2) of U, and solves the system of linear equations $\langle v_1, w \rangle = \langle v_2, w \rangle = 0$ to compute a basis u' of U^T , such that $w_3 := u'/||u'||$ is an orthonormal basis of U^T .

(b) The orthogonal projection of \mathbb{R}^3 onto U is given by

$$v \mapsto \langle w_1, v \rangle w_1 + \langle w_2, v \rangle w_2$$

The representation matrix with respect to the bases (e_1, e_2, e_3) of \mathbb{R}^3 and (w_1, w_2) of U is

$$(\langle e_j, w_i \rangle)_{\substack{1 \le i \le 2\\ 1 \le j \le 3}} = (w_1, w_2)^T = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3}\\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}.$$

Analogously, one obtains the representation matrix of the orthogonal projection of \mathbb{R}^3 onto U^\perp

$$(\langle e_j, w_3 \rangle)_{1 \leq j \leq 3} = w_3^T = (1/\sqrt{6} \ 1/\sqrt{6} \ -2/\sqrt{6}).$$

- 5. For each of the following vector spaces V endowed with the inner product $\langle \cdot, \cdot \rangle$, find U^{\perp} for the given subset U:
 - (a) First consider

$$V = \left\{ (a_0, a_1, a_2, \dots) \mid \sum_{n=0}^{\infty} |a_n|^2 < \infty \right\}, \quad \langle (a_n)_{n=0}^{\infty}, (b_n)_{n=0}^{\infty} \rangle = \sum_{n=0}^{\infty} a_n \cdot b_n,$$
$$U = \{ (a_n)_{n=0}^{\infty} \in V \mid \exists N \ge 0 \text{ s.t. } \forall m \ge N : a_m = 0 \}$$

(b) Secondly, we set

$$V = C([0,1]), \quad \langle f,g \rangle = \int_0^1 f(x) \cdot g(x) dx,$$
$$U = \left\{ f \in V \mid \int_0^{1/2} f(x) dx = 0 \right\}.$$

Solutions:

(a) For $i \in \mathbb{Z}_{\geq 0}$, we denote $s^{(i)}$ the sequence whose elements all vanish, except for the element at index *i*, which equals 1. Note that for all $i \in \mathbb{Z}_{\geq 0}$, $s^{(i)} \in U$. Let $b = (b_n)_{n \in \mathbb{Z}_{\geq 0}} \in U^{\perp}$. By definition, for any $i \in \mathbb{Z}_{\geq 0}$, we then have

$$\sum_{n=0}^{\infty} s_n^{(i)} b_n = 0 \quad \Leftrightarrow \quad b_i = 0.$$

Since this holds for all indices *i*, it follows that $b = 0_V$. Since *b* was an arbitrary element of U^{\perp} , we conclude that $U^{\perp} = \{0_V\}$.

(b) First note that any function $h \in U^{\perp}$ must vanish on [1/2, 1]. Indeed, assume that some $h \in U^{\perp}$ doesn't vanish on [1/2, 1]. Then by continuity of h there exists $x_0 \in (1/2, 1)$ and $n \in \mathbb{N}$ big enough such that h doesn't change sign on the interval $(x_0 - 1/n, x_0 + 1/n)$ contained in (1/2, 1). Let f_0 denote the piecewise linear function defined by

$$f_0(x) = \begin{cases} 0, & x \in \left[0, x_0 - \frac{1}{n}\right] \\ n, & x = x_0 \\ 0, & x \in \left[x_0 + \frac{1}{n}, 1\right] \end{cases}$$

Note that $f_0 \in U$. Then

$$\left| \int_{0}^{1} f_{0}(x)h(x)dx \right| = \left| \int_{x_{0}-1/n}^{x_{0}+1/n} f_{0}(x)h(x)dx \right| > 0,$$

since the integrand doesn't change sign on the interval $\left[x_0 - \frac{1}{n}, x_0 + \frac{1}{n}\right]$. This is a contradiction to $h \in U^{\perp}$.

We now show that any $g \in U^{\perp}$ must be constant on [0, 1/2]. Fix $a, b \in (0, 1/2)$ such that a < b. There exists $N(a, b) \in \mathbb{N}$ such that for all integers $n \ge N(a, b)$, the piecewise linear function f_n defined as follows belongs to V:

$$f_n(x) = \begin{cases} 0, & x \in \left[0, a - \frac{1}{n}\right] \\ n, & x = a \\ 0, & x \in \left[a + \frac{1}{n}, b - \frac{1}{n}\right] \\ -n, & x = b \\ 0, & x \in \left[b + \frac{1}{n}, 1/2\right] \end{cases}$$

Note that for f_n integrates to 0 on [0, 1/2], hence $f_n \in U$. Let $g \in U^{\perp}$. Then,

$$\int_{0}^{1/2} f(x)g(x)dx = 0 \quad \Leftrightarrow \quad \int_{a-1/n}^{a+1/n} f_n(x)g(x) = -\int_{b-1/n}^{b+1/n} f_n(x)g(x)dx.$$

Letting $n \to +\infty$, the second equality above converges to g(a) = g(b). We show convergence to g(a) for the left0-hand side of the said equality (the RHS can be handled similarly). Since g is continuous in a, for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|x-a| < \delta \implies |g(x) - g(a)| < \varepsilon.$$

So, for n big enough so that $1/n < \delta$, we have

$$\begin{aligned} \left| \int_{a-1/n}^{a+1/n} f_n(x)g(x)dx - \int_{a-1/n}^{a+1/n} f_n(x)g(a)dx \right| \\ &= \left| \int_{a-1/n}^{a+1/n} f_n(x)(g(x) - g(a))dx \right| \\ &\leq \int_{a-1/n}^{a+1/n} f_n(x) |g(x) - g(a)| dx \\ &< \varepsilon \int_{a-1/n}^{a+1/n} |f_n(x)| dx \\ &= \varepsilon, \end{aligned}$$

where we used that f_n integrates to 1 on [a - 1/n, a + 1/n] to obtain the last equality. Letting ε go to 0, this shows the desired convergence.

Using the continuity of g and the fact that a and b are arbitrary, we deduce that g is constant on [0, 1/2]. Since g vanishes on [1/2, 1], it follows, again from continuity, that g vanishes on the whole interval [0, 1]. This shows that $U^{\perp} = \{0_V\}.$

6. For a finite-dimensional Euclidean vector space (V, \langle , \rangle) consider the isomorphism

$$\delta \colon V \to V^* := \operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}), \ v \mapsto \delta(v) := \langle v, \cdot \rangle.$$

- (a) Show that there exists exactly one inner product $\langle \ , \ \rangle^*$ on V^* such that δ is an isometry.
- (b) Let B be an ordered basis of V, and let B^* be the corresponding dual basis of V^* . Give the representation matrix of \langle , \rangle^* with respect to B^* in terms of the representation matrix of \langle , \rangle with respect to B.

Solution:

(a) The map δ is an isometry for the sought scalar product \langle , \rangle^* if and only if

$$\forall v, w \in V \colon \langle \delta(v), \delta(w) \rangle^* = \langle v, w \rangle.$$
(1)

As δ is bijective, there exists exactly one map \langle , \rangle^* with that property. Thus define \langle , \rangle^* by the relation (1) or, equivalently by

$$\langle \lambda, \mu \rangle^* := \langle \delta^{-1}(\lambda), \delta^{-1}(\mu) \rangle$$

for all $\lambda, \mu \in V^*$. Linearity and injectivity of δ^{-1} implies that this is a scalar product on V^* with the desired property.

(b) Let $B = (v_1, \ldots, v_n)$ be an ordered basis of V and

$$A := [\langle , \rangle]_B = (\langle v_i, v_j \rangle)_{i,j}$$

the representation matrix \langle , \rangle with respect to B. Then $\delta(B) := (\delta(v_1), \ldots, \delta(v_n))$ is an ordered basis of V^* , and by construction the representation matrix of \langle , \rangle^* with respect to $\delta(B)$ is

$$[\langle , \rangle^*]_{\delta(B)} = (\langle \delta(v_i), \delta(v_j) \rangle^*)_{i,j} = (\langle v_i, v_j \rangle)_{i,j} = A.$$

Now let $B^* = (v_1^*, \dots, v_n^*)$ be the dual basis of B. For all j and k we then have

$$\left(\sum_{i} \langle v_j, v_i \rangle v_i^*\right)(v_k) = \sum_{i} \langle v_j, v_i \rangle v_i^*(v_k) = \sum_{i} \langle v_j, v_i \rangle \delta_{i,k} = \langle v_j, v_k \rangle = \delta(v_j)(v_k).$$

Variation of k yields

$$\delta(v_j) = \sum_i \langle v_j, v_i \rangle v_i^*.$$

Hence the base change matrix between $\delta(B)$ and B^* is

$${}_{B^*}[\mathrm{id}_V]_{\delta(B)} = \left(\langle v_j, v_i \rangle \right)_{i,j} = A^T = A$$

Its inverse is the base change matrix

$$_{\delta(B)}[\mathrm{id}_{V^*}]_{B^*} = (A^T)^{-1}.$$

The base formula from the lecture yields

$$[\langle , \rangle^*]_{B^*} = {}_{\delta(B)} [\mathrm{id}_{V^*}]_{B^*}^T \cdot [\langle , \rangle^*]_{\delta(B)} \cdot {}_{\delta(B)} [\mathrm{id}_{V^*}]_{B^*}$$

= $((A^T)^{-1})^T A A^{-1} = A^{-1} A A^{-1} = A^{-1}.$

Single Choice. In each exercise, exactly one answer is correct.

- 1. Consider the vector space \mathbb{R}^2 endowed with the standard scalar product $\langle \cdot, \cdot \rangle$ and the corresponding norm || ||. For which vectors $v, w \in \mathbb{R}^2$ do we have ||v + w|| = ||v|| + ||w||?
 - (a) $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (b) $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ (c) $v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, w = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ (d) $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, w = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

Erklärung: Equality holds if and only if one of the vectors is a non-negative multiple of the other; hence only (d) is correct. An alternative way of seeing this would be direct calculations.

- 2. Let V be a euclidean vector space and let $v_1, v_2, v_3 \in V$. Which assertion does in general not hold?
 - (a) From $v_1 \perp v_2$ and $v_2 \perp v_3$ it follows that $v_1 \perp v_3$.
 - (b) From $v_1 \perp v_2$ and $v_1 \perp v_3$ it follows that $v_1 \perp (v_2 + v_3)$.
 - (c) From $v_1 \perp v_2$ it follows that $v_1 \perp -v_2$.
 - (d) From $v_1 \perp (v_2 + v_3)$ and $v_1 \perp v_2$ it follows that $v_1 \perp v_3$.

Erklärung: For $v_1 = v_3 \neq 0 = v_2$ assertion (a) is false. The other assertions follow from the scalar product being bilinear.

- 3. Let V be a euclidean vector space and let $S, T \subset V$ be two subsets. Which of the following properties is not equivalent to the other three?
 - (a) $S \subset T^{\perp}$ (b) $T \subset S^{\perp}$ (c) $S \perp T$ (d) $\langle S \rangle \cap \langle T \rangle = \{0\}$

Erklärung: We have $S \perp T$ if and only if S is contained in $T^{\perp} = \{v \in V \mid v \perp T\}$. Hence (a) is equivalent to (c) and (b). However, the subsets $S := \{\binom{1}{0}\}$ and $T := \{\binom{1}{1}\}$ of $V = \mathbb{R}^2$ are not orthogonal to each other, but satisfy condition (d).

- 4. Let S be a subset of a finite dimensional euclidean vector space V. Which asstertion does not hold in general?
 - (a) $(S^{\perp})^{\perp} = \langle S \rangle$.

(b) S is the orthogonal complement of a subspace of V.

- (c) S^{\perp} is a subspace of V.
- (d) $V = S^{\perp} \oplus (S^{\perp})^{\perp}$.

Erklärung: The orthogonal complement of a subspace of V is always a subspace. If S is not a subspace, assertion (b) is false. The other assertions were proved in the lecture.

Multiple Choice Questions

1. Which of the following matrices are hermitian?

$$(a) \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$(b) \frac{1}{i} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$(c) \frac{1}{\sqrt{5}} \begin{pmatrix} i & -2 \\ 2 & i \end{pmatrix}$$
$$(d) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

Explanation: Check $A^* = A$.

2. Which of the following matrices are unitary?

(a)
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

(b)
$$\frac{1}{i} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(c)
$$\frac{1}{\sqrt{5}} \begin{pmatrix} i & -2 \\ 2 & i \end{pmatrix}$$

(d)
$$\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

Explanation: Check $U^*U = 1$, equivalently: the columns form an orthonormal basis.

- 3. Let U, V be unitary $n \times n$ matrices, and let $\lambda = e^{2\pi i \theta}, \theta \in \mathbb{R}$. In general, which of the following statements hold?
 - (a) U + V is unitary.

Explanation: Wrong. -U is unitary. 0 = U + (-U) is not.

(b) λU is unitary.

Explanation: True. As $|\lambda| = 1$, we have $\overline{\lambda} = \lambda^{-1}$. Hence $(\lambda U)^* = \overline{\lambda}U^* = \lambda^{-1}U^{-1} = (\lambda U)^{-1}$.

(c) U^{-1} is unitary.

Explanation: True. $(U^{-1})^* = (U^*)^{-1} = (U^{-1})^{-1} = U.$

(d) |UV| is unitary.

Explanation: True. $(UV)^* = V^*U^* = V^{-1}U^{-1} = (UV)^{-1}$.