Musterlösung Serie 20

Gram-Schmidt, Orthogonality

1. Let V be a finite dimensional euclidean vector space and $S \subset V$ an orthnormal set. Show that we can extend S to an orthomormal basis of V.
Solution: Write $S=\left\{v_{1}, \ldots, v_{m}\right\}$ and extend $\left(v_{1}, \ldots, v_{m}\right)$ to an ordered basis $\left(v_{1}, \ldots, v_{n}\right)$ of V. Applying Gram-Schmidt yields an orthomnormal basis $\left(b_{1}, \ldots, b_{n}\right)$. The consruction implies $\left(b_{1}, \ldots, b_{m}\right)=\left(v_{1}, \ldots, v_{m}\right)$; thus $\left\{b_{1}, \ldots, b_{n}\right\}$ is an orthonormalbasis of V, which contains S.

Aliter: By assumption S is an orthonormal basis $U:=\langle S\rangle$. As V is finite dimensional, we get $V=U \oplus U^{\perp}$. Here U^{\perp} is again finite dimensional and thus admits an orthonormal basis T. We saw in the lecture that $S \cup T$ is then an orthonormal basis of V.
2. Let $A \in M_{n \times n}(\mathbb{R})$. Show:
(a) The matrix $A^{T} A$ is symmetric.
(b) The matrix $A^{T} A$ is positive definite if and only if A is invertible.
(c) We have $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.
(d) Assume that A is symmetric and that it admits $\left(\lambda_{1}, v_{1}\right),\left(\lambda_{2}, v_{2}\right)$ with $\lambda_{1}, \lambda_{2} \neq 0$ as pairs of eigenvalue-eigenvector. Show that if $\lambda_{1} \neq \lambda_{2}$ then $v_{1} \perp v_{2}$.

Solution: Assertion (a) follows from $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.
Moreover, we have for every $v \in \mathbb{R}^{n}$

$$
\begin{equation*}
v^{T} \cdot\left(A^{T} A\right) \cdot v=\left(v^{T} A^{T}\right) \cdot A v=(A v)^{T} A v=\|A v\|^{2} \tag{*}
\end{equation*}
$$

where $\left\|\|\right.$ is the standard Euclidean norm on \mathbb{R}^{n}.
If A is invertible, we get $A v \neq 0$ and hence $v^{T} \cdot\left(A^{T} A\right) \cdot v=\|A v\|^{2}>0$; so $A^{T} A$ is positive definite. If on the other hand $A^{T} A$ is positive definite, we get $\|A v\|^{2}=v^{T} \cdot\left(A^{T} A\right) \cdot v>0$ and hence $A v \neq 0$. So the linear map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, $v \mapsto A v$ has trivial kernel, and hence A is invertible. Thus we proved (b).
For (c) we start by claiming $\operatorname{Ker}\left(L_{A}\right)=\operatorname{Ker}\left(L_{A^{T} A}\right)$.
Proof: For all $v \in \mathbb{R}^{n}$ with $A v=0$, we have $A^{T} A v=A^{T} 0=0$; thus „ $\subset^{"}$. Conversely, let $A^{T} A v=0$. By (*), we get $\|A v\|^{2}=v^{T} \cdot\left(A^{T} A\right) \cdot v=v^{T} 0=0$. As the

Euclidean norm is positive definite, we get $A v=0$, hence $v \in \operatorname{Ker}\left(L_{A}\right)$. This shows "د". q.e.d.
The claim yields

$$
\begin{aligned}
\operatorname{Rang}(A) & =\operatorname{dim} \operatorname{Im}\left(L_{A}\right)=n-\operatorname{dim} \operatorname{Ker}\left(L_{A}\right) \\
& =n-\operatorname{dim} \operatorname{Ker}\left(L_{A^{T} A}\right)=\operatorname{dim} \operatorname{Im}\left(L_{A^{T} A}\right)=\operatorname{rank}\left(A^{T} A\right)
\end{aligned}
$$

To show (d), we compute that on one hand

$$
\left\langle A v_{1}, A v_{2}\right\rangle=\left\langle\lambda_{1} v_{1}, \lambda_{2} v_{2}\right\rangle=\lambda_{1} \lambda_{2}\left\langle v_{1}, v_{2}\right\rangle,
$$

and on the other hand,

$$
\left\langle A v_{1}, A v_{2}\right\rangle=v_{1}^{t} A^{t} A v_{2}=v_{1}^{t} A^{2} v_{2}=\lambda_{2}^{2} v_{1}^{t} v_{2}=\lambda_{2}^{2}\left\langle v_{1}, v_{2}\right\rangle,
$$

where we used that A is symmetric to obtain the second equality. Hence

$$
\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)\left\langle v_{1}, v_{2}\right\rangle=0 \Longrightarrow v_{1} \perp v_{2}
$$

since we assumed that $\lambda_{1} \neq \lambda_{2}$ and that $\lambda_{1}, \lambda_{2} \neq 0$.
3. Compute a decomposition $A=Q R$ of the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
2 & 0 & 1 \\
-2 & 1 & 0
\end{array}\right)
$$

into an orthogonal matrix Q and an upper triangular matrix R. Use this decomposition to solve the linear system $A x=b$ for $b=(0,3,-3)^{T}$.
Lösung: Gram-Schmidt-Orthogonalisierungsverfahren yields the desired matrices

$$
Q=\left(\begin{array}{ccc}
-1 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3 \\
-2 / 3 & 1 / 3 & 2 / 3
\end{array}\right) \quad \text { und } \quad R=\left(\begin{array}{ccc}
3 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Multiplication of $A x=Q R x=b$ on the left with the invertible matrix $Q^{-1}=Q^{T}$ yields the equivalent system of equations $R x=Q^{T} b=(4,1,-1)^{T}$. As R is an upper triangular matrix, one quickly obtains the solution $x=(2,1,-1)^{T}$.
4. Let U be the subspace of \mathbb{R}^{3} with the standard inner product spanned by the two vectors $v_{1}=(1,1,1)^{T}$ and $v_{2}=(0,2,1)^{T}$.
(a) Determine an orthonormal basis of U and an orthonormal basis of U^{\perp}.
(b) Compute the representation matrices of the orthogonal projections $\mathbb{R}^{3} \rightarrow U$ and $\mathbb{R}^{3} \rightarrow U^{\perp}$ with respect to the standard basis of \mathbb{R}^{3} and the bases from (a).

Lösung:

(a) A simple way of finding orthomal basis of U and U^{\perp} simultaneously is to apply Gram-Schmidt on the vectors v_{1}, v_{2} and an additional vector $v_{3} \in \mathbb{R}^{3}$, which supplements them to a basis, e.g. $v_{3}=(1,0,0)^{T}$. This yields

$$
w_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad w_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad w_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) .
$$

Hence $\left(w_{1}, w_{2}\right)$ is an orthonomal basis of U and w_{3} one of U^{T}.
Alternatively, one uses Gram-Schmidt on $\left(v_{1}, v_{2}\right)$ to compute an orthonormal basis $\left(w_{1}, w_{2}\right)$ of U, and solves the system of linear equations $\left\langle v_{1}, w\right\rangle=$ $\left\langle v_{2}, w\right\rangle=0$ to compute a basis u^{\prime} of U^{T}, such that $w_{3}:=u^{\prime} /\left\|u^{\prime}\right\|$ is an orthonormal basis of U^{T}.
(b) The orthogonal projection of \mathbb{R}^{3} onto U is given by

$$
v \mapsto\left\langle w_{1}, v\right\rangle w_{1}+\left\langle w_{2}, v\right\rangle w_{2} .
$$

The representation matrix with respect to the bases $\left(e_{1}, e_{2}, e_{3}\right)$ of \mathbb{R}^{3} and $\left(w_{1}, w_{2}\right)$ of U is

$$
\left(\left\langle e_{j}, w_{i}\right\rangle\right)_{\substack{1 \leqslant i \leqslant 2}}=\left(w_{1}, w_{2}\right)^{T}=\left(\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) .
$$

Analogously, one obtains the representation matrix of the orthogonal projection of \mathbb{R}^{3} onto U^{\perp}

$$
\left(\left\langle e_{j}, w_{3}\right\rangle\right)_{1 \leqslant j \leqslant 3}=w_{3}^{T}=(1 / \sqrt{6} \quad 1 / \sqrt{6}-2 / \sqrt{6}) .
$$

5. For each of the following vector spaces V endowed with the inner product $\langle\cdot, \cdot\rangle$, find U^{\perp} for the given subset U :
(a) First consider

$$
\begin{gathered}
V=\left\{\left.\left(a_{0}, a_{1}, a_{2}, \ldots\right)\left|\sum_{n=0}^{\infty}\right| a_{n}\right|^{2}<\infty\right\}, \quad\left\langle\left(a_{n}\right)_{n=0}^{\infty},\left(b_{n}\right)_{n=0}^{\infty}\right\rangle=\sum_{n=0}^{\infty} a_{n} \cdot b_{n}, \\
U=\left\{\left(a_{n}\right)_{n=0}^{\infty} \in V \mid \exists N \geqslant 0 \text { s.t. } \forall m \geqslant N: a_{m}=0\right\}
\end{gathered}
$$

(b) Secondly, we set

$$
\begin{gathered}
V=C([0,1]), \quad\langle f, g\rangle=\int_{0}^{1} f(x) \cdot g(x) d x, \\
U=\left\{f \in V \mid \int_{0}^{1 / 2} f(x) d x=0\right\} .
\end{gathered}
$$

Solutions:

(a) For $i \in \mathbb{Z}_{\geqslant 0}$, we denote $s^{(i)}$ the sequence whose elements all vanish, except for the element at index i, which equals 1 . Note that for all $i \in \mathbb{Z}_{\geqslant 0}, s^{(i)} \in U$. Let $b=\left(b_{n}\right)_{n \in \mathbb{Z}_{\geqslant 0}} \in U^{\perp}$. By definition, for any $i \in \mathbb{Z}_{\geqslant 0}$, we then have

$$
\sum_{n=0}^{\infty} s_{n}^{(i)} b_{n}=0 \quad \Leftrightarrow \quad b_{i}=0
$$

Since this holds for all indices i, it follows that $b=0_{V}$. Since b was an arbitrary element of U^{\perp}, we conclude that $U^{\perp}=\left\{0_{V}\right\}$.
(b) First note that any function $h \in U^{\perp}$ must vanish on $[1 / 2,1]$. Indeed, assume that some $h \in U^{\perp}$ doesn't vanish on $[1 / 2,1]$. Then by continuity of h there exists $x_{0} \in(1 / 2,1)$ and $n \in \mathbb{N}$ big enough such that h doesn't change sign on the interval $\left(x_{0}-1 / n, x_{0}+1 / n\right)$ contained in $(1 / 2,1)$. Let f_{0} denote the piecewise linear function defined by

$$
f_{0}(x)= \begin{cases}0, & x \in\left[0, x_{0}-\frac{1}{n}\right] \\ n, & x=x_{0} \\ 0, & x \in\left[x_{0}+\frac{1}{n}, 1\right]\end{cases}
$$

Example for $h(x)=5 x^{2}, x_{0}=3 / 4, n=5$.

Note that $f_{0} \in U$. Then

$$
\left|\int_{0}^{1} f_{0}(x) h(x) d x\right|=\left|\int_{x_{0}-1 / n}^{x_{0}+1 / n} f_{0}(x) h(x) d x\right|>0
$$

since the integrand doesn't change sign on the interval $\left[x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right]$. This is a contradiction to $h \in U^{\perp}$.

We now show that any $g \in U^{\perp}$ must be constant on $[0,1 / 2]$. Fix $a, b \in$ $(0,1 / 2)$ such that $a<b$. There exists $N(a, b) \in \mathbb{N}$ such that for all integers $n \geqslant N(a, b)$, the piecewise linear function f_{n} defined as follows belongs to V :

$$
f_{n}(x)=\left\{\begin{aligned}
0, & x \in\left[0, a-\frac{1}{n}\right] \\
n, & x=a \\
0, & x \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right] \\
-n, & x=b \\
0, & x \in\left[b+\frac{1}{n}, 1 / 2\right]
\end{aligned}\right.
$$

Note that for f_{n} integrates to 0 on $[0,1 / 2]$, hence $f_{n} \in U$. Let $g \in U^{\perp}$. Then,

$$
\int_{0}^{1 / 2} f(x) g(x) d x=0 \quad \Leftrightarrow \quad \int_{a-1 / n}^{a+1 / n} f_{n}(x) g(x)=-\int_{b-1 / n}^{b+1 / n} f_{n}(x) g(x) d x
$$

Letting $n \rightarrow+\infty$, the second equality above converges to $g(a)=g(b)$. We show convergence to $g(a)$ for the left0-hand side of the said equality (the RHS can be handled similarly). Since g is continuous in a, for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
|x-a|<\delta \Longrightarrow|g(x)-g(a)|<\varepsilon .
$$

So, for n big enough so that $1 / n<\delta$, we have

$$
\begin{aligned}
& \left|\int_{a-1 / n}^{a+1 / n} f_{n}(x) g(x) d x-\int_{a-1 / n}^{a+1 / n} f_{n}(x) g(a) d x\right| \\
= & \left|\int_{a-1 / n}^{a+1 / n} f_{n}(x)(g(x)-g(a)) d x\right| \\
\leqslant & \int_{a-1 / n}^{a+1 / n} f_{n}(x)|g(x)-g(a)| d x \\
< & \varepsilon \int_{a-1 / n}^{a+1 / n}\left|f_{n}(x)\right| d x \\
= & \varepsilon
\end{aligned}
$$

where we used that f_{n} integrates to 1 on $[a-1 / n, a+1 / n]$ to obtain the last equality. Letting ε go to 0 , this shows the desired convergence.
Using the continuity of g and the fact that a and b are arbitrary, we deduce that g is constant on $[0,1 / 2]$. Since g vanishes on $[1 / 2,1]$, it follows, again from continuity, that g vanishes on the whole interval $[0,1]$. This shows that $U^{\perp}=\left\{0_{V}\right\}$.
6. For a finite-dimensional Euclidean vector space $(V,\langle\rangle$,$) consider the isomorphism$

$$
\delta: V \rightarrow V^{*}:=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R}), v \mapsto \delta(v):=\langle v, \cdot\rangle
$$

(a) Show that there exists exactly one inner product \langle,\rangle^{*} on V^{*} such that δ is an isometry.
(b) Let B be an ordered basis of V, and let B^{*} be the corresponding dual basis of V^{*}. Give the representation matrix of \langle,\rangle^{*} with respect to B^{*} in terms of the representation matrix of \langle,$\rangle with respect to B$.

Solution:

(a) The map δ is an isometry for the sought scalar product \langle,\rangle^{*} if and only if

$$
\begin{equation*}
\forall v, w \in V:\langle\delta(v), \delta(w)\rangle^{*}=\langle v, w\rangle . \tag{1}
\end{equation*}
$$

As δ is bijective, there exists exactly one $\operatorname{map}\langle,\rangle^{*}$ with that property.
Thus define \langle,\rangle^{*} by the relation (1) or, equivalently by

$$
\langle\lambda, \mu\rangle^{*}:=\left\langle\delta^{-1}(\lambda), \delta^{-1}(\mu)\right\rangle
$$

for all $\lambda, \mu \in V^{*}$. Linearity and injectivity of δ^{-1} implies that this is a scalar product on V^{*} with the desired property.
(b) Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V and

$$
A:=[\langle,\rangle]_{B}=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}
$$

the representation matrix \langle,$\rangle with respect to B$. Then $\delta(B):=\left(\delta\left(v_{1}\right), \ldots, \delta\left(v_{n}\right)\right)$ is an ordered basis of V^{*}, and by construction the representation matrix of \langle,\rangle^{*} with respect to $\delta(B)$ is

$$
\left[\langle,\rangle^{*}\right]_{\delta(B)}=\left(\left\langle\delta\left(v_{i}\right), \delta\left(v_{j}\right)\right\rangle^{*}\right)_{i, j}=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}=A .
$$

Now let $B^{*}=\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ be the dual basis of B. For all j and k we then have

$$
\left(\sum_{i}\left\langle v_{j}, v_{i}\right\rangle v_{i}^{*}\right)\left(v_{k}\right)=\sum_{i}\left\langle v_{j}, v_{i}\right\rangle v_{i}^{*}\left(v_{k}\right)=\sum_{i}\left\langle v_{j}, v_{i}\right\rangle \delta_{i, k}=\left\langle v_{j}, v_{k}\right\rangle=\delta\left(v_{j}\right)\left(v_{k}\right) .
$$

Variation of k yields

$$
\delta\left(v_{j}\right)=\sum_{i}\left\langle v_{j}, v_{i}\right\rangle v_{i}^{*}
$$

Hence the base change matrix between $\delta(B)$ and B^{*} is

$$
B^{*}\left[\mathrm{id}_{V}\right]_{\delta(B)}=\left(\left\langle v_{j}, v_{i}\right\rangle\right)_{i, j}=A^{T}=A
$$

Its inverse is the base change matrix

$$
{ }_{\delta(B)}\left[\mathrm{id}_{V^{*}}\right]_{B^{*}}=\left(A^{T}\right)^{-1} .
$$

The base formula from the lecture yields

$$
\begin{aligned}
{\left[\langle,\rangle^{*}\right]_{B^{*}} } & =\delta(B)\left[\mathrm{id}_{V^{*}}\right]_{B^{*}}^{T} \cdot\left[\langle,\rangle^{*}\right]_{\delta(B)} \cdot \delta(B)\left[\mathrm{id}_{V^{*}}\right]_{B^{*}} \\
& =\left(\left(A^{T}\right)^{-1}\right)^{T} A A^{-1}=A^{-1} A A^{-1}=A^{-1} .
\end{aligned}
$$

Single Choice. In each exercise, exactly one answer is correct.

1. Consider the vector space \mathbb{R}^{2} endowed with the standard scalar product $\langle\cdot, \cdot\rangle$ and the corresponding norm $\left\|\|\right.$. For which vectors $v, w \in \mathbb{R}^{2}$ do we have $\| v+w \|=$ $\|v\|+\|w\| ?$
(a) $v=\binom{1}{1}, w=\binom{1}{0}$
(b) $v=\binom{2}{1}, w=\binom{1}{2}$
(c) $v=\binom{2}{3}, w=\binom{3}{1}$
(d) $v=\binom{1}{2}, w=\binom{2}{4}$

Erklärung: Equality holds if and only if one of the vectors is a non-negative multiple of the other; hence only (d) is correct. An alternative way of seeing this would be direct calculations.
2. Let V be a euclidean vector space and let $v_{1}, v_{2}, v_{3} \in V$. Which assertion does in general not hold?
(a) From $v_{1} \perp v_{2}$ and $v_{2} \perp v_{3}$ it follows that $v_{1} \perp v_{3}$.
(b) From $v_{1} \perp v_{2}$ and $v_{1} \perp v_{3}$ it follows that $v_{1} \perp\left(v_{2}+v_{3}\right)$.
(c) From $v_{1} \perp v_{2}$ it follows that $v_{1} \perp-v_{2}$.
(d) From $v_{1} \perp\left(v_{2}+v_{3}\right)$ and $v_{1} \perp v_{2}$ it follows that $v_{1} \perp v_{3}$.

Erklärung: For $v_{1}=v_{3} \neq 0=v_{2}$ assertion (a) is false. The other assertions follow from the scalar product being bilinear.
3. Let V be a euclidean vector space and let $S, T \subset V$ be two subsets. Which of the following properties is not equivalent to the other three?
(a) $S \subset T^{\perp}$
(b) $T \subset S^{\perp}$
(c) $S \perp T$

$$
\text { (d) }\langle S\rangle \cap\langle T\rangle=\{0\}
$$

Erklärung: We have $S \perp T$ if and only if S is contained in $T^{\perp}=\{v \in V \mid v \perp T\}$. Hence (a) is equivalent to (c) and (b). However, the subsets $S:=\left\{\binom{1}{0}\right\}$ and $T:=$ $\left\{\binom{1}{1}\right\}$ of $V=\mathbb{R}^{2}$ are not orthogonal to each other, but satisfy condition (d).
4. Let S be a subset of a finite dimensional euclidean vector space V. Which asstertion does not hold in general?
(a) $\left(S^{\perp}\right)^{\perp}=\langle S\rangle$.
(b) S is the orthogonal complement of a subspace of V.
(c) S^{\perp} is a subspace of V.
(d) $V=S^{\perp} \oplus\left(S^{\perp}\right)^{\perp}$.

Erklärung: The orthogonal complement of a subspace of V is always a subspace. If S is not a subspace, assertion (b) is false. The other assertions were proved in the lecture.

Multiple Choice Questions

1. Which of the following matrices are hermitian?
(a) $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
(b) $\frac{1}{i}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(c) $\frac{1}{\sqrt{5}}\left(\begin{array}{cc}i & -2 \\ 2 & i\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$

Explanation: Check $A^{*}=A$.
2. Which of the following matrices are unitary?
(a) $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
(b) $\frac{1}{i}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(c) $\frac{1}{\sqrt{5}}\left(\begin{array}{cc}i & -2 \\ 2 & i\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$

Explanation: Check $U^{*} U=1$, equivalently: the columns form an orthonormal basis.
3. Let U, V be unitary $n \times n$ matrices, and let $\lambda=e^{2 \pi i \theta}, \theta \in \mathbb{R}$. In general, which of the following statements hold?
(a) $U+V$ is unitary.

Explanation: Wrong. $-U$ is unitary. $0=U+(-U)$ is not.
(b) λU is unitary.

Explanation: True. As $|\lambda|=1$, we have $\bar{\lambda}=\lambda^{-1}$. Hence $(\lambda U)^{*}=\bar{\lambda} U^{*}=$ $\lambda^{-1} U^{-1}=(\lambda U)^{-1}$.
(c) U^{-1} is unitary.

Explanation: True. $\left(U^{-1}\right)^{*}=\left(U^{*}\right)^{-1}=\left(U^{-1}\right)^{-1}=U$.
(d) $U V$ is unitary.

Explanation: True. $(U V)^{*}=V^{*} U^{*}=V^{-1} U^{-1}=(U V)^{-1}$.

