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GRAM-SCHMIDT, ORTHOGONALITY

1. Let V be a finite dimensional euclidean vector space and S < V' an orthnormal
set. Show that we can extend S to an orthomormal basis of V.

Solution: Write S = {vy,...,v,} and extend (vy,...,v,) to an ordered basis
(v1,...,v,) of V. Applying Gram-Schmidt yields an orthomnormal basis (by, ..., by,).
The consruction implies (by,...,by) = (v1,...,vy); thus {by,...,b,} is an ortho-

normalbasis of V', which contains S.

Aliter: By assumption S is an orthonormal basis U := (S). As V is finite dimen-
sional, we get V = U @ U*. Here U~ is again finite dimensional and thus admits
an orthonormal basis 7. We saw in the lecture that S U T is then an orthonormal
basis of V.

2. Let Ae M, x,(R). Show:

(a) The matrix AT A is symmetric.

(b) The matrix AT A is positive definite if and only if A is invertible.

(c) We have rank(AT A) = rank(A).

(d) Assume that A is symmetric and that it admits (A1, v1), (A, v2) with Ay, Ay # 0
as pairs of eigenvalue-eigenvector. Show that if A\; # Ay then vy L vs.

Solution: Assertion (a) follows from (AT A)T = AT(AT)T = AT A.

Moreover, we have for every v € R™
(%) vl (ATA) v = (WTAT) Av = (Av)TAv = ||Av|?,

where || || is the standard Euclidean norm on R™.

If A is invertible, we get Av # 0 and hence v’ - (ATA) -v = |Av[* > 0; so
AT A is positive definite. If on the other hand AT A is positive definite, we get
|Av|* = vT - (ATA) - v > 0 and hence Av # 0. So the linear map L4: R™ — R",
v — Av has trivial kernel, and hence A is invertible. Thus we proved (b).

For (c) we start by claiming Ker(L4) = Ker(L4ry).

Proof: For all v € R® with Av = 0, we have AT Av = AT0 = 0; thus ,,c“. Con-
versely, let AT Av = 0. By (), we get |Av|> = vT - (ATA) - v = vT0 = 0. As the



Euclidean norm is positive definite, we get Av = 0, hence v € Ker(L,). This shows
,D% q.e.d.

The claim yields
Rang(A) = dimIm(L,) = n—dimKer(Ly)
= n—dimKer(Lyr,) = dimIm(Lsry) = rank(ATA).

To show (d), we compute that on one hand
(Avy, Avg) = (A1, Agua) = A1 Aa{v1, v2),
and on the other hand,
(Avy, Avy)y = vt A Avy = vh A%vy = Aovbvy = A5y, o),
where we used that A is symmetric to obtain the second equality. Hence
Ao(Ag — A )(vp,v9) =0 = vy L vy
since we assumed that A\; # Ay and that A\, Ay # 0.
. Compute a decomposition A = QR of the matrix

-1 1 -1

into an orthogonal matrix () and an upper triangular matrix R. Use this decom-
position to solve the linear system Az = b for b = (0,3, —3)7.

Losung: Gram-Schmidt-Orthogonalisierungsverfahren yields the desired matrices

~1/3 2/3 —2/3 3 -1 1
Q=123 23 13| ud R=[0 1 0
~2/3 1/3 2/3 0 0 1

Multiplication of Az = QRx = b on the left with the invertible matrix Q! = Q7
yields the equivalent system of equations Rx = QTb = (4,1,—1)T. As R is an
upper triangular matrix, one quickly obtains the solution x = (2,1, —1)7.

. Let U be the subspace of R? with the standard inner product spanned by the two
vectors v; = (1,1,1)7 and vy = (0,2,1)7.
(a) Determine an orthonormal basis of U and an orthonormal basis of U+.

ompute the representation matrices of the orthogonal projections R®> —
b) C te th tati tri f the orthogonal projections R — U
and R? — U' with respect to the standard basis of R? and the bases from

(a).



Losung:

(a) A simple way of finding orthomal basis of U and U~ simultaneously is to
apply Gram-Schmidt on the vectors v;, v, and an additional vector vs € R3,
which supplements them to a basis, e.g. v3 = (1,0,0)%. This yields

1 -1 1
1 1 1
w=—7=11], we=—7=11 1, Wy = —=

v g vl NAR

Hence (wy,wy) is an orthonomal basis of U and ws one of UT.

Alternatively, one uses Gram-Schmidt on (v, vs) to compute an orthonor-
mal basis (wy,ws) of U,and solves the system of linear equations {vy,w) =
{vg,w) = 0 to compute a basis v’ of U, such that ws := v'/|v| is an ortho-
normal basis of UT.

(b) The orthogonal projection of R? onto U is given by
v — {wy, v)w; + (W, V)ws.

The representation matrix with respect to the bases (e, e, e3) of R® and
(wy,wy) of U is

T 1/V3 13 1/4/3
(e ud)igigs = (wnw)” = (—1/\/5 1/v2 0 )

Analogously, one obtains the representation matrix of the orthogonal projec-
tion of R3 onto U~

(<ej7w3>)1<j<3 = wg = (1/\/6 1/\/6 _2/\/6)'

5. For each of the following vector spaces V' endowed with the inner product (-, -),
find U+ for the given subset U:

(a) First consider

o0 )
V= {(a():alva?’ . ) | Z |an|2 < OO} ’ <(an)$zo=07 (bn)f=0> = Z Qp * bn’
n=0 n=0

U={(an)yo€V |IN=>0st.Ym = N :a,, = 0}

n=0

(b) Secondly, we set

V=ﬂ&ﬂ%<ﬁ@=£ﬂ@@@M,

1/2
U={f€V|L f(a:)da:zO}.

3



Solutions:

(a) For i € Z=g, we denote s the sequence whose elements all vanish, except for
the element at index 4, which equals 1. Note that for all i € Zs, s®) € U. Let
b= (bn)nez-, € U*. By definition, for any i € Z-g, we then have

Since this holds for all indices 7, it follows that b = 0y,. Since b was an arbitrary
element of U+, we conclude that U+ = {0y }.

(b) First note that any function h € UL must vanish on [1/2, 1]. Indeed, assume
that some h € U+ doesn’t vanish on [1/2,1]. Then by continuity of h there
exists g € (1/2,1) and n € N big enough such that h doesn’t change sign
on the interval (zg — 1/n,zo + 1/n) contained in (1/2,1). Let fy denote the
piecewise linear function defined by

0, ze[0,z0— 1]
fo(x) =< n, x=u
0, ze€ [xo + %, 1]

Example for h(z) = 522, g = 3/4, n = 5.
5 .

0.25 05 0.75 1

Note that fy € U. Then

> 0,

f (@)

zo—1/n

Ll fo(x)h(z)dx

since the integrand doesn’t change sign on the interval [:1:0 — %, o + %] This
is a contradiction to h € U*.



We now show that any g € Ut must be constant on [0,1/2]. Fix a,b €
(0,1/2) such that a < b. There exists N(a,b) € N such that for all integers
n = N(a,b), the piecewise linear function f, defined as follows belongs to V:

0, ze[0,a— 2]

n, r=a
far)=1 0, wefa+ 0]
—n, x=>0

0, ze[b+1,1/2]

Note that for f, integrates to 0 on [0,1/2], hence f, € U. Let g € U*. Then,

1/2 a+1/n b+1/n
L f@)g(e)de =0 < (n@m@w=f £ (2)g(x)d.

a—1/n b—1/n
Letting n — +o0, the second equality above converges to g(a) = g(b). We
show convergence to g(a) for the leftO-hand side of the said equality (the RHS
can be handled similarly). Since g is continuous in a, for all € > 0 there exists

0 > 0 such that
|z —al <0 = [g(z) —g(a)| <e.

So, for n big enough so that 1/n < ¢, we have

f“mn@mme—men@mwa

a—1/n a—1/n

a+1/n
_ f fo(@)(9(x) — g(a))da

a—1/n

a+1/n
j ful@) l9() — g(a)| da

a—1/n

IN

a+1/n
< €J | fr(z)| dx

a—1/n

= 6’,

where we used that f, integrates to 1 on [a — 1/n,a + 1/n] to obtain the last
equality. Letting € go to 0, this shows the desired convergence.

Using the continuity of g and the fact that a and b are arbitrary, we deduce
that ¢ is constant on [0, 1/2]. Since g vanishes on [1/2,1], it follows, again
from continuity, that g vanishes on the whole interval [0, 1]. This shows that
Ut ={0y}.

6. For a finite-dimensional Euclidean vector space (V,{, ») consider the isomorphism

§: V- V*:= Homg(V,R), v §(v) := (v, ).

b}



(a) Show that there exists exactly one inner product ( , )* on V* such that § is
an isometry.

(b) Let B be an ordered basis of V', and let B* be the corresponding dual basis
of V*. Give the representation matrix of { , )* with respect to B* in terms
of the representation matrix of {( , ) with respect to B.

Solution:

(a) The map ¢ is an isometry for the sought scalar product {, )* if and only if
Vo,we Vi (0(v),5(w))" = {v,w). (1)

As 6 is bijective, there exists exactly one map (, )* with that property.
Thus define {, )* by the relation (1) or, equivalently by

O™ = (071 N), 07 ()

for all \, u € V*. Linearity and injectivity of ~! implies that this is a scalar
product on V* with the desired property.

(b) Let B = (v1,...,v,) be an ordered basis of V' and
A= D)) = (o),

the representation matrix { , ) with respect to B. Then §(B) := (6(v1),...,d(v,))
is an ordered basis of V*, and by construction the representation matrix of
{, »* with respect to 6(B) is

(o) = (O, 8)),, = (onop),, = A
Now let B* = (vf,...,v¥) be the dual basis of B. For all j and k we then

have
(Do wovf ) = Yw o) = 3o vdie = opue) = 6(0)(w).

Variation of k yields

S(v;) = D vy vy vf.
Hence the base change matrix between §(B) and B* is

B*[idv](g(g) = (<Uj,vi>)l.7, = AT = A.

J
Its inverse is the base change matrix

8(B) [idv*]B* = (AT)_I.
The base formula from the lecture yields

[<7 >*]B* = §(B) [ldv*]g* . [<’ >*]6(B) '5(3)[id\/*]B*
= ((AT)HTAAT = ATAAT = AT



Single Choice. In each exercise, exactly one answer is correct.

1. Consider the vector space R? endowed with the standard scalar product ¢, -) and

the corresponding norm || ||. For which vectors v, w € R? do we have ||v + w]|| =
[l + [[w]|?
(a) v= (), w= ()
(b) v=(3), w=0)
() v=(3), w=()
2
4

—~
o,
~—
<
I
—~
S
—
g
I

(s

Erklarung: Equality holds if and only if one of the vectors is a non-negative multiple
of the other; hence only (d) is correct. An alternative way of seeing this would be
direct calculations.

2. Let V be a euclidean vector space and let vy, v9,v3 € V. Which assertion does in
general not hold?

(a)| From v; L vy and vy L w3 it follows that vy L vs.

(b) From vy L vy and vy L wvg it follows that vy L (ve + v3).
(¢) From vy 1 vy it follows that vy L —us.
(d) From vy L (vy + v3) and v; L vy it follows that vy L vs.

Erklarung: For vy = vg # 0 = vy assertion (a) is false. The other assertions follow
from the scalar product being bilinear.

3. Let V be a euclidean vector space and let S, T' < V be two subsets. Which of the
following properties is not equivalent to the other three?

(a) ST+

(b) T <= S+

(c) SLT

(d) | (§) n<T) = {0}

Erklirung: We have S | T if and only if S is contained in T+ = {ve V |v L T}.
Hence (a) is equivalent to (c) and (b). However, the subsets S := {(})} and T :=
{(})} of V =R? are not orthogonal to each other, but satisfy condition (d).




4. Let S be a subset of a finite dimensional euclidean vector space V. Which asstertion
does not hold in general?

(a) (S1)" =<9).

(b)| S is the orthogonal complement of a subspace of V.

(c) S* is a subspace of V.
(d) V =S+t® (SH)*.
Erklarung: The orthogonal complement of a subspace of V' is always a subspace.

If S is not a subspace, assertion (b) is false. The other assertions were proved in
the lecture.



Multiple Choice Questions

1. Which of the following matrices are hermitian?

(02
0 9)

)

|=

Ezxplanation: Check A* = A.

2. Which of the following matrices are unitary?

oY

H0))
50607
(%)

Ezxplanation: Check U*U = 1, equivalently: the columns form an orthonormal
basis.

3. Let U,V be unitary n x n matrices, and let A\ = €™ @ € R. In general, which of
the following statements hold?

(a) U + V is unitary.

(b)

Ezplanation: Wrong. —U is unitary. 0 = U + (—U) is not.

AU is unitary.

Ezplanation: True. As |\ = 1, we have A = A~!. Hence (A\U)* = \U* =
AUt = (A0)

U~! is unitary.

Explanation: True. (U™ 1)* = (U*)"' = (U )1 =T.
UV is unitary.

Explanation: True. (UV)* = V*U* = VU = (UV)~L.



