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Gram-Schmidt, Orthogonality

1. Let V be a finite dimensional euclidean vector space and S Ă V an orthnormal
set. Show that we can extend S to an orthomormal basis of V .

Solution: Write S “ tv1, . . . , vmu and extend pv1, . . . , vmq to an ordered basis
pv1, . . . , vnq of V . Applying Gram-Schmidt yields an orthomnormal basis pb1, . . . , bnq.
The consruction implies pb1, . . . , bmq “ pv1, . . . , vmq; thus tb1, . . . , bnu is an ortho-
normalbasis of V , which contains S.

Aliter: By assumption S is an orthonormal basis U :“ xSy. As V is finite dimen-
sional, we get V “ U ‘ UK. Here UK is again finite dimensional and thus admits
an orthonormal basis T . We saw in the lecture that S Y T is then an orthonormal
basis of V .

2. Let A P MnˆnpRq. Show:

(a) The matrix ATA is symmetric.

(b) The matrix ATA is positive definite if and only if A is invertible.

(c) We have rankpATAq “ rankpAq.

(d) Assume thatA is symmetric and that it admits pλ1, v1q, pλ2, v2q with λ1, λ2 ‰ 0
as pairs of eigenvalue-eigenvector. Show that if λ1 ‰ λ2 then v1 K v2.

Solution: Assertion (a) follows from pATAqT “ AT pAT qT “ ATA.

Moreover, we have for every v P Rn

p˚q vT ¨ pATAq ¨ v “ pvTAT
q ¨ Av “ pAvq

TAv “ }Av}
2,

where || || is the standard Euclidean norm on Rn.

If A is invertible, we get Av ‰ 0 and hence vT ¨ pATAq ¨ v “ }Av}2 ą 0; so
ATA is positive definite. If on the other hand ATA is positive definite, we get
}Av}2 “ vT ¨ pATAq ¨ v ą 0 and hence Av ‰ 0. So the linear map LA : Rn Ñ Rn,
v ÞÑ Av has trivial kernel, and hence A is invertible. Thus we proved (b).

For (c) we start by claiming KerpLAq “ KerpLATAq.

Proof: For all v P Rn with Av “ 0, we have ATAv “ AT0 “ 0; thus
”
Ă“. Con-

versely, let ATAv “ 0. By p˚q, we get }Av}2 “ vT ¨ pATAq ¨ v “ vT0 “ 0. As the
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Euclidean norm is positive definite, we get Av “ 0, hence v P KerpLAq. This shows

”
Ą“. q.e.d.

The claim yields

RangpAq “ dim ImpLAq “ n ´ dimKerpLAq

“ n ´ dimKerpLATAq “ dim ImpLATAq “ rankpATAq.

To show (d), we compute that on one hand

xAv1, Av2y “ xλ1v1, λ2v2y “ λ1λ2xv1, v2y,

and on the other hand,

xAv1, Av2y “ vt1A
tAv2 “ vt1A

2v2 “ λ2
2v

t
1v2 “ λ2

2xv1, v2y,

where we used that A is symmetric to obtain the second equality. Hence

λ2pλ2 ´ λ1qxv1, v2y “ 0 ùñ v1 K v2

since we assumed that λ1 ‰ λ2 and that λ1, λ2 ‰ 0.

3. Compute a decomposition A “ QR of the matrix

A “

¨

˝

´1 1 ´1
2 0 1

´2 1 0

˛

‚

into an orthogonal matrix Q and an upper triangular matrix R. Use this decom-
position to solve the linear system Ax “ b for b “ p0, 3,´3qT .

Lösung : Gram-Schmidt-Orthogonalisierungsverfahren yields the desired matrices

Q “

¨

˝

´1{3 2{3 ´2{3
2{3 2{3 1{3

´2{3 1{3 2{3

˛

‚ und R “

¨

˝

3 ´1 1
0 1 0
0 0 1

˛

‚.

Multiplication of Ax “ QRx “ b on the left with the invertible matrix Q´1 “ QT

yields the equivalent system of equations Rx “ QT b “ p4, 1,´1qT . As R is an
upper triangular matrix, one quickly obtains the solution x “ p2, 1,´1qT .

4. Let U be the subspace of R3 with the standard inner product spanned by the two
vectors v1 “ p1, 1, 1qT and v2 “ p0, 2, 1qT .

(a) Determine an orthonormal basis of U and an orthonormal basis of UK.

(b) Compute the representation matrices of the orthogonal projections R3 Ñ U
and R3 Ñ UK with respect to the standard basis of R3 and the bases from
(a).
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Lösung :

(a) A simple way of finding orthomal basis of U and UK simultaneously is to
apply Gram-Schmidt on the vectors v1, v2 and an additional vector v3 P R3,
which supplements them to a basis, e.g. v3 “ p1, 0, 0qT . This yields

w1 “
1

?
3

¨

˝

1
1
1

˛

‚, w2 “
1

?
2

¨

˝

´1
1
0

˛

‚, w3 “
1

?
6

¨

˝

1
1

´2

˛

‚.

Hence pw1, w2q is an orthonomal basis of U and w3 one of UT .

Alternatively, one uses Gram-Schmidt on pv1, v2q to compute an orthonor-
mal basis pw1, w2q of U ,and solves the system of linear equations xv1, wy “

xv2, wy “ 0 to compute a basis u1 of UT , such that w3 :“ u1{}u1} is an ortho-
normal basis of UT .

(b) The orthogonal projection of R3 onto U is given by

v ÞÑ xw1, vyw1 ` xw2, vyw2.

The representation matrix with respect to the bases pe1, e2, e3q of R3 and
pw1, w2q of U is

`

xej, wiy
˘

1ďiď2
1ďjď3

“ pw1, w2q
T

“

ˆ

1{
?
3 1{

?
3 1{

?
3

´1{
?
2 1{

?
2 0

˙

.

Analogously, one obtains the representation matrix of the orthogonal projec-
tion of R3 onto UK

`

xej, w3y
˘

1ďjď3
“ wT

3 “
`

1{
?
6 1{

?
6 ´2{

?
6
˘

.

5. For each of the following vector spaces V endowed with the inner product x¨, ¨y,
find UK for the given subset U :

(a) First consider

V “

#

pa0, a1, a2, . . . q |

8
ÿ

n“0

|an|2 ă 8

+

, xpanq
8
n“0, pbnq

8
n“0y “

8
ÿ

n“0

an ¨ bn,

U “ tpanq
8
n“0 P V | DN ě 0 s.t. @m ě N : am “ 0u

(b) Secondly, we set

V “ Cpr0, 1sq, xf, gy “

ż 1

0

fpxq ¨ gpxqdx,

U “

#

f P V |

ż 1{2

0

fpxqdx “ 0

+

.
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Solutions :

(a) For i P Zě0, we denote s
piq the sequence whose elements all vanish, except for

the element at index i, which equals 1. Note that for all i P Zě0, s
piq P U . Let

b “ pbnqnPZě0 P UK. By definition, for any i P Zě0, we then have

8
ÿ

n“0

spiq
n bn “ 0 ô bi “ 0.

Since this holds for all indices i, it follows that b “ 0V . Since b was an arbitrary
element of UK, we conclude that UK “ t0V u.

(b) First note that any function h P UK must vanish on r1{2, 1s. Indeed, assume
that some h P UK doesn’t vanish on r1{2, 1s. Then by continuity of h there
exists x0 P p1{2, 1q and n P N big enough such that h doesn’t change sign
on the interval px0 ´ 1{n, x0 ` 1{nq contained in p1{2, 1q. Let f0 denote the
piecewise linear function defined by

f0pxq “

$

&

%

0, x P
“

0, x0 ´ 1
n

‰

n, x “ x0

0, x P
“

x0 ` 1
n
, 1

‰

0.25 0.5 0.75 1

1

2

3

4

5

Example for hpxq “ 5x2, x0 “ 3{4, n “ 5.

hpxq

f0pxq

Note that f0 P U . Then∣∣∣∣ż 1

0

f0pxqhpxqdx

∣∣∣∣ “

∣∣∣∣∣
ż x0`1{n

x0´1{n

f0pxqhpxqdx

∣∣∣∣∣ ą 0,

since the integrand doesn’t change sign on the interval
“

x0 ´ 1
n
, x0 ` 1

n

‰

. This
is a contradiction to h P UK.
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We now show that any g P UK must be constant on r0, 1{2s. Fix a, b P

p0, 1{2q such that a ă b. There exists Npa, bq P N such that for all integers
n ě Npa, bq, the piecewise linear function fn defined as follows belongs to V :

fnpxq “

$

’

’

’

’

&

’

’

’

’

%

0, x P
“

0, a ´ 1
n

‰

n, x “ a
0, x P

“

a ` 1
n
, b ´ 1

n

‰

´n, x “ b
0, x P

“

b ` 1
n
, 1{2

‰

Note that for fn integrates to 0 on r0, 1{2s, hence fn P U . Let g P UK. Then,

ż 1{2

0

fpxqgpxqdx “ 0 ô

ż a`1{n

a´1{n

fnpxqgpxq “ ´

ż b`1{n

b´1{n

fnpxqgpxqdx.

Letting n Ñ `8, the second equality above converges to gpaq “ gpbq. We
show convergence to gpaq for the left0-hand side of the said equality (the RHS
can be handled similarly). Since g is continuous in a, for all ε ą 0 there exists
δ ą 0 such that

|x ´ a| ă δ ùñ |gpxq ´ gpaq| ă ε.

So, for n big enough so that 1{n ă δ, we have∣∣∣∣∣
ż a`1{n

a´1{n

fnpxqgpxqdx ´

ż a`1{n

a´1{n

fnpxqgpaqdx

∣∣∣∣∣
“

∣∣∣∣∣
ż a`1{n

a´1{n

fnpxqpgpxq ´ gpaqqdx

∣∣∣∣∣
ď

ż a`1{n

a´1{n

fnpxq |gpxq ´ gpaq| dx

ă ε

ż a`1{n

a´1{n

|fnpxq| dx

“ ε,

where we used that fn integrates to 1 on ra´ 1{n, a` 1{ns to obtain the last
equality. Letting ε go to 0, this shows the desired convergence.

Using the continuity of g and the fact that a and b are arbitrary, we deduce
that g is constant on r0, 1{2s. Since g vanishes on r1{2, 1s, it follows, again
from continuity, that g vanishes on the whole interval r0, 1s. This shows that
UK “ t0V u.

6. For a finite-dimensional Euclidean vector space pV, x , yq consider the isomorphism

δ : V Ñ V ˚ :“ HomRpV,Rq, v ÞÑ δpvq :“ xv, ¨y.
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(a) Show that there exists exactly one inner product x , y˚ on V ˚ such that δ is
an isometry.

(b) Let B be an ordered basis of V , and let B˚ be the corresponding dual basis
of V ˚. Give the representation matrix of x , y˚ with respect to B˚ in terms
of the representation matrix of x , y with respect to B.

Solution:

(a) The map δ is an isometry for the sought scalar product x , y˚ if and only if

@v, w P V : xδpvq, δpwqy
˚

“ xv, wy . (1)

As δ is bijective, there exists exactly one map x , y˚ with that property.

Thus define x , y˚ by the relation (1) or, equivalently by

xλ, µy
˚ :“ xδ´1

pλq, δ´1
pµqy

for all λ, µ P V ˚. Linearity and injectivity of δ´1 implies that this is a scalar
product on V ˚ with the desired property.

(b) Let B “ pv1, . . . , vnq be an ordered basis of V and

A :“ rx , ysB “
`

xvi, vjy
˘

i,j

the representation matrix x , y with respect toB. Then δpBq :“ pδpv1q, . . . , δpvnqq

is an ordered basis of V ˚, and by construction the representation matrix of
x , y˚ with respect to δpBq is

rx , y
˚
sδpBq “

`

xδpviq, δpvjqy
˚
˘

i,j
“

`

xvi, vjy
˘

i,j
“ A.

Now let B˚ “ pv˚
1 , . . . , v

˚
nq be the dual basis of B. For all j and k we then

have
´

ÿ

i

xvj, viy v
˚
i

¯

pvkq “
ÿ

i

xvj, viy v
˚
i pvkq “

ÿ

i

xvj, viy δi,k “ xvj, vky “ δpvjqpvkq.

Variation of k yields
δpvjq “

ÿ

i

xvj, viy v
˚
i .

Hence the base change matrix between δpBq and B˚ is

B˚ridV sδpBq “
`

xvj, viy
˘

i,j
“ AT

“ A.

Its inverse is the base change matrix

δpBqridV ˚sB˚ “ pAT
q

´1.

The base formula from the lecture yields

rx , y
˚
sB˚ “ δpBqridV ˚s

T
B˚ ¨ rx , y

˚
sδpBq ¨ δpBqridV ˚sB˚

“ ppAT
q

´1
q
TAA´1

“ A´1AA´1
“ A´1.
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Single Choice. In each exercise, exactly one answer is correct.

1. Consider the vector space R2 endowed with the standard scalar product x¨, ¨y and
the corresponding norm || ||. For which vectors v, w P R2 do we have ||v ` w|| “

||v|| ` ||w||?

(a) v “
`

1
1

˘

, w “
`

1
0

˘

(b) v “
`

2
1

˘

, w “
`

1
2

˘

(c) v “
`

2
3

˘

, w “
`

3
1

˘

(d) v “
`

1
2

˘

, w “
`

2
4

˘

Erklärung : Equality holds if and only if one of the vectors is a non-negative multiple
of the other; hence only (d) is correct. An alternative way of seeing this would be
direct calculations.

2. Let V be a euclidean vector space and let v1, v2, v3 P V . Which assertion does in
general not hold?

(a) From v1 K v2 and v2 K v3 it follows that v1 K v3.

(b) From v1 K v2 and v1 K v3 it follows that v1 K pv2 ` v3q.

(c) From v1 K v2 it follows that v1 K ´v2.

(d) From v1 K pv2 ` v3q and v1 K v2 it follows that v1 K v3.

Erklärung : For v1 “ v3 ‰ 0 “ v2 assertion (a) is false. The other assertions follow
from the scalar product being bilinear.

3. Let V be a euclidean vector space and let S, T Ă V be two subsets. Which of the
following properties is not equivalent to the other three?

(a) S Ă TK

(b) T Ă SK

(c) S K T

(d) xSy X xT y “ t0u

Erklärung : We have S K T if and only if S is contained in TK “ tv P V | v K T u.
Hence (a) is equivalent to (c) and (b). However, the subsets S :“ t

`

1
0

˘

u and T :“

t
`

1
1

˘

u of V “ R2 are not orthogonal to each other, but satisfy condition (d).
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4. Let S be a subset of a finite dimensional euclidean vector space V . Which asstertion
does not hold in general?

(a) pSKqK “ xSy.

(b) S is the orthogonal complement of a subspace of V .

(c) SK is a subspace of V .

(d) V “ SK ‘ pSKqK.

Erklärung : The orthogonal complement of a subspace of V is always a subspace.
If S is not a subspace, assertion (b) is false. The other assertions were proved in
the lecture.
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Multiple Choice Questions

1. Which of the following matrices are hermitian?

(a)

ˆ

2 0
0 2

˙

(b) 1
i

ˆ

1 0
0 1

˙

(c) 1?
5

ˆ

i ´2
2 i

˙

(d)

ˆ

0 i
´i 0

˙

Explanation: Check A˚ “ A.

2. Which of the following matrices are unitary?

(a)

ˆ

2 0
0 2

˙

(b) 1
i

ˆ

1 0
0 1

˙

(c) 1?
5

ˆ

i ´2
2 i

˙

(d)

ˆ

0 i
´i 0

˙

Explanation: Check U˚U “ 1, equivalently: the columns form an orthonormal
basis.

3. Let U, V be unitary n ˆ n matrices, and let λ “ e2πiθ, θ P R. In general, which of
the following statements hold?

(a) U ` V is unitary.

Explanation: Wrong. ´U is unitary. 0 “ U ` p´Uq is not.

(b) λU is unitary.

Explanation: True. As |λ| “ 1, we have λ “ λ´1. Hence pλUq˚ “ λU˚ “

λ´1U´1 “ pλUq´1.

(c) U´1 is unitary.

Explanation: True. pU´1q˚ “ pU˚q´1 “ pU´1q´1 “ U .

(d) UV is unitary.

Explanation: True. pUV q˚ “ V ˚U˚ “ V ´1U´1 “ pUV q´1.
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