Musterlösung Serie 21

GRAM-SCHMIDT, ORTHOGONALITY

- 1. Let $K = \mathbb{R}, \mathbb{C}, A, B \in M_{n \times m}(K), C \in M_{m \times p}(K)$. Prove the following properties of the adjoint matrix:
 - (a) $\overline{A + B}^T = \overline{A}^T + \overline{B}^T;$ (b) For all $\lambda \in K$, $\overline{(\lambda A)}^T = \overline{\lambda} \overline{A}^T;$ (c) $\overline{(\overline{A}^T)}^T = A;$ (d) $\overline{I_n}^T = I_n;$ (e) $\overline{(A \cdot C)}^T = \overline{C}^T \cdot \overline{A}^T.$

Solution: All if these follow from direct computations.

2. Let $K = \mathbb{R}$. On $K[x]_2$, consider the inner product given by

$$\langle p,q \rangle = \int_0^1 p(x)q(x)dx.$$

- (a) Apply the Gram-Schmidt procedure to the basis $1, x, x^2$ to produce an orthonormal basis of $K[x]_2$.
- (b) Find an orthonormal basis of $K[x]_2$ such that the differential operator $p \mapsto p'$ on $K[x]_2$ has an upper triangular matrix with respect to this basis.

Solution:

(a) We let $u_1 = 1$ since it is already a vector of norm 1. To apply Gram-Schmidt, we let $v_2 = x - \langle x, 1 \rangle$ and $u_2 = \frac{v_2}{||v_2||}$. We compute

$$v_2 = x - \int_0^1 x dx = x - \frac{1}{2}$$

and

$$||v_2||^2 = \int_0^1 \left(x - \frac{1}{2}\right)^2 dx = \frac{1}{12}.$$

Hence,

$$u_2 = 2\sqrt{3}\left(x - \frac{1}{2}\right).$$

FS 2023

Similarly, we let $v_3 = x^2 - \langle x^2, u_2 \rangle u_2 - \langle x^2, u_1 \rangle u_1$ and $u_3 = \frac{v_3}{||v_3||}$. We compute that

$$v_{3} = x^{2} - \left(\int_{0}^{1} 2\sqrt{3}\left(x^{3} - \frac{1}{2}x^{2}\right)dx\right)u_{2} - \int_{0}^{1} x^{2}dx$$
$$= x^{2} - \frac{\sqrt{3}}{6}2\sqrt{3}\left(x - \frac{1}{2}\right) - \frac{1}{3}$$
$$= x^{2} - x + \frac{1}{6}.$$

Now,

$$||v_3||^2 = \int_0^1 \left(x^2 - x + \frac{1}{6}\right)^2 dx$$
$$= \frac{1}{180}.$$

Hence

$$u_3 = 6\sqrt{5}\left(x^2 - x + \frac{1}{6}\right)$$

(b) Denote $\mathcal{B} = \{e_1, e_2, e_3\} = \{1, x, x^2\}, \mathcal{C} = \{u_1, u_2, u_3\}$ the orthonormal basis found in a), and $D: K[x]_2 \to K[x]_2, p \mapsto p'$. We easily compute that

$$[D]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

So, the matrix representation of D with respect to the standard basis \mathcal{B} is already upper triangular, but \mathcal{B} is not orthonormal. However, \mathcal{C} was obtained from \mathcal{B} using the Gram-Schmidt algorithm, so it has the following useful properties:

- C is orthonormal;
- If for any $i \in \{1, 2, 3\}$, $D(e_i) \in \text{Sp}(e_1, \dots, e_i)$, the same also holds for $\{u_1, u_2, u_3\}$.

The second property can be seen by analysing the content of the Gram-Schmidt algorithm (try it yourself!), and can be rephrased as follows: if $[D]_{\mathcal{B}}^{\mathcal{B}}$ is upper triangular, then $[D]_{\mathcal{C}}^{\mathcal{C}}$ is upper triangular. Hence \mathcal{C} is a solution.

3. Minimizing the distance to a subset. Let K be a field and V be a K-vector space. Suppose that U is a finite-dimensional subspace of V and denote $P_U: V \to U$ the orthogonal projection onto U. Let $v \in V$ and $u \in U$. Show that

$$||v - P_U(v)|| \le ||v - u||.$$

Additionally, prove that the inequality above is an equality if and only if $u = P_U(v)$. Solution: We have

$$||v - P_U(v)||^2 \le ||v - P_U(v)||^2 + ||P_U(v) - u||^2$$

= $||v - P_U(v) + P_U(v) - u||^2$
= $||v - u||^2$.

Let us justify the above chain of inequality and equality: the first one holds since $||P_U(v) - u|| \ge 0$. The second one holds by the Pythagorean theorem. Indeed, by definition of $P_U(v)$, we have $v - P_U(v) \in U^{\perp}$, and $P_U(v) - u \in U$ since U is a subspace. By taking square roots, we obtain the desired inequality.

The inequality is an equality if and only if equality holds in the first line

$$\Leftrightarrow ||P_U(v) - u||^2 = 0$$

$$\Leftrightarrow P_U(v) = u.$$

4. Find a polynomial p with real coefficients and degree at most 5 that approximates $\sin(x)$ as well as possible on the interval $[-\pi, \pi]$, in the sense that

$$\int_{-\pi}^{\pi} |\sin(x) - p(x)|^2 \, dx$$

is as small as possible.

Hint. Reformulate the problem in order to use exercise 3.

Solution: Let $V = C([-\pi, \pi], \mathbb{R})$ be the real vector space of real-valued functions on $[-\pi, \pi]$, and consider its subspace U of polynomial functions defined on $[-\pi, \pi]$ of degree at most 5. We endow V with the scalar product

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(x)g(x)dx, \text{ for } f,g \in V.$$

Now, the problem above can be rephrased as follows: find the element of u of U that minimizes $||\sin(x) - u||$, where the norm is induced by the scalar product above. By exercise 3., this quantity will be minimized by the orthogonal projection of $\sin(x)$ to U. To compute it, we will find an orthonormal basis $\mathcal{C} = \{u_0, u_1, \dots, u_5\}$ of U by applying Gram-Schmidt to the standard basis of U, denoted $\mathcal{B} = \{1, x, x^2, x^3, x^4, x^5\}$, and we will then use the formula

$$P_U(v) = \langle v, u_0 \rangle u_0 + \langle v, u_1 \rangle u_1 + \dots + \langle v, u_5 \rangle u_5.$$

We make the following observation: since $\sin(x)$ is odd, the integral of its product with any even function on $[-\pi, \pi]$ vanishes. In particular, the integral of its product with even powers of x vanishes. Since odd powers of x are odd functions, we make the same observation.

This greatly simplifies the exercise! It can easily be shown by induction that only basis elements u_i with odd indices will contribute to the computation of further basis elements with odd indices when we apply Gram-Schmidt, and similarly if we replace odd by even. It directly follows that only odd, resp. even, powers of x will appear in u_i 's with odd, resp. even, indices. Hence, we only need to compute the coefficients $\langle \sin(x), u_i \rangle$ for odd indices.

So, we compute

$$u_{1} = \sqrt{\frac{3}{2\pi^{3}}x},$$

$$u_{3} = \frac{5}{2\pi^{7/2}}\sqrt{\frac{7}{2}}\left(x^{3} - \frac{3\pi^{2}}{5}x\right),$$

$$u_{5} = \frac{63}{8\pi^{11/2}}\sqrt{\frac{11}{2}}\left(x^{5} - \frac{10}{9}\pi^{2}\left(x^{3} - \frac{3\pi^{2}}{5}x\right) - \frac{3\pi^{4}}{7}x\right)$$

and

$$P_U(\sin(x)) = \frac{21}{8\pi^{10}} \left[(33(945 - 105\pi^2 + \pi^4)x^5 - 30\pi^2(1155 - 125\pi^2 + \pi^4)x^3 + 5\pi^4(1485 - 153\pi^2 + \pi^4)x \right].$$

5. Let $V = C([-1, 1], \mathbb{R})$ denote the space of continuous real-valued functions on the interval [-1, 1] with inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx,$$

for $f, g \in V$. Let $\varphi : V \to \mathbb{R}$ be the linear functional defined by $\varphi(f) = f(0)$. Show that there does not exist $g \in V$ such that

$$\forall f \in V : \varphi(f) = \langle f, g \rangle.$$

Why is this not a counterexample to Satz 6.5.5. in the notes?

Solution: Suppose for a contradiction that such a $g \in V$ exists. Let $f_0 \equiv 1$ on the interval [-1, 1]. Then

$$1 = f_0(0) = \langle f_0, g \rangle = \int_{-1}^1 1 \cdot g(x) dx = \int_{-1}^1 g(x) dx.$$

Hence there exists some $x_0 \in (-1, 1)$ such that $g(x_0) > 0$ and, by continuity, there exists an open interval U_0 , containing x_0 , such that g(x) > 0 on U_0 . Shrinking U_0

if needed, we might assume that 0 does not belong to the closure of U_0 . Note that, by definition, h(0) = 0.

Define $h \in V$ to be a continuous function of [-1, 1] that is strictly positive on a subinterval U_1 of U_0 and vanishes everywhere else, e.g. define a piecewise linear function as done in serie 20, exercise 5.

We observe that

$$0 = h(0) = \langle h, g \rangle = \int_{-1}^{1} h(x)g(x)dx = \int_{U_1} h(x)g(x) > 0.$$

This yields a contradiction and proves that such a g does not exist.

6. Let G = (V, E) be a finite directed graph. More precisely, let V be a finite set, and let $E \subseteq \{(v_{\text{init}}, v_{\text{term}}) \mid v_{\text{init}}, v_{\text{term}} \in V \land v_{\text{init}} \neq v_{\text{term}}\} \subseteq V \times V$. We think of V as the set of vertices of the graph, and of the pair $(v_{\text{init}}, v_{\text{term}}) \in E$ as the directed edge connecting $v_{\text{init}} \in V$ to $v_{\text{term}} \in V$ (this can be represented by drawing an arrow pointing towards v_{term} on the said edge).

Example of a directed graph.

We also define the vector spaces $\mathbb{R}^V = \{f : V \to \mathbb{R}\}$ and $\mathbb{R}^E = \{\varphi : E \to \mathbb{R}\}$, which we equip with the inner products

$$\langle f_1, f_2 \rangle_V = \sum_{v \in V} f_1(v) f_2(v), \quad f_1, f_2 \in \mathbb{R}^V$$
$$\langle \varphi_1, \varphi_2 \rangle_E = \sum_{e \in E} \varphi_1(e) \varphi_2(e), \quad \varphi_1, \varphi_2 \in \mathbb{R}^E.$$

Also define $T : \mathbb{R}^V \to \mathbb{R}^E$ as the "combinatorial derivative": for $f \in \mathbb{R}^V$ and $e = (v_{\text{init}}, v_{\text{term}}) \in E$, let

$$T(f)(e) = f(v_{\text{term}}) - f(v_{\text{init}}).$$

Also define $S : \mathbb{R}^E \to \mathbb{R}^V$ by

$$S(\varphi)(v) = \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} \varphi((v_{\text{init}}, v)) - \sum_{\substack{v_{\text{term}} \in V \\ (v, v_{\text{term}}) \in E}} \varphi((v, v_{\text{term}})).$$

(a) Show that $T^* = S$ and calculate $T^* \circ T = S \circ T$, which is also called the combinatorial Laplacian of G.

(b) Now simplify the setup by assuming that the graph is undirected, i.e.

$$(v_{\text{init}}, v_{\text{term}}) \in E \Leftrightarrow (v_{\text{term}}, v_{\text{init}}) \in E,$$

and *d*-regular (for any $v \in V$ there are exactly *d* vertices $v_{\text{term}} \in V$ with $(v, v_{\text{term}}) \in E$). Show that $T^* \circ T$ admits 0 as an eigenvalue. Explain why the geometric multiplicity of 0 is related to the connectivity of *G*.

Solution:

(a) For a given edge $e \in E$, let us denote $e^{(1)}$ and $e^{(2)}$ the unique vertices such that $e = (e^{(1)}, e^{(2)})$. For $f \in \mathbb{R}^V$ and $\varphi \in \mathbb{R}^E$, we compute that

$$\begin{split} \langle f, S(\varphi) \rangle_{V} &= \sum_{v \in V} f(v) S(\varphi)(v) \\ &= \sum_{v \in V} f(v) \left[\sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} \varphi((v_{\text{init}}, v)) - \sum_{\substack{v \in V \\ (v, v_{\text{term}}) \in E}} \varphi((v, v_{\text{term}})) \right] \\ &= \sum_{v \in V} f(v) \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} \varphi((v_{\text{init}}, v)) - \sum_{v \in V} f(v) \sum_{\substack{v \in V \\ (v, v_{\text{term}}) \in E}} \varphi((v, v_{\text{term}})) \\ &= \sum_{e \in E} \sum_{\substack{v \in V \\ v = e^{(2)}}} f(v) \varphi(e) - \sum_{e \in E} \sum_{\substack{v \in V \\ v = e^{(1)}}} f(v) \varphi(e) \end{split}$$

Since $e^{(1)}$ and $e^{(2)}$ are unique for a fixed $e \in E$, the last line equals

$$\sum_{e \in E} f(e^{(2)})\varphi(e) - \sum_{e \in E} f(e^{(1)})\varphi(e) = \sum_{e \in E} (f(e^{(2)}) - f(e^{(1)}))\varphi(e)$$
$$= \sum_{e \in E} T(f)(e)\varphi(e)$$
$$= \langle Tf, \varphi \rangle_E.$$

By definition of the adjoint map, this shows that $T^* = S$. We have

$$\begin{split} S(T(f))(v) &= \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} T(f)((v_{\text{init}}, v)) - \sum_{\substack{v_{\text{term}} \in V \\ (v, v_{\text{term}}) \in E}} T(f)((v, v_{\text{term}})) \\ &= \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} [f(v) - f(v_{\text{init}})] - \sum_{\substack{v_{\text{term}} \in V \\ (v, v_{\text{term}}) \in E}} [f(v_{\text{term}}) - f(v)] \\ &= E_v f(v) - \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} f(v_{\text{init}}) - \sum_{\substack{v_{\text{term}} \in V \\ (v, v_{\text{term}}) \in E}} f(v_{\text{term}}) \\ &= E_v f(v) - \sum_{\substack{w_{\text{init}} \in V \\ (v_{\text{init}}, v) \in E}} f(w). \end{split}$$

where E_v is the number of edges that touch v.

(b) To solve this question, it is preferable to work with the matrix representation of the combinatorial Laplacian $T^* \circ T \in \text{End}(\mathbb{R}^V)$. Let us label the vertices of V in an arbitrary order as v_1, \ldots, v_n . We note that the set characteristic functions

$$\mathcal{B} := \{\mathbf{1}_{x=v_i}(x) \in \mathbb{R}^V \mid i = 1, \dots, n\}$$

such that

$$\mathbf{1}_{x=v_i}(x) = \begin{cases} 1, & x=v_i \\ 0, & \text{otherwise} \end{cases}$$

forms an orthonormal basis of $(\mathbb{R}^V, \langle \cdot, \cdot \rangle_V)$. Hence a matrix representation of $T^* \circ T$ will be a square matrix of size $n \times n$ whose rows, resp. columns, are indexed by v_1, \ldots, v_n , resp. $\mathbf{1}_{x=v_1}, \ldots, \mathbf{1}_{x=v_n}$, in this order.

Let $v \in V$ be arbitrary vertex . We denote N(v) the set of vertices adjacent to v and compute that

$$(T^* \circ T)(\mathbf{1}_{x=v})(x)$$

$$= \sum_{\substack{v_{\text{init}} \in V \\ (v_{\text{init}},x) \in E}} [\mathbf{1}_{x=v}(x) - \mathbf{1}_{x=v}(v_{\text{init}})] - \sum_{\substack{v_{\text{term}} \in V \\ (x,v_{\text{term}}) \in E}} [\mathbf{1}_{x=v}(v_{\text{term}}) - \mathbf{1}_{x=v}(x)]$$

$$= \sum_{w \in N(x)} [\mathbf{1}_{x=v}(x) - \mathbf{1}_{x=v}(w)] - \sum_{w \in N(x)} [\mathbf{1}_{x=v}(w) - \mathbf{1}_{x=v}(x)]$$

$$= 2d\mathbf{1}_{x=v}(x) - 2\sum_{w \in N(x)} \mathbf{1}_{x=v}(x)$$

$$= \begin{cases} 2d, & x = v \\ -2, & x \in N(v) \end{cases}$$

Note that the factor 2 comes from the fact that we are not working in a directed graph anymore. The elements of $[T^* \circ T]^{\mathcal{B}}_{\mathcal{B}}$ can therefore be described as follows:

$$([T^* \circ T]^{\mathcal{B}}_{\mathcal{B}})_{i,j} = \begin{cases} 2d, & i = j \\ -2, & v_i \in N(v_j) \end{cases}$$

Note that the matrix we just computed is symmetric. We easily see that the constant function mapping every vertex to 1, and represented by the coordinate vector $(1, 1, \dots, 1)^T$, is in the kernel of $(T^* \circ T)$. Thereupon, it is an eigenfunction of the Laplacian with eigenvalue 0.

We claim that the relation between the multiplicity of 0 as an eigenvalue of the Laplacian and the connectivity of G goes as follows:

Proposition. If G has k connected components, then 0 has multiplicity k as an eigenvalue of the Laplacian of G.

Beweis. Denote $\Omega_1, \ldots, \Omega_k$ the connected components of the graph G. For $j \in \{1, \ldots, k\}$, let $\mathbf{1}_{\Omega_j}(x) \in \mathbb{R}^V$ denote the characteristic function of Ω_j . Since connected components are mutually disjoint, you can easily prove that these functions form a linearly independent subset of \mathbb{R}^V . We now show that every $\mathbf{1}_{\Omega_j}(x)$ is an eigenfunction of $T^* \circ T$ with eigenvalue 0. We have

$$(T^* \circ T)(\mathbf{1}_{\Omega_j})(x) = -2d\mathbf{1}_{\Omega_j}(x) - 2\sum_{w \in N(x)} \mathbf{1}_{\Omega_j}(w).$$

Now, if $x \in \Omega_j$, this vanishes since neighbours share the same connected component. On the other hand, if $x \notin \Omega_j$, both terms in the RHS above vanish for the same reason. Hence $(T^* \circ T)(\mathbf{1}_{\Omega_j})(x) = 0$ for all $x \in V$. This shows that 0 has multiplicativity at least k.

Now assume for a contradiction that $f \in \mathbb{R}^V$ is not spanned by $\{\Omega_j \mid j \in \{1, \ldots, k\}\}$, i.e. assume that f isn't constant on any connected component of G, but that it is an eigenfunction of $T^* \circ T$ with eigenvalue 0. Then

$$0 = \langle (T^* \circ T)(f), f \rangle_V = \langle Tf, Tf \rangle_E = \sum_{e \in E} (Tf(e))^2 = \sum_{e \in E} (f(e^{(2)}) - f(e^{(1)}))^2.$$

This implies $f(e^{(2)}) - f(e^{(1)}) = 0$, $\forall e \in E$, and therefore that f is constant on the endpoints of any edge of G. This in turn implies that f is constant on connected components of G, which is a contradiction. Single Choice. In each exercise, exactly one answer is correct.

- 1. For which $x \in \mathbb{C}$ is the matrix $A := \begin{pmatrix} x & -x \\ x & x \end{pmatrix}$ unitary?
 - (a) For all $x \in \mathbb{C}$ with $|x|^2 = \frac{1}{2}$.
 - (b) Exactly for $x = \frac{1}{\sqrt{2}}$.
 - (c) For all $x \in \mathbb{C}$ with $x = -\overline{x}$.
 - (d) For x = 0.

Erklärung: We compute $AA^* = \begin{pmatrix} 2x\overline{x} & 0\\ 0 & 2x\overline{x} \end{pmatrix} = 2 \cdot |x|^2 \cdot I_2$; so (a) holds.

- 2. Which set is a subspace of the \mathbb{C} -vector space $M_{n \times n}(\mathbb{C})$?
 - (a) The set of unitary $n \times n$ matrices.
 - (b) The set of self-adjoint $n \times n$ matrices.
 - (c) The set of symmetric $n \times n$ matrices.
 - (d) The set of normal $n \times n$ matrices.

Erklärung: For all symmetric matrices A and B and complex numbers λ , it holds that $(\lambda A + B)^T = \lambda A^T + B^T = \lambda A + B$; hence, (c) is correct. However, the 1×1 matrix A := (1) is unitary and self-adjoint, but its multiple 2iA = (2i) is neither; therefore, (a) and (b) are false. Finally, in general, the sum of two normal matrices is not normal.

Multiple Choice Fragen

1. Let A be a Hermitian matrix. Which statements are correct?

Explanation:

- (a) We have $a_{ii} = \overline{a_{ii}} \in \mathbb{R}$, therefore $\operatorname{tr} A = \sum a_{ii} \in \mathbb{R}$.
- (b) det $A = \det\left(\overline{A^T}\right) = \overline{\det(A^T)} = \overline{\det A} \in \mathbb{R}$. Aliter: The eigenvalues λ_i of A are real. Therefore $\det(A) = \prod \lambda_i$ is also real. Hence $\operatorname{tr} A = \sum \lambda_i$.