Musterlösung Serie 21

Gram-Schmidt, Orthogonality

1. Let $K=\mathbb{R}, \mathbb{C}, A, B \in M_{n \times m}(K), C \in M_{m \times p}(K)$. Prove the following properties of the adjoint matrix:
(a) $\overline{A+B}^{T}=\bar{A}^{T}+\bar{B}^{T}$;
(b) For all $\lambda \in K, \overline{(\lambda A)}^{T}=\bar{\lambda} \bar{A}^{T}$;
(c) ${\left.\overline{\left(\bar{A}^{T}\right.}\right)^{T}}^{T}=A$;
(d) $\bar{I}_{n}{ }^{T}=I_{n}$;
(e) $\overline{(A \cdot C)}^{T}=\bar{C}^{T} \cdot \bar{A}^{T}$.

Solution: All if these follow from direct computations.
2. Let $K=\mathbb{R}$. On $K[x]_{2}$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x .
$$

(a) Apply the Gram-Schmidt procedure to the basis $1, x, x^{2}$ to produce an orthonormal basis of $K[x]_{2}$.
(b) Find an orthonormal basis of $K[x]_{2}$ such that the differential operator $p \mapsto p^{\prime}$ on $K[x]_{2}$ has an upper triangular matrix with respect to this basis.

Solution:
(a) We let $u_{1}=1$ since it is already a vector of norm 1 . To apply Gram-Schmidt, we let $v_{2}=x-\langle x, 1\rangle$ and $u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}$. We compute

$$
v_{2}=x-\int_{0}^{1} x d x=x-\frac{1}{2}
$$

and

$$
\left\|v_{2}\right\|^{2}=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x=\frac{1}{12}
$$

Hence,

$$
u_{2}=2 \sqrt{3}\left(x-\frac{1}{2}\right)
$$

Similarly, we let $v_{3}=x^{2}-\left\langle x^{2}, u_{2}\right\rangle u_{2}-\left\langle x^{2}, u_{1}\right\rangle u_{1}$ and $u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}$. We compute that

$$
\begin{aligned}
v_{3} & =x^{2}-\left(\int_{0}^{1} 2 \sqrt{3}\left(x^{3}-\frac{1}{2} x^{2}\right) d x\right) u_{2}-\int_{0}^{1} x^{2} d x \\
& =x^{2}-\frac{\sqrt{3}}{6} 2 \sqrt{3}\left(x-\frac{1}{2}\right)-\frac{1}{3} \\
& =x^{2}-x+\frac{1}{6} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left\|v_{3}\right\|^{2} & =\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x \\
& =\frac{1}{180}
\end{aligned}
$$

Hence

$$
u_{3}=6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)
$$

(b) Denote $\mathcal{B}=\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{1, x, x^{2}\right\}, \mathcal{C}=\left\{u_{1}, u_{2}, u_{3}\right\}$ the orthonormal basis found in a), and $D: K[x]_{2} \rightarrow K[x]_{2}, p \mapsto p^{\prime}$. We easily compute that

$$
[D]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So, the matrix representation of D with respect to the standard basis \mathcal{B} is already upper triangular, but \mathcal{B} is not orthonormal. However, \mathcal{C} was obtained from \mathcal{B} using the Gram-Schmidt algorithm, so it has the following useful properties:

- \mathcal{C} is orthonormal;
- If for any $i \in\{1,2,3\}, D\left(e_{i}\right) \in \operatorname{Sp}\left(e_{1}, \ldots, e_{i}\right)$, the same also holds for $\left\{u_{1}, u_{2}, u_{3}\right\}$.
The second property can be seen by analysing the content of the GramSchmidt algorithm (try it yourself!), and can be rephrased as follows: if $[D]_{\mathcal{B}}^{\mathcal{B}}$ is upper triangular, then $[D]_{\mathcal{C}}^{\mathcal{C}}$ is upper triangular. Hence \mathcal{C} is a solution.

3. Minimizing the distance to a subset. Let K be a field and V be a K-vector space. Suppose that U is a finite-dimensional subspace of V and denote $P_{U}: V \rightarrow$ U the orthogonal projection onto U. Let $v \in V$ and $u \in U$. Show that

$$
\left\|v-P_{U}(v)\right\| \leqslant\|v-u\| .
$$

Additionally, prove that the inequality above is an equality if and only if $u=P_{U}(v)$.
Solution: We have

$$
\begin{aligned}
\left\|v-P_{U}(v)\right\|^{2} & \leqslant\left\|v-P_{U}(v)\right\|^{2}+\left\|P_{U}(v)-u\right\|^{2} \\
& =\left\|v-P_{U}(v)+P_{U}(v)-u\right\|^{2} \\
& =\|v-u\|^{2} .
\end{aligned}
$$

Let us justify the above chain of inequality and equality: the first one holds since $\left\|P_{U}(v)-u\right\| \geqslant 0$. The second one holds by the Pythagorean theorem. Indeed, by definition of $P_{U}(v)$, we have $v-P_{U}(v) \in U^{\perp}$, and $P_{U}(v)-u \in U$ since U is a subspace. By taking square roots, we obtain the desired inequality.
The inequality is an equality if and only if equality holds in the first line

$$
\begin{aligned}
& \Leftrightarrow \quad\left\|P_{U}(v)-u\right\|^{2}=0 \\
& \Leftrightarrow \quad P_{U}(v)=u
\end{aligned}
$$

4. Find a polynomial p with real coefficients and degree at most 5 that approximates $\sin (x)$ as well as possible on the interval $[-\pi, \pi]$, in the sense that

$$
\int_{-\pi}^{\pi}|\sin (x)-p(x)|^{2} d x
$$

is as small as possible.
Hint. Reformulate the problem in order to use exercise 3.
Solution: Let $V=C([-\pi, \pi], \mathbb{R})$ be the real vector space of real-valued functions on $[-\pi, \pi]$, and consider its subspace U of polynomial functions defined on $[-\pi, \pi]$ of degree at most 5 . We endow V with the scalar product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x, \quad \text { for } f, g \in V \text {. }
$$

Now, the problem above can be rephrased as follows: find the element of u of U that minimizes $\|\sin (x)-u\|$, where the norm is induced by the scalar product above. By exercise 3., this quantity will be minimized by the orthogonal projection of $\sin (x)$ to U. To compute it, we will find an orthonormal basis $\mathcal{C}=\left\{u_{0}, u_{1}, \cdots, u_{5}\right\}$ of U by applying Gram-Schmidt to the standard basis of U, denoted $\mathcal{B}=\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}$, and we will then use the formula

$$
P_{U}(v)=\left\langle v, u_{0}\right\rangle u_{0}+\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{5}\right\rangle u_{5} .
$$

We make the following observation: $\operatorname{since} \sin (x)$ is odd, the integral of its product with any even function on $[-\pi, \pi]$ vanishes. In particular, the integral of its product
with even powers of x vanishes. Since odd powers of x are odd functions, we make the same observation.

This greatly simplifies the exercise! It can easily be shown by induction that only basis elements u_{i} with odd indices will contribute to the computation of further basis elements with odd indices when we apply Gram-Schmidt, and similarly if we replace odd by even. It directly follows that only odd, resp. even, powers of x will appear in u_{i} 's with odd, resp. even, indices. Hence, we only need to compute the coefficients $\left\langle\sin (x), u_{i}\right\rangle$ for odd indices.
So, we compute

$$
\begin{aligned}
& u_{1}=\sqrt{\frac{3}{2 \pi^{3}}} x \\
& u_{3}=\frac{5}{2 \pi^{7 / 2}} \sqrt{\frac{7}{2}}\left(x^{3}-\frac{3 \pi^{2}}{5} x\right), \\
& u_{5}=\frac{63}{8 \pi^{11 / 2}} \sqrt{\frac{11}{2}}\left(x^{5}-\frac{10}{9} \pi^{2}\left(x^{3}-\frac{3 \pi^{2}}{5} x\right)-\frac{3 \pi^{4}}{7} x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{U}(\sin (x))= & \frac{21}{8 \pi^{10}}\left[\left(33\left(945-105 \pi^{2}+\pi^{4}\right) x^{5}-30 \pi^{2}\left(1155-125 \pi^{2}+\pi^{4}\right) x^{3}\right.\right. \\
& \left.+5 \pi^{4}\left(1485-153 \pi^{2}+\pi^{4}\right) x\right] .
\end{aligned}
$$

5. Let $V=C([-1,1], \mathbb{R})$ denote the space of continuous real-valued functions on the interval $[-1,1]$ with inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

for $f, g \in V$. Let $\varphi: V \rightarrow \mathbb{R}$ be the linear functional defined by $\varphi(f)=f(0)$. Show that there does not exist $g \in V$ such that

$$
\forall f \in V: \varphi(f)=\langle f, g\rangle .
$$

Why is this not a counterexample to Satz 6.5.5. in the notes?
Solution: Suppose for a contradiction that such a $g \in V$ exists. Let $f_{0} \equiv 1$ on the interval $[-1,1]$. Then

$$
1=f_{0}(0)=\left\langle f_{0}, g\right\rangle=\int_{-1}^{1} 1 \cdot g(x) d x=\int_{-1}^{1} g(x) d x
$$

Hence there exists some $x_{0} \in(-1,1)$ such that $g\left(x_{0}\right)>0$ and, by continuity, there exists an open interval U_{0}, containing x_{0}, such that $g(x)>0$ on U_{0}. Shrinking U_{0}
if needed, we might assume that 0 does not belong to the closure of U_{0}. Note that, by definition, $h(0)=0$.
Define $h \in V$ to be a continuous function of $[-1,1]$ that is strictly positive on a subinterval U_{1} of U_{0} and vanishes everywhere else, e.g. define a piecewise linear function as done in serie 20 , exercise 5 .

We observe that

$$
0=h(0)=\langle h, g\rangle=\int_{-1}^{1} h(x) g(x) d x=\int_{U_{1}} h(x) g(x)>0 .
$$

This yields a contradiction and proves that such a g does not exist.
6. Let $G=(V, E)$ be a finite directed graph. More precisely, let V be a finite set, and let $E \subseteq\left\{\left(v_{\text {init }}, v_{\text {term }}\right) \mid v_{\text {init }}, v_{\text {term }} \in V \wedge v_{\text {init }} \neq v_{\text {term }}\right\} \subseteq V \times V$. We think of V as the set of vertices of the graph, and of the pair $\left(v_{\text {init }}, v_{\text {term }}\right) \in E$ as the directed edge connecting $v_{\text {init }} \in V$ to $v_{\text {term }} \in V$ (this can be represented by drawing an arrow pointing towards $v_{\text {term }}$ on the said edge).
Example of a directed graph.

We also define the vector spaces $\mathbb{R}^{V}=\{f: V \rightarrow \mathbb{R}\}$ and $\mathbb{R}^{E}=\{\varphi: E \rightarrow \mathbb{R}\}$, which we equip with the inner products

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle_{V}=\sum_{v \in V} f_{1}(v) f_{2}(v), & f_{1}, f_{2} \in \mathbb{R}^{V} \\
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{E}=\sum_{e \in E} \varphi_{1}(e) \varphi_{2}(e), & \varphi_{1}, \varphi_{2} \in \mathbb{R}^{E}
\end{aligned}
$$

Also define $T: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}$ as the "combinatorial derivative": for $f \in \mathbb{R}^{V}$ and $e=\left(v_{\text {init }}, v_{\text {term }}\right) \in E$, let

$$
T(f)(e)=f\left(v_{\text {term }}\right)-f\left(v_{\text {init }}\right) .
$$

Also define $S: \mathbb{R}^{E} \rightarrow \mathbb{R}^{V}$ by

$$
S(\varphi)(v)=\sum_{\substack{v_{\text {init }} \in V \\\left(v_{\text {ini }} t \\, v\right) \in E}} \varphi\left(\left(v_{\text {init }}, v\right)\right)-\sum_{\substack{v_{\text {term }} \in V \\\left(v, v_{\text {term }}\right) \in E}} \varphi\left(\left(v, v_{\text {term }}\right)\right)
$$

(a) Show that $T^{*}=S$ and calculate $T^{*} \circ T=S \circ T$, which is also called the combinatorial Laplacian of G.
(b) Now simplify the setup by assuming that the graph is undirected, i.e.

$$
\left(v_{\text {init }}, v_{\text {term }}\right) \in E \Leftrightarrow\left(v_{\text {term }}, v_{\text {init }}\right) \in E,
$$

and d-regular (for any $v \in V$ there are exactly d vertices $v_{\text {term }} \in V$ with $\left.\left(v, v_{\text {term }}\right) \in E\right)$. Show that $T^{*} \circ T$ admits 0 as an eigenvalue. Explain why the geometric multiplicity of 0 is related to the connectivity of G.

Solution:

(a) For a given edge $e \in E$, let us denote $e^{(1)}$ and $e^{(2)}$ the unique vertices such that $e=\left(e^{(1)}, e^{(2)}\right)$. For $f \in \mathbb{R}^{V}$ and $\varphi \in \mathbb{R}^{E}$, we compute that

$$
\begin{aligned}
\langle f, S(\varphi)\rangle_{V} & =\sum_{v \in V} f(v) S(\varphi)(v) \\
& =\sum_{v \in V} f(v)\left[\sum_{\substack{v_{\text {init }} \in V \\
\left(v_{\text {ini }}, v\right) \in E}} \varphi\left(\left(v_{\text {init }}, v\right)\right)-\sum_{\substack{v \in V \\
\left(v, v_{\text {term }}\right) \in E}} \varphi\left(\left(v, v_{\text {term }}\right)\right)\right] \\
& =\sum_{v \in V} f(v) \sum_{\substack{v_{\text {init }} \in V \\
\left(v_{\text {init }}, v\right) \in E}} \varphi\left(\left(v_{\text {init }}, v\right)\right)-\sum_{v \in V} f(v) \sum_{\substack{v \in V=V \\
\left(v, v_{\text {term }}\right) \in E}} \varphi\left(\left(v, v_{\text {term }}\right)\right) \\
& =\sum_{e \in E} \sum_{v \in V}^{v \in V^{(2)}} f(v) \varphi(e)-\sum_{e \in E} \sum_{v \in V}^{v \in e^{(1)}} \underset{v=e^{(1)}}{ } f(v) \varphi(e)
\end{aligned}
$$

Since $e^{(1)}$ and $e^{(2)}$ are unique for a fixed $e \in E$, the last line equals

$$
\begin{aligned}
\sum_{e \in E} f\left(e^{(2)}\right) \varphi(e)-\sum_{e \in E} f\left(e^{(1)}\right) \varphi(e) & =\sum_{e \in E}\left(f\left(e^{(2)}\right)-f\left(e^{(1)}\right)\right) \varphi(e) \\
& =\sum_{e \in E} T(f)(e) \varphi(e) \\
& =\langle T f, \varphi\rangle_{E} .
\end{aligned}
$$

By definition of the adjoint map, this shows that $T^{*}=S$.
We have

$$
\begin{aligned}
S(T(f))(v) & =\sum_{\substack{v_{\text {init }} \in V \\
\left(v_{\text {init }}, v\right) \in E}} T(f)\left(\left(v_{\text {init }}, v\right)\right)-\sum_{\substack{v_{\text {term }} \in V \\
\left(v, v_{\text {term }}\right) \in E}} T(f)\left(\left(v, v_{\text {term }}\right)\right) \\
& =\sum_{\substack{v_{\text {init }} \in V \\
\left(v_{\text {init }}, v\right) \in E}}\left[f(v)-f\left(v_{\text {init }}\right)\right]-\sum_{\substack{v_{\text {term }} \in V \\
\left(v, v_{\text {term }}\right) \in E}}\left[f\left(v_{\text {term }}\right)-f(v)\right] \\
& =E_{v} f(v)-\sum_{\substack{v_{\text {init }} \in V \\
\left(v_{\text {init }}, v\right) \in E}} f\left(v_{\text {init }}\right)-\sum_{\substack{v_{\text {term }} \in V \\
\left(v, v_{\text {term }}\right) \in E}} f\left(v_{\text {term }}\right) \\
& =E_{v} f(v)-\sum_{\substack{w \in V \\
w \text { is a neighbour of } v}} f(w) .
\end{aligned}
$$

where E_{v} is the number of edges that touch v.
(b) To solve this question, it is preferable to work with the matrix representation of the combinatorial Laplacian $T^{*} \circ T \in \operatorname{End}\left(\mathbb{R}^{V}\right)$. Let us label the vertices of V in an arbitrary order as v_{1}, \ldots, v_{n}. We note that the set characteristic functions

$$
\mathcal{B}:=\left\{\mathbf{1}_{x=v_{i}}(x) \in \mathbb{R}^{V} \mid i=1, \ldots, n\right\}
$$

such that

$$
\mathbf{1}_{x=v_{i}}(x)= \begin{cases}1, & x=v_{i} \\ 0, & \text { otherwise }\end{cases}
$$

forms an orthonormal basis of $\left(\mathbb{R}^{V},\langle\cdot, \cdot\rangle_{V}\right)$. Hence a matrix representation of $T^{*} \circ T$ will be a square matrix of size $n \times n$ whose rows, resp. columns, are indexed by v_{1}, \ldots, v_{n}, resp. $\mathbf{1}_{x=v_{1}}, \ldots, \mathbf{1}_{x=v_{n}}$, in this order.
Let $v \in V$ be arbitrary vertex. We denote $N(v)$ the set of vertices adjacent to v and compute that

$$
\begin{aligned}
& \left(T^{*} \circ T\right)\left(\mathbf{1}_{x=v}\right)(x) \\
= & \sum_{\substack{v_{\text {int } t \in} \in V \\
\left(v_{\text {init }}, x\right) \in E}}\left[\mathbf{1}_{x=v}(x)-\mathbf{1}_{x=v}\left(v_{\text {init }}\right)\right]-\sum_{\substack{v_{\text {term }} \in V \\
\left(x, v_{\text {term }}\right) \in E}}\left[\mathbf{1}_{x=v}\left(v_{\text {term }}\right)-\mathbf{1}_{x=v}(x)\right] \\
= & \sum_{w \in N(x)}\left[\mathbf{1}_{x=v}(x)-\mathbf{1}_{x=v}(w)\right]-\sum_{w \in N(x)}\left[\mathbf{1}_{x=v}(w)-\mathbf{1}_{x=v}(x)\right] \\
= & 2 d \mathbf{1}_{x=v}(x)-2 \sum_{w \in N(x)} \mathbf{1}_{x=v}(x) \\
= & \left\{\begin{array}{cc}
2 d, & x=v \\
-2, & x \in N(v)
\end{array}\right.
\end{aligned}
$$

Note that the factor 2 comes from the fact that we are not working in a directed graph anymore. The elements of $\left[T^{*} \circ T\right]_{\mathcal{B}}^{\mathcal{B}}$ can therefore be described as follows:

$$
\left(\left[T^{*} \circ T\right]_{\mathcal{B}}^{\mathcal{B}}\right)_{i, j}= \begin{cases}2 d, & i=j \\ -2, & v_{i} \in N\left(v_{j}\right)\end{cases}
$$

Note that the matrix we just computed is symmetric. We easily see that the constant function mapping every vertex to 1 , and represented by the coordinate vector $(1,1, \cdots, 1)^{T}$, is in the kernel of $\left(T^{*} \circ T\right)$. Thereupon, it is an eigenfunction of the Laplacian with eigenvalue 0.

We claim that the relation between the multiplicity of 0 as an eigenvalue of the Laplacian and the connectivity of G goes as follows:
Proposition. If G has k connected components, then 0 has multiplicity k as an eigenvalue of the Laplacian of G.

Beweis. Denote $\Omega_{1}, \ldots, \Omega_{k}$ the connected components of the graph G. For $j \in\{1, \ldots, k\}$, let $\mathbf{1}_{\Omega_{j}}(x) \in \mathbb{R}^{V}$ denote the characteristic function of Ω_{j}. Since connected components are mutually disjoint, you can easily prove that these functions form a linearly independent subset of \mathbb{R}^{V}. We now show that every $\mathbf{1}_{\Omega_{j}}(x)$ is an eigenfunction of $T^{*} \circ T$ with eigenvalue 0 . We have

$$
\left(T^{*} \circ T\right)\left(\mathbf{1}_{\Omega_{j}}\right)(x)=-2 d \mathbf{1}_{\Omega_{j}}(x)-2 \sum_{w \in N(x)} \mathbf{1}_{\Omega_{j}}(w)
$$

Now, if $x \in \Omega_{j}$, this vanishes since neighbours share the same connected component. On the other hand, if $x \notin \Omega_{j}$, both terms in the RHS above vanish for the same reason. Hence $\left(T^{*} \circ T\right)\left(\mathbf{1}_{\Omega_{j}}\right)(x)=0$ for all $x \in V$. This shows that 0 has multiplicativity at least k.
Now assume for a contradiction that $f \in \mathbb{R}^{V}$ is not spanned by $\left\{\Omega_{j} \mid j \in\right.$ $\{1, \ldots, k\}\}$, i.e. assume that f isn't constant on any connected component of G, but that it is an eigenfunction of $T^{*} \circ T$ with eigenvalue 0 . Then

$$
0=\left\langle\left(T^{*} \circ T\right)(f), f\right\rangle_{V}=\langle T f, T f\rangle_{E}=\sum_{e \in E}(T f(e))^{2}=\sum_{e \in E}\left(f\left(e^{(2)}\right)-f\left(e^{(1)}\right)\right)^{2} .
$$

This implies $f\left(e^{(2)}\right)-f\left(e^{(1)}\right)=0, \forall e \in E$, and therefore that f is constant on the endpoints of any edge of G. This in turn implies that f is constant on connected components of G, which is a contradiction.

Single Choice. In each exercise, exactly one answer is correct.

1. For which $x \in \mathbb{C}$ is the matrix $A:=\left(\begin{array}{cc}x & -x \\ x & x\end{array}\right)$ unitary?
(a) For all $x \in \mathbb{C}$ with $|x|^{2}=\frac{1}{2}$.
(b) Exactly for $x=\frac{1}{\sqrt{2}}$.
(c) For all $x \in \mathbb{C}$ with $x=-\bar{x}$.
(d) For $x=0$.

Erklärung: We compute $A A^{*}=\left(\begin{array}{cc}2 x \bar{x} & 0 \\ 0 & 2 x \bar{x}\end{array}\right)=2 \cdot|x|^{2} \cdot I_{2}$; so (a) holds.
2. Which set is a subspace of the \mathbb{C}-vector space $M_{n \times n}(\mathbb{C})$?
(a) The set of unitary $n \times n$ matrices.
(b) The set of self-adjoint $n \times n$ matrices.
(c) The set of symmetric $n \times n$ matrices.
(d) The set of normal $n \times n$ matrices.

Erklärung: For all symmetric matrices A and B and complex numbers λ, it holds that $(\lambda A+B)^{T}=\lambda A^{T}+B^{T}=\lambda A+B$; hence, (c) is correct. However, the 1×1 matrix $A:=(1)$ is unitary and self-adjoint, but its multiple $2 i A=(2 i)$ is neither; therefore, (a) and (b) are false. Finally, in general, the sum of two normal matrices is not normal.

Multiple Choice Fragen

1. Let A be a Hermitian matrix. Which statements are correct?
(a) $\operatorname{Tr}(A) \in \mathbb{R}$.
(b) $\operatorname{det}(A) \in \mathbb{R}$.

Explanation:

(a) We have $a_{i i}=\overline{a_{i i}} \in \mathbb{R}$, therefore $\operatorname{tr} A=\sum a_{i i} \in \mathbb{R}$.
(b) $\operatorname{det} A=\operatorname{det}\left(\overline{A^{T}}\right)=\overline{\operatorname{det}\left(A^{T}\right)}=\overline{\operatorname{det} A} \in \mathbb{R}$. Aliter: The eigenvalues λ_{i} of A are real. Therefore $\operatorname{det}(A)=\prod \lambda_{i}$ is also real. Hence $\operatorname{tr} A=\sum \lambda_{i}$.

