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Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 21
Gram-Schmidt, Orthogonality

1. Let K “ R,C, A,B P MnˆmpKq, C P MmˆppKq. Prove the following properties of
the adjoint matrix:

(a) A ` B
T

“ A
T

` B
T
;

(b) For all λ P K, pλAq
T

“ λA
T
;

(c) pA
T

q
T

“ A;

(d) In
T

“ In;

(e) pA ¨ Cq
T

“ C
T

¨ A
T
.

Solution: All if these follow from direct computations.

2. Let K “ R. On Krxs2, consider the inner product given by

xp, qy “

ż 1

0

ppxqqpxqdx.

(a) Apply the Gram-Schmidt procedure to the basis 1, x, x2 to produce an ortho-
normal basis of Krxs2.

(b) Find an orthonormal basis of Krxs2 such that the differential operator p ÞÑ p1

on Krxs2 has an upper triangular matrix with respect to this basis.

Solution:

(a) We let u1 “ 1 since it is already a vector of norm 1. To apply Gram-Schmidt,
we let v2 “ x ´ xx, 1y and u2 “ v2

||v2|| . We compute

v2 “ x ´

ż 1

0

xdx “ x ´
1

2

and

||v2||2 “

ż 1

0

ˆ

x ´
1

2

˙2

dx “
1

12
.

Hence,

u2 “ 2
?
3

ˆ

x ´
1

2

˙

.
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Similarly, we let v3 “ x2 ´ xx2, u2yu2 ´ xx2, u1yu1 and u3 “ v3
||v3|| . We compute

that

v3 “ x2
´

ˆ
ż 1

0

2
?
3

ˆ

x3
´

1

2
x2

˙

dx

˙

u2 ´

ż 1

0

x2dx

“ x2
´

?
3

6
2
?
3

ˆ

x ´
1

2

˙

´
1

3

“ x2
´ x `

1

6
.

Now,

||v3||2 “

ż 1

0

ˆ

x2
´ x `

1

6

˙2

dx

“
1

180
.

Hence

u3 “ 6
?
5

ˆ

x2
´ x `

1

6

˙

.

(b) Denote B “ te1, e2, e3u “ t1, x, x2u, C “ tu1, u2, u3u the orthonormal basis
found in a), and D : Krxs2 Ñ Krxs2, p ÞÑ p1. We easily compute that

rDs
B
B “

¨

˝

0 1 0
0 0 2
0 0 0

˛

‚.

So, the matrix representation of D with respect to the standard basis B is
already upper triangular, but B is not orthonormal. However, C was obtained
from B using the Gram-Schmidt algorithm, so it has the following useful
properties:

• C is orthonormal;

• If for any i P t1, 2, 3u, Dpeiq P Sppe1, . . . , eiq, the same also holds for
tu1, u2, u3u.

The second property can be seen by analysing the content of the Gram-
Schmidt algorithm (try it yourself!), and can be rephrased as follows: if rDsBB
is upper triangular, then rDsCC is upper triangular. Hence C is a solution.

3. Minimizing the distance to a subset. Let K be a field and V be a K-vector
space. Suppose that U is a finite-dimensional subspace of V and denote PU : V Ñ

U the orthogonal projection onto U . Let v P V and u P U . Show that

||v ´ PUpvq|| ď ||v ´ u|| .
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Additionally, prove that the inequality above is an equality if and only if u “ PUpvq.

Solution: We have

||v ´ PUpvq||2 ď ||v ´ PUpvq||2 ` ||PUpvq ´ u||2

“ ||v ´ PUpvq ` PUpvq ´ u||2

“ ||v ´ u||2 .

Let us justify the above chain of inequality and equality: the first one holds since
||PUpvq ´ u|| ě 0. The second one holds by the Pythagorean theorem. Indeed, by
definition of PUpvq, we have v ´ PUpvq P UK, and PUpvq ´ u P U since U is a
subspace. By taking square roots, we obtain the desired inequality.

The inequality is an equality if and only if equality holds in the first line

ô ||PUpvq ´ u||2 “ 0

ô PUpvq “ u.

4. Find a polynomial p with real coefficients and degree at most 5 that approximates
sinpxq as well as possible on the interval r´π, πs, in the sense that

ż π

´π

|sinpxq ´ ppxq|2 dx

is as small as possible.

Hint. Reformulate the problem in order to use exercise 3.

Solution: Let V “ Cpr´π, πs,Rq be the real vector space of real-valued functions
on r´π, πs, and consider its subspace U of polynomial functions defined on r´π, πs

of degree at most 5. We endow V with the scalar product

xf, gy “

ż π

´π

fpxqgpxqdx, for f, g P V.

Now, the problem above can be rephrased as follows: find the element of u of
U that minimizes ||sinpxq ´ u||, where the norm is induced by the scalar pro-
duct above. By exercise 3., this quantity will be minimized by the orthogonal
projection of sinpxq to U . To compute it, we will find an orthonormal basis
C “ tu0, u1, ¨ ¨ ¨ , u5u of U by applying Gram-Schmidt to the standard basis of
U , denoted B “ t1, x, x2, x3, x4, x5u, and we will then use the formula

PUpvq “ xv, u0yu0 ` xv, u1yu1 ` ¨ ¨ ¨ ` xv, u5yu5.

We make the following observation: since sinpxq is odd, the integral of its product
with any even function on r´π, πs vanishes. In particular, the integral of its product
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with even powers of x vanishes. Since odd powers of x are odd functions, we make
the same observation.

This greatly simplifies the exercise! It can easily be shown by induction that only
basis elements ui with odd indices will contribute to the computation of further
basis elements with odd indices when we apply Gram-Schmidt, and similarly if we
replace odd by even. It directly follows that only odd, resp. even, powers of x will
appear in ui’s with odd, resp. even, indices. Hence, we only need to compute the
coefficients xsinpxq, uiy for odd indices.

So, we compute

u1 “

c

3

2π3
x,

u3 “
5

2π7{2

c

7

2

ˆ

x3
´

3π2

5
x

˙

,

u5 “
63

8π11{2

c

11

2

ˆ

x5
´

10

9
π2

ˆ

x3
´

3π2

5
x

˙

´
3π4

7
x

˙

and

PUpsinpxqq “
21

8π10

“

p33p945 ´ 105π2
` π4

qx5
´ 30π2

p1155 ´ 125π2
` π4

qx3

` 5π4
p1485 ´ 153π2

` π4
qx

‰

.

5. Let V “ Cpr´1, 1s,Rq denote the space of continuous real-valued functions on the
interval r´1, 1s with inner product

xf, gy “

ż 1

´1

fpxqgpxqdx,

for f, g P V . Let φ : V Ñ R be the linear functional defined by φpfq “ fp0q. Show
that there does not exist g P V such that

@f P V : φpfq “ xf, gy.

Why is this not a counterexample to Satz 6.5.5. in the notes?

Solution: Suppose for a contradiction that such a g P V exists. Let f0 ” 1 on the
interval r´1, 1s. Then

1 “ f0p0q “ xf0, gy “

ż 1

´1

1 ¨ gpxqdx “

ż 1

´1

gpxqdx.

Hence there exists some x0 P p´1, 1q such that gpx0q ą 0 and, by continuity, there
exists an open interval U0, containing x0, such that gpxq ą 0 on U0. Shrinking U0
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if needed, we might assume that 0 does not belong to the closure of U0. Note that,
by definition, hp0q “ 0.

Define h P V to be a continuous function of r´1, 1s that is strictly positive on a
subinterval U1 of U0 and vanishes everywhere else, e.g. define a piecewise linear
function as done in serie 20, exercise 5.

We observe that

0 “ hp0q “ xh, gy “

ż 1

´1

hpxqgpxqdx “

ż

U1

hpxqgpxq ą 0.

This yields a contradiction and proves that such a g does not exist.

6. Let G “ pV,Eq be a finite directed graph. More precisely, let V be a finite set, and
let E Ď tpvinit, vtermq | vinit, vterm P V ^vinit ‰ vtermu Ď V ˆV . We think of V as the
set of vertices of the graph, and of the pair pvinit, vtermq P E as the directed edge
connecting vinit P V to vterm P V (this can be represented by drawing an arrow
pointing towards vterm on the said edge).

Example of a directed graph.

1 2

34

5

We also define the vector spaces RV “ tf : V Ñ Ru and RE “ tφ : E Ñ Ru,
which we equip with the inner products

xf1, f2yV “
ÿ

vPV

f1pvqf2pvq, f1, f2 P RV

xφ1, φ2yE “
ÿ

ePE

φ1peqφ2peq, φ1, φ2 P RE.

Also define T : RV Ñ RE as the “combinatorial derivative”: for f P RV and
e “ pvinit, vtermq P E, let

T pfqpeq “ fpvtermq ´ fpvinitq.

Also define S : RE Ñ RV by

Spφqpvq “
ÿ

vinitPV
pvinit,vqPE

φppvinit, vqq ´
ÿ

vtermPV
pv,vtermqPE

φppv, vtermqq.

(a) Show that T ˚ “ S and calculate T ˚ ˝ T “ S ˝ T , which is also called the
combinatorial Laplacian of G.
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(b) Now simplify the setup by assuming that the graph is undirected, i.e.

pvinit, vtermq P E ô pvterm, vinitq P E,

and d-regular (for any v P V there are exactly d vertices vterm P V with
pv, vtermq P E). Show that T ˚ ˝ T admits 0 as an eigenvalue. Explain why the
geometric multiplicity of 0 is related to the connectivity of G.

Solution:

(a) For a given edge e P E, let us denote ep1q and ep2q the unique vertices such
that e “ pep1q, ep2qq. For f P RV and φ P RE, we compute that

xf, SpφqyV “
ÿ

vPV

fpvqSpφqpvq

“
ÿ

vPV

fpvq

»

—

—

–

ÿ

vinitPV
pvinit,vqPE

φppvinit, vqq ´
ÿ

vPV
pv,vtermqPE

φppv, vtermqq

fi

ffi

ffi

fl

“
ÿ

vPV

fpvq
ÿ

vinitPV
pvinit,vqPE

φppvinit, vqq ´
ÿ

vPV

fpvq
ÿ

vPV
pv,vtermqPE

φppv, vtermqq

“
ÿ

ePE

ÿ

vPV
v“ep2q

fpvqφpeq ´
ÿ

ePE

ÿ

vPV
v“ep1q

fpvqφpeq

Since ep1q and ep2q are unique for a fixed e P E, the last line equals
ÿ

ePE

fpep2q
qφpeq ´

ÿ

ePE

fpep1q
qφpeq “

ÿ

ePE

pfpep2q
q ´ fpep1q

qqφpeq

“
ÿ

ePE

T pfqpeqφpeq

“ xTf, φyE.

By definition of the adjoint map, this shows that T ˚ “ S.

We have

SpT pfqqpvq “
ÿ

vinitPV
pvinit,vqPE

T pfqppvinit, vqq ´
ÿ

vtermPV
pv,vtermqPE

T pfqppv, vtermqq

“
ÿ

vinitPV
pvinit,vqPE

rfpvq ´ fpvinitqs ´
ÿ

vtermPV
pv,vtermqPE

rfpvtermq ´ fpvqs

“ Evfpvq ´
ÿ

vinitPV
pvinit,vqPE

fpvinitq ´
ÿ

vtermPV
pv,vtermqPE

fpvtermq

“ Evfpvq ´
ÿ

wPV
w is a neighbour of v

fpwq.
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where Ev is the number of edges that touch v.

(b) To solve this question, it is preferable to work with the matrix representation
of the combinatorial Laplacian T ˚ ˝ T P EndpRV q. Let us label the vertices
of V in an arbitrary order as v1, . . . , vn. We note that the set characteristic
functions

B :“ t1x“vipxq P RV
| i “ 1, . . . , nu

such that

1x“vipxq “

"

1, x “ vi
0, otherwise

forms an orthonormal basis of pRV , x¨, ¨yV q. Hence a matrix representation of
T ˚ ˝ T will be a square matrix of size n ˆ n whose rows, resp. columns, are
indexed by v1, . . . , vn, resp. 1x“v1 , . . . ,1x“vn , in this order.

Let v P V be arbitrary vertex . We denote Npvq the set of vertices adjacent
to v and compute that

pT ˚
˝ T qp1x“vqpxq

“
ÿ

vinitPV
pvinit,xqPE

r1x“vpxq ´ 1x“vpvinitqs ´
ÿ

vtermPV
px,vtermqPE

r1x“vpvtermq ´ 1x“vpxqs

“
ÿ

wPNpxq

r1x“vpxq ´ 1x“vpwqs ´
ÿ

wPNpxq

r1x“vpwq ´ 1x“vpxqs

“ 2d1x“vpxq ´ 2
ÿ

wPNpxq

1x“vpxq

“

"

2d, x “ v
´2, x P Npvq

Note that the factor 2 comes from the fact that we are not working in a
directed graph anymore. The elements of rT ˚ ˝T sBB can therefore be described
as follows:

prT ˚
˝ T s

B
Bqi,j “

"

2d, i “ j
´2, vi P Npvjq

Note that the matrix we just computed is symmetric. We easily see that
the constant function mapping every vertex to 1, and represented by the
coordinate vector p1, 1, ¨ ¨ ¨ , 1qT , is in the kernel of pT ˚ ˝ T q. Thereupon, it is
an eigenfunction of the Laplacian with eigenvalue 0.

We claim that the relation between the multiplicity of 0 as an eigenvalue of
the Laplacian and the connectivity of G goes as follows:

Proposition. If G has k connected components, then 0 has multiplicity k as
an eigenvalue of the Laplacian of G.
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Beweis. Denote Ω1, . . . ,Ωk the connected components of the graph G. For
j P t1, . . . , ku, let 1Ωj

pxq P RV denote the characteristic function of Ωj. Since
connected components are mutually disjoint, you can easily prove that these
functions form a linearly independent subset of RV . We now show that every
1Ωj

pxq is an eigenfunction of T ˚ ˝ T with eigenvalue 0. We have

pT ˚
˝ T qp1Ωj

qpxq “ ´2d1Ωj
pxq ´ 2

ÿ

wPNpxq

1Ωj
pwq.

Now, if x P Ωj, this vanishes since neighbours share the same connected
component. On the other hand, if x R Ωj, both terms in the RHS above
vanish for the same reason. Hence pT ˚ ˝ T qp1Ωj

qpxq “ 0 for all x P V . This
shows that 0 has multiplicativity at least k.

Now assume for a contradiction that f P RV is not spanned by tΩj | j P

t1, . . . , kuu, i.e. assume that f isn’t constant on any connected component of
G, but that it is an eigenfunction of T ˚ ˝ T with eigenvalue 0. Then

0 “ xpT ˚
˝ T qpfq, fyV “ xTf, TfyE “

ÿ

ePE

pTfpeqq
2

“
ÿ

ePE

pfpep2q
q ´ fpep1q

qq
2.

This implies fpep2qq ´ fpep1qq “ 0, @e P E, and therefore that f is constant
on the endpoints of any edge of G. This in turn implies that f is constant on
connected components of G, which is a contradiction.
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Single Choice. In each exercise, exactly one answer is correct.

1. For which x P C is the matrix A :“

ˆ

x ´x
x x

˙

unitary?

(a) For all x P C with |x|2 “ 1
2
.

(b) Exactly for x “ 1?
2
.

(c) For all x P C with x “ ´x.

(d) For x “ 0.

Erklärung : We compute AA˚ “
`

2xx 0
0 2xx

˘

“ 2 ¨ |x|2 ¨ I2; so (a) holds.

2. Which set is a subspace of the C-vector space MnˆnpCq?

(a) The set of unitary n ˆ n matrices.

(b) The set of self-adjoint n ˆ n matrices.

(c) The set of symmetric n ˆ n matrices.

(d) The set of normal n ˆ n matrices.

Erklärung : For all symmetric matrices A and B and complex numbers λ, it holds
that pλA ` BqT “ λAT ` BT “ λA ` B; hence, (c) is correct. However, the 1 ˆ 1
matrix A :“ p1q is unitary and self-adjoint, but its multiple 2iA “ p2iq is neither;
therefore, (a) and (b) are false. Finally, in general, the sum of two normal matrices
is not normal.
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Multiple Choice Fragen

1. Let A be a Hermitian matrix. Which statements are correct?

(a) TrpAq P R.

(b) detpAq P R.

Explanation:

(a) We have aii “ aii P R, therefore trA “
ř

aii P R.

(b) detA “ det
´

AT
¯

“ detpAT q “ detA P R. Aliter: The eigenvalues λi of A

are real. Therefore detpAq “
ś

λi is also real. Hence trA “
ř

λi.
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