Musterlösung Serie 22

Self-adjoint operators, Spectral theory

1. Let K be a field and let $(V,\langle\cdot, \cdot\rangle)$ be an inner product finite-dimensional K-vector space. Suppose that $T \in \operatorname{End}(V)$ and that U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^{*}.
Solution: Assume that U is invariant under T. Then, for any $u \in U$, for any $w \in U^{\perp}$,

$$
0=\langle T u, w\rangle=\left\langle u, T^{*} w\right\rangle
$$

Hence for all $w \in U^{\perp}, T^{*} w \in U^{\perp}$.
Conversely, assume that U^{\perp} is invariant under T^{*}. Let $w \in U^{\perp}$ and let $u \in U$. We have

$$
0=\left\langle u, T^{*} w\right\rangle=\langle T u, w\rangle
$$

Hence, for all $u \in U, T u \in\left(U^{\perp}\right)^{\perp}=U$. Here we used that V is finite-dimensional.
2. Let f, g_{1}, and g_{2} be endomorphisms of a finite-dimensional Euclidean vector space such that

$$
f^{*} \circ f \circ g_{1}=f^{*} \circ f \circ g_{2} .
$$

Prove that $f \circ g_{1}=f \circ g_{2}$.
Lösung: For all $v, w \in V$, we have

$$
\begin{aligned}
\left\langle f(v), f\left(\left(g_{1}-g_{2}\right)(w)\right)\right\rangle & =\left\langle v, f^{*} \circ f\left(\left(g_{1}-g_{2}\right)(w)\right)\right\rangle \\
& =\left\langle v,\left(f^{*} \circ f \circ g_{1}-f^{*} \circ f \circ g_{2}\right)(w)\right\rangle \\
& =0 .
\end{aligned}
$$

With $v:=\left(g_{1}-g_{2}\right)(w)$, it follows for all $w \in V$

$$
\left\|f\left(\left(g_{1}-g_{2}\right)(w)\right)\right\|^{2}=0
$$

and hence $f\left(\left(g_{1}-g_{2}\right)(w)\right)=0$ and thus $\left(f \circ g_{1}\right)(w)=\left(f \circ g_{2}\right)(w)$.
3. Let V be a finite-dimensional unitary vector space and let $T \in \operatorname{End}(V)$ be a normal operator. For a subspace $W \subseteq V$, we denote P_{W} the orthogonal projection onto W.
(a) Show the following:

Theorem. There exist finitely many complex numbers $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$, and mutually orthogonal subspaces of V denoted W_{1}, \ldots, W_{k} such that

$$
T=\lambda_{1} P_{W_{1}}+\cdots+\lambda_{k} P_{W_{k}} .
$$

(b) Show that for any subspace U of V, P_{U} is self-adjoint.

Solution:

(a) By the spectral theorem for unitary vector spaces, T is orthogonally diagonalisable. For $j=1, \ldots, k$, denote λ_{j} the eigenvalues of T, and let $\mathcal{B}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis of eigenvectors of T such that for integers $1 \leqslant \ell_{1}<\ell_{2}<\cdots<\ell_{k}=n$, we have

$$
\begin{aligned}
& \operatorname{Eig}_{T}\left(\lambda_{1}\right)=\operatorname{Sp}\left(v_{1}, \ldots, v_{\ell_{1}}\right), \\
& \operatorname{Eig}_{T}\left(\lambda_{j}\right)=\operatorname{Sp}\left(v_{\ell_{j-1}+1}, \ldots, v_{\ell_{j}}\right), \quad j=2, \ldots, k
\end{aligned}
$$

We show that setting $W_{j}=\operatorname{Eig}_{T}\left(\lambda_{j}\right)$ for $j=1, \ldots, k$ proves the theorem.
Indeed, since \mathcal{B} is an orthogonal basis, the W_{j} 's are automatically mutually orthogonal. Now consider $v \in V$ with $v=\sum_{i=1}^{n} a_{i} v_{i}$. We compute that

$$
\begin{aligned}
T(v) & =T\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \\
& =\sum_{i=1}^{\ell_{1}} a_{i} T\left(v_{i}\right)+\cdots+\sum_{i=1}^{\ell_{k}} a_{i} T\left(v_{i}\right) \\
& =\lambda_{1} \sum_{i=1}^{\ell_{1}} a_{i} v_{i}+\cdots+\lambda_{k} \sum_{i=\ell_{k-1}+1}^{\ell_{k}} a_{i} v_{i} .
\end{aligned}
$$

To conclude, note that, since \mathcal{B} is orthonormal, we have $a_{i}=\left\langle v, v_{i}\right\rangle$. Hence each of the sums in the last line above equals $\lambda_{j} P_{W_{j}}(v)$, for $j \in\{1, \ldots, k\}$. This shows the desired equality.
(b) Let $\left\{u_{1}, \ldots, u_{r}\right\}$ be an orthonormal basis of U. We have $P_{U}^{*}=P_{U}$ if and only if for all $v, w \in V$ we have

$$
\left\langle P_{U}(v), w\right\rangle=\left\langle v, P_{U}(w)\right\rangle .
$$

We compute that

$$
\begin{aligned}
\left\langle v, P_{U}(w)\right\rangle & =\left\langle v, \sum_{i=1}^{r}\left\langle w, u_{i}\right\rangle w\right\rangle \\
& =\sum_{i=1}^{r} \overline{\left\langle w, u_{i}\right\rangle}\left\langle v, u_{1}\right\rangle \\
& =\left\langle\sum_{i=1}^{r}\left\langle v, u_{i}\right\rangle u_{i}, w\right\rangle \\
& =\left\langle P_{U}(v), w\right\rangle
\end{aligned}
$$

4. Make $\mathbb{R}[x]_{2}$ into an inner product space by defining

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Define $T \in \operatorname{End}\left(\mathbb{R}[x]_{2}\right)$ by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{1} x$.
(a) Show that T is not self-adjoint.
(b) The matrix of T with respect to the basis $\left(1, x, x^{2}\right)$ is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Solution:

(a) If T were self-adjoint, we would have

$$
\langle T p, q\rangle=\left\langle p, T^{*} q\right\rangle=\langle p, T q\rangle .
$$

However, let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $q(x)=b_{0}+b_{1} x+b_{2} x^{2}$. We have

$$
\begin{aligned}
\langle T p, q\rangle & =\left\langle a_{1} x, q\right\rangle \\
& =a_{1} \int_{0}^{1} b_{0} x+b_{1} x^{2}+b_{2} x^{3} d x \\
& =\left.a_{1}\left(\frac{b_{0}}{2} x^{2}+\frac{b_{1}}{3} x^{3}+\frac{b_{2}}{4} x^{4}\right)\right|_{0} ^{1} \\
& =a_{1}\left(\frac{b_{0}}{2}+\frac{b_{1}}{3}+\frac{b_{2}}{4}\right)
\end{aligned}
$$

Similarly

$$
\langle p, T q\rangle=\left\langle p, b_{1} x\right\rangle=b_{1}\left(\frac{a_{0}}{2}+\frac{a_{1}}{3}+\frac{a_{2}}{4}\right)
$$

Thus, taking $a_{1}=0$ and $b_{1}, a_{0}, a_{2}>0$ clearly shows $\langle T p, q\rangle \neq\langle p, T q\rangle$.
(b) You have seen in the lectures that an endomorphism T of a real vector space with inner product $(V,\langle\cdot, \cdot\rangle)$ is orthogonally diagonalizable if and only if it is self-adjoint. The above does not contradict the forward implication since the basis $\left\{1, x, x^{2}\right\}$ is not an orthogonal basis of $\mathbb{R}[x]_{2}$ with respect to the inner product defined above.
5. Let $f: V \rightarrow W$ be a homomorphism of euclidian vector spaces.
(a) Assume that $\operatorname{dim}(V)<\infty$. Show that the adjoint of f exists in the following sense: show that there exists a unique map $f^{\prime}: W \rightarrow V$ such that

$$
\text { for all } v \in V \text {, for all } w \in W:\langle f(v), w\rangle=\left\langle v, f^{\prime}(w)\right\rangle \text {. }
$$

(b) Does the statement still hold if instead of assuming $\operatorname{dim}(V)<\infty$ we assume that $\operatorname{dim}(W)<\infty$?

Lösung:

(a) For a linear map $f: V \rightarrow W$, with V assumed to be finite-dimensional, the adjoint of f has been defined in the lectures as the map

$$
\begin{aligned}
f^{*}: W^{*} & \rightarrow V^{*} \\
\varphi & \mapsto \varphi \circ f
\end{aligned}
$$

You have also seen that there exist linear maps

$$
\begin{aligned}
& \Phi: V \rightarrow \quad V^{*} \\
& v \mapsto \quad \varphi_{v} \text { s.t. } \varphi_{v}\left(v^{\prime}\right)=\left\langle v^{\prime}, v\right\rangle \text { for all } v^{\prime} \in V \\
& \Psi: W \rightarrow \quad W^{*} \\
& w \mapsto \psi_{w} \text { s.t. } \psi_{w}\left(w^{\prime}\right)=\left\langle w^{\prime}, w\right\rangle \text { for all } w^{\prime} \in W
\end{aligned}
$$

and that Φ is an isomorphism between V and V^{*} since V is finite-dimensional. We define $f^{\prime}=\Phi^{-1} \circ f^{*} \circ \Psi$, as illustrated in the following diagram

Now, we compute that for any $w \in W$,

$$
\begin{aligned}
f^{\prime}(w)=\left(\Phi^{-1} \circ f^{*} \circ \Psi\right)(w) & =\left(\Phi^{-1} \circ f^{*}\right)\left(\psi_{w}\right) \\
& =\Phi^{-1}\left(\psi_{w} \circ f\right) \\
& =v_{0},
\end{aligned}
$$

where $v_{0} \in V$ is such that for all $v \in V$,

$$
\left\langle v, v_{0}\right\rangle=\varphi_{v_{0}}(v)=\left(\psi_{w} \circ f\right)(v)=\langle f(v), w\rangle,
$$

i.e. $\left\langle v, f^{\prime}(w)\right\rangle=\langle f(v), w\rangle$.

Assume that another such map $h: W \rightarrow V$ exists. Then, for all $v \in V$, for all $w \in W$,

$$
\left\langle v, f^{\prime}(w)\right\rangle=\langle f(v), w\rangle=\langle v, h(w)\rangle,
$$

which implies $f^{\prime}(w)=h(w)$.
(b) No. For a counterexample let I be any infinite set and consider $V:=\mathbb{R}^{(I)}$ endowed with the scalar product

$$
\langle\underline{x}, \underline{y}\rangle:=\sum_{i \in I} x_{i} y_{i} .
$$

This space has the orthonormal basis $\left\{\underline{e_{i}} \mid i \in I\right\}$ with $\underline{e_{i}}=\left(\delta_{i j}\right)_{j}$. Let $W:=\mathbb{R}$ with the standard scalar product $\langle u, v\rangle:=u v$, and consider the homomorphism

$$
f: V \rightarrow W, \quad \underline{x} \mapsto \sum_{i \in I} x_{i} .
$$

Assume that its adjoint $f^{*}: W \rightarrow V$ exists. Then $f^{*}(1)=\left(x_{i}\right)_{i \in I}$ with almost all $x_{i}=0$. For every i we have

$$
x_{i}=\left\langle\underline{e_{i}},\left(x_{i}\right)_{i}\right\rangle=\left\langle\underline{e_{i}}, f^{*}(1)\right\rangle=\left\langle f\left(\underline{e_{i}}\right), 1\right\rangle=\langle 1,1\rangle=1 .
$$

Together, this is a contraditction; hence f^{*} does not exist.
6. Consider the vector space V consisting of all infinitely differentiable periodic functions from \mathbb{R} to \mathbb{R} with period 2π, equipped with the inner product

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) g(x) d x
$$

Let $D: V \rightarrow V$ be the linear transformation defined by $D(f)=\frac{d f}{d x}$.
(a) Is D self-adjoint? Determine its adjoint if it exists.
(b) Is $\Delta:=-D \circ D$ self-adjoint?
(c) Let $U \subset V$ be the linear span of the functions

$$
\{x \mapsto \cos (n x) \mid n \in \mathbb{Z}\} \cup\{x \mapsto \sin (n x) \mid n \in \mathbb{Z}\}
$$

with the induced inner product from V. Find an orthonormal basis of U consisting of eigenvectors of $\left.\Delta\right|_{U}$ and the multiplicities of all eigenvalues.

Lösung:

(a) Partial integration yields

$$
\langle D f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d f}{d x} g d x=\left.\frac{1}{2 \pi} f g\right|_{0} ^{2 \pi}-\frac{1}{2 \pi} \int_{0}^{2 \pi} f \frac{d g}{d x} d x=-\langle f, D g\rangle
$$

for all f, g, hence $D^{*}=-D \neq D$. Therefore D is not self adjoint.
(b) Assertion (a) and exercise 6 (a) of Serie 22 yield

$$
\Delta^{*}=-D^{*} \circ D^{*}=-(-D) \circ(-D)=\Delta,
$$

and hence Δ is self adjoint.
(c) For every $n \neq 0$ set $c_{n}(x):=\sqrt{2} \cos (n x)$ and $s_{n}(x):=\sqrt{2} \sin (n x)$. Moreover set $c_{0}(x):=1$ and $s_{0}(x):=0$.
Claim: The set

$$
B:=\left\{c_{n} \mid n \geqslant 0\right\} \cup\left\{s_{n} \mid n \geqslant 1\right\}
$$

is an orthonormal basis of U consisting of eigenvectors of Δ.
Proof: Since $\sin (-n x)=-\sin (n x)$ and $\cos (-n x)=\cos (n x)$ hold for all $n \geqslant 1$ and $s_{0}=0$, we have that B generates U. The usual derivation rules for trigometric functions imply that for all $n \geqslant 0$, we have

$$
\Delta s_{n}=n^{2} s_{n} \quad \text { and } \quad \Delta c_{n}=n^{2} c_{n}
$$

Hence all elements of B are eigenvectors of Δ.
Next, we show that these are pairwise orthogonal. To see this, we compute for all $n, m \geqslant 0$ using that Δ ist self adjoint:
$n^{2}\left\langle s_{n}, s_{m}\right\rangle=\left\langle n^{2} s_{n}, s_{m}\right\rangle=\left\langle\Delta s_{n}, s_{m}\right\rangle \stackrel{!}{=}\left\langle s_{n}, \Delta s_{m}\right\rangle=\left\langle s_{n}, m^{2} s_{m}\right\rangle=m^{2}\left\langle s_{n}, s_{m}\right\rangle$.
For $n \neq m$ this yields $\left\langle s_{n}, s_{m}\right\rangle=0$. Analogous computations show $\left\langle s_{n}, c_{m}\right\rangle=$ $\left\langle c_{n}, s_{m}\right\rangle=\left\langle c_{n}, c_{m}\right\rangle=0$ for all $n \neq m$. (All of this can also be proved by direct computation of the integrals.) Moreover, we can for all $n \geqslant 1$ insert the formulas

$$
\begin{aligned}
\cos ^{2}(n x) & =\frac{\cos (2 n x)+1}{2} \\
\sin ^{2}(n x) & =1-\cos ^{2}(n x)=\frac{1-\cos ^{2}(2 n x)}{2} \\
\sin (n x) \cos (n x) & =\frac{1}{2} \sin (2 n x),
\end{aligned}
$$

into the relevant integrals and compute

$$
\left\langle s_{n}, s_{n}\right\rangle=1, \quad\left\langle s_{n}, c_{n}\right\rangle=0, \quad\left\langle c_{n}, c_{n}\right\rangle=1
$$

Even simpler, we compute

$$
\left\langle c_{0}, c_{0}\right\rangle=1, \quad\left\langle c_{0}, s_{n}\right\rangle=0, \quad\left\langle c_{0}, c_{n}\right\rangle=0
$$

for all $n \geqslant 1$. Together this shows that B is an orthonormal system. As ist generates U it is an orthonormal basis of U.
Together, we see that B is an orthonormal basis of U consisting of eigenvectors of Δ. Every eigenspace of $\left.\Delta\right|_{U}$ thus is generated by vectors of B. We conclude that $\left.\Delta\right|_{U}$ has eigenvalues

$$
0,1,4,9,16, \ldots, n^{2}, \ldots
$$

with respective multiplicities $1,2,2,2, \ldots$.

Multiple Choice Fragen

1. Let A and B be complex self-adjoint $n \times n$ matrices, and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
(a) $A+B$ is self-adjoint.
(b) λA is self-adjoint.
(c) λA is normal.

Explanation:

(a) $(A+B)^{*}=A^{*}+B^{*}=A+B$.
(b) With $\lambda=i$ we have that $(i A)^{*}=-i A^{*}=-i A$ is not self adjoint.
(c) Let $B=\lambda A$. Then $B^{*} B=\bar{\lambda} A^{*} \lambda A=|\lambda|^{2} A A=B B^{*}$.
2. Let A, B be complex self-adjoint $n \times n$ matrices and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
(a) $A B$ is self-adjoint.
(b) $A B+B A$ is self-adjoint.
(c) $A B-B A$ is normal.
(d) $A B A$ is self-adjoint.

Explanation:

(a) $(A B)^{*}=B^{*} A^{*}=B A$. Ein Gegenbeispiel ist: $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$.
(b) $(A B+B A)^{*}=B^{*} A^{*}+A^{*} B^{*}=B A+A B$.
(c) $(A B-B A)^{*}=B^{*} A^{*}-A^{*} B^{*}=-(A B-B A)$. Also:

$$
(A B-B A)^{*}(A B-B A)=(A B-B A)(A B-B A)^{*}=-(A B-B A)^{2}
$$

(d) $(A B A)^{*}=A^{*} B^{*} A^{*}=A B A$.
3. Let A be a normal matrix and $p \in \mathbb{C}[t]$ be a polynomial. Which of the following statements hold?
(a) $p(A)^{*}=p\left(A^{*}\right)$.
(b) $A^{i}\left(A^{*}\right)^{j}=\left(A^{*}\right)^{j} A^{i}$.
(c) $p(A)$ is normal.
(d) Every eigenvalue λ of A is also an eigenvalue of $p(A)$.
(e) Every eigenvector v of A is also an eigenvector of $p(A)$.

Explanation:

(a) Wrong. $(\lambda A)^{*}=\bar{\lambda} A^{*}$. If $p(t)=\sum a_{i} t^{i}$, we have $p(A)^{*}=\sum \overline{a_{i}}\left(A^{*}\right)^{i}$.
(b) True. We have $A A^{*}=A^{*} A$. Induction yields:

$$
A^{i}\left(A^{*}\right)^{j}=A^{i-1} A^{*} A\left(A^{*}\right)^{j-1}=\ldots=A^{i-1}\left(A^{*}\right)^{j} A=\ldots=\left(A^{*}\right)^{j} A^{i} .
$$

(c) True. Die $a_{i} A^{i}(i \geqslant 0)$ are normal and hence also their sum.
(d) Wrong. A counterexample is $A=0, p(t)=1$, then $p(A)=1$, which does not have 0 as eigenvalues.
(e) True. $p(A) v=\sum a_{i} A^{i} v=\sum a_{i} \lambda^{i} v=p(\lambda) v$.

Note. Let $\left(v_{i}\right)$ be an orthonormal basis of eigenvectors corresponding to the eigenvalues λ_{i} of A, then $\left(v_{i}\right)$ is an orthonormalbasis of eigenvectors to the eigenvalues $p\left(\lambda_{i}\right)$ of $p(A)$.

