Musterlösung Serie 22

Self-adjoint operators, Spectral theory

1. Let K be a field and let $(V, \langle \cdot, \cdot \rangle)$ be an inner product finite-dimensional K-vector space. Suppose that $T \in \text{End}(V)$ and that U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Solution: Assume that U is invariant under T. Then, for any $u \in U$, for any $w \in U^{\perp}$,

$$0 = \langle Tu, w \rangle = \langle u, T^*w \rangle.$$

Hence for all $w \in U^{\perp}$, $T^*w \in U^{\perp}$.

Conversely, assume that U^{\perp} is invariant under T^* . Let $w \in U^{\perp}$ and let $u \in U$. We have

$$0 = \langle u, T^*w \rangle = \langle Tu, w \rangle.$$

Hence, for all $u \in U$, $Tu \in (U^{\perp})^{\perp} = U$. Here we used that V is finite-dimensional.

2. Let f, g_1 , and g_2 be endomorphisms of a finite-dimensional Euclidean vector space such that

$$f^* \circ f \circ g_1 = f^* \circ f \circ g_2.$$

Prove that $f \circ g_1 = f \circ g_2$.

Lösung: For all $v, w \in V$, we have

$$\left\langle f(v), f\left((g_1 - g_2)(w)\right) \right\rangle = \left\langle v, f^* \circ f\left((g_1 - g_2)(w)\right) \right\rangle$$

= $\left\langle v, (f^* \circ f \circ g_1 - f^* \circ f \circ g_2)(w) \right\rangle$
= 0.

With $v := (g_1 - g_2)(w)$, it follows for all $w \in V$

$$||f((g_1 - g_2)(w))||^2 = 0$$

and hence $f((g_1 - g_2)(w)) = 0$ and thus $(f \circ g_1)(w) = (f \circ g_2)(w)$.

- 3. Let V be a finite-dimensional unitary vector space and let $T \in \text{End}(V)$ be a normal operator. For a subspace $W \subseteq V$, we denote P_W the orthogonal projection onto W.
 - (a) Show the following:

Theorem. There exist finitely many complex numbers $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$, and mutually orthogonal subspaces of V denoted W_1, \ldots, W_k such that

$$T = \lambda_1 P_{W_1} + \dots + \lambda_k P_{W_k}.$$

(b) Show that for any subspace U of V, P_U is self-adjoint.

Solution:

(a) By the spectral theorem for unitary vector spaces, T is orthogonally diagonalisable. For j = 1, ..., k, denote λ_j the eigenvalues of T, and let $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ be an orthonormal basis of eigenvectors of T such that for integers $1 \leq \ell_1 < \ell_2 < \cdots < \ell_k = n$, we have

$$\operatorname{Eig}_{T}(\lambda_{1}) = \operatorname{Sp}(v_{1}, \dots, v_{\ell_{1}}),$$

$$\operatorname{Eig}_{T}(\lambda_{j}) = \operatorname{Sp}(v_{\ell_{j-1}+1}, \dots, v_{\ell_{j}}), \quad j = 2, \dots, k.$$

We show that setting $W_j = \operatorname{Eig}_T(\lambda_j)$ for $j = 1, \ldots, k$ proves the theorem. Indeed, since \mathcal{B} is an orthogonal basis, the W_j 's are automatically mutually orthogonal. Now consider $v \in V$ with $v = \sum_{i=1}^n a_i v_i$. We compute that

$$T(v) = T\left(\sum_{i=1}^{n} a_{i}v_{i}\right)$$

= $\sum_{i=1}^{\ell_{1}} a_{i}T(v_{i}) + \dots + \sum_{i=1}^{\ell_{k}} a_{i}T(v_{i})$
= $\lambda_{1}\sum_{i=1}^{\ell_{1}} a_{i}v_{i} + \dots + \lambda_{k}\sum_{i=\ell_{k-1}+1}^{\ell_{k}} a_{i}v_{i}.$

To conclude, note that, since \mathcal{B} is orthonormal, we have $a_i = \langle v, v_i \rangle$. Hence each of the sums in the last line above equals $\lambda_j P_{W_j}(v)$, for $j \in \{1, \ldots, k\}$. This shows the desired equality.

(b) Let $\{u_1, \ldots, u_r\}$ be an orthonormal basis of U. We have $P_U^* = P_U$ if and only if for all $v, w \in V$ we have

$$\langle P_U(v), w \rangle = \langle v, P_U(w) \rangle.$$

We compute that

$$\langle v, P_U(w) \rangle = \left\langle v, \sum_{i=1}^r \langle w, u_i \rangle w \right\rangle$$

$$= \sum_{i=1}^r \overline{\langle w, u_i \rangle} \langle v, u_1 \rangle$$

$$= \left\langle \sum_{i=1}^r \langle v, u_i \rangle u_i, w \right\rangle$$

$$= \left\langle P_U(v), w \right\rangle.$$

4. Make $\mathbb{R}[x]_2$ into an inner product space by defining

$$\langle p,q \rangle = \int_0^1 p(x)q(x)dx$$

Define $T \in \text{End}(\mathbb{R}[x]_2)$ by $T(a_0 + a_1x + a_2x^2) = a_1x$.

- (a) Show that T is not self-adjoint.
- (b) The matrix of T with respect to the basis $(1, x, x^2)$ is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

Solution:

(a) If T were self-adjoint, we would have

$$\langle Tp,q\rangle = \langle p,T^*q\rangle = \langle p,Tq\rangle.$$

However, let $p(x) = a_0 + a_1 x + a_2 x^2$ and $q(x) = b_0 + b_1 x + b_2 x^2$. We have

$$\langle Tp,q \rangle = \langle a_1 x,q \rangle$$

= $a_1 \int_0^1 b_0 x + b_1 x^2 + b_2 x^3 dx$
= $a_1 \left(\frac{b_0}{2} x^2 + \frac{b_1}{3} x^3 + \frac{b_2}{4} x^4 \right) \Big|_0^1$
= $a_1 \left(\frac{b_0}{2} + \frac{b_1}{3} + \frac{b_2}{4} \right) .$

Similarly

$$\langle p, Tq \rangle = \langle p, b_1 x \rangle = b_1 \left(\frac{a_0}{2} + \frac{a_1}{3} + \frac{a_2}{4} \right)$$

Thus, taking $a_1 = 0$ and $b_1, a_0, a_2 > 0$ clearly shows $\langle Tp, q \rangle \neq \langle p, Tq \rangle$.

- (b) You have seen in the lectures that an endomorphism T of a real vector space with inner product $(V, \langle \cdot, \cdot \rangle)$ is orthogonally diagonalizable if and only if it is self-adjoint. The above does not contradict the forward implication since the basis $\{1, x, x^2\}$ is not an orthogonal basis of $\mathbb{R}[x]_2$ with respect to the inner product defined above.
- 5. Let $f: V \to W$ be a homomorphism of euclidian vector spaces.
 - (a) Assume that $\dim(V) < \infty$. Show that the adjoint of f exists in the following sense: show that there exists a unique map $f': W \to V$ such that

for all $v \in V$, for all $w \in W : \langle f(v), w \rangle = \langle v, f'(w) \rangle$.

(b) Does the statement still hold if instead of assuming $\dim(V) < \infty$ we assume that $\dim(W) < \infty$?

Lösung:

(a) For a linear map $f: V \to W$, with V assumed to be finite-dimensional, the adjoint of f has been defined in the lectures as the map

$$\begin{array}{rcccc} f^*: & W^* & \to & V^* \\ & \varphi & \mapsto & \varphi \circ f \end{array}$$

You have also seen that there exist linear maps

$$\begin{split} \Phi : & V &\to & V^* \\ & v &\mapsto & \varphi_v \text{ s.t. } \varphi_v(v') = \langle v', v \rangle \text{ for all } v' \in V \\ \Psi : & W &\to & W^* \\ & w &\mapsto & \psi_w \text{ s.t. } \psi_w(w') = \langle w', w \rangle \text{ for all } w' \in W \end{split}$$

and that Φ is an isomorphism between V and V^{*} since V is finite-dimensional. We define $f' = \Phi^{-1} \circ f^* \circ \Psi$, as illustrated in the following diagram

$$\begin{array}{ccc} W^* & \stackrel{f^*}{\longrightarrow} & V^* \\ \Psi \uparrow & & & \downarrow \Phi^{-1} \\ W & & V \end{array}$$

Now, we compute that for any $w \in W$,

$$f'(w) = (\Phi^{-1} \circ f^* \circ \Psi)(w) = (\Phi^{-1} \circ f^*)(\psi_w) = \Phi^{-1}(\psi_w \circ f) = v_0,$$

where $v_0 \in V$ is such that for all $v \in V$,

$$\langle v, v_0 \rangle = \varphi_{v_0}(v) = (\psi_w \circ f)(v) = \langle f(v), w \rangle,$$

i.e. $\langle v, f'(w) \rangle = \langle f(v), w \rangle$.

Assume that another such map $h: W \to V$ exists. Then, for all $v \in V$, for all $w \in W$,

$$\langle v, f'(w) \rangle = \langle f(v), w \rangle = \langle v, h(w) \rangle,$$

which implies f'(w) = h(w).

(b) No. For a counterexample let I be any infinite set and consider $V := \mathbb{R}^{(I)}$ endowed with the scalar product

$$\langle \underline{x}, \underline{y} \rangle := \sum_{i \in I} x_i y_i.$$

This space has the orthonormal basis $\{\underline{e}_i \mid i \in I\}$ with $\underline{e}_i = (\delta_{ij})_j$. Let $W := \mathbb{R}$ with the standard scalar product $\langle u, v \rangle := uv$, and consider the homomorphism

$$f: V \to W, \quad \underline{x} \mapsto \sum_{i \in I} x_i.$$

Assume that its adjoint $f^* \colon W \to V$ exists. Then $f^*(1) = (x_i)_{i \in I}$ with almost all $x_i = 0$. For every *i* we have

$$x_i = \langle \underline{e_i}, (x_i)_i \rangle = \langle \underline{e_i}, f^*(1) \rangle = \langle f(\underline{e_i}), 1 \rangle = \langle 1, 1 \rangle = 1.$$

Together, this is a contradiction; hence f^* does not exist.

6. Consider the vector space V consisting of all infinitely differentiable periodic functions from \mathbb{R} to \mathbb{R} with period 2π , equipped with the inner product

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)g(x)dx.$$

Let $D: V \to V$ be the linear transformation defined by $D(f) = \frac{df}{dx}$.

- (a) Is D self-adjoint? Determine its adjoint if it exists.
- (b) Is $\Delta := -D \circ D$ self-adjoint?

(c) Let $U \subset V$ be the linear span of the functions

 $\{x \mapsto \cos(nx) \mid n \in \mathbb{Z}\} \cup \{x \mapsto \sin(nx) \mid n \in \mathbb{Z}\},\$

with the induced inner product from V. Find an orthonormal basis of U consisting of eigenvectors of $\Delta|_U$ and the multiplicities of all eigenvalues.

Lösung:

(a) Partial integration yields

$$\langle Df, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \frac{df}{dx} g \, dx = \frac{1}{2\pi} fg \Big|_0^{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} f \frac{dg}{dx} \, dx = -\langle f, Dg \rangle$$

for all f, g, hence $D^* = -D \neq D$. Therefore D is not self adjoint.

(b) Assertion (a) and exercise 6 (a) of Serie 22 yield

$$\Delta^* = -D^* \circ D^* = -(-D) \circ (-D) = \Delta,$$

and hence Δ is self adjoint.

(c) For every $n \neq 0$ set $c_n(x) := \sqrt{2}\cos(nx)$ and $s_n(x) := \sqrt{2}\sin(nx)$. Moreover set $c_0(x) := 1$ and $s_0(x) := 0$.

Claim: The set

$$B := \left\{ c_n \mid n \ge 0 \right\} \cup \left\{ s_n \mid n \ge 1 \right\}$$

is an orthonormal basis of U consisting of eigenvectors of Δ .

Proof: Since $\sin(-nx) = -\sin(nx)$ and $\cos(-nx) = \cos(nx)$ hold for all $n \ge 1$ and $s_0 = 0$, we have that B generates U. The usual derivation rules for trigometric functions imply that for all $n \ge 0$, we have

$$\Delta s_n = n^2 s_n$$
 and $\Delta c_n = n^2 c_n$.

Hence all elements of B are eigenvectors of Δ .

Next, we show that these are pairwise orthogonal. To see this, we compute for all $n, m \ge 0$ using that Δ ist self adjoint:

$$n^{2}\langle s_{n}, s_{m} \rangle = \langle n^{2}s_{n}, s_{m} \rangle = \langle \Delta s_{n}, s_{m} \rangle \stackrel{!}{=} \langle s_{n}, \Delta s_{m} \rangle = \langle s_{n}, m^{2}s_{m} \rangle = m^{2}\langle s_{n}, s_{m} \rangle.$$

For $n \neq m$ this yields $\langle s_n, s_m \rangle = 0$. Analogous computations show $\langle s_n, c_m \rangle = \langle c_n, s_m \rangle = \langle c_n, c_m \rangle = 0$ for all $n \neq m$. (All of this can also be proved by direct computation of the integrals.) Moreover, we can for all $n \geq 1$ insert the formulas

$$\cos^{2}(nx) = \frac{\cos(2nx) + 1}{2}$$

$$\sin^{2}(nx) = 1 - \cos^{2}(nx) = \frac{1 - \cos^{2}(2nx)}{2}$$

$$\sin(nx)\cos(nx) = \frac{1}{2}\sin(2nx),$$

into the relevant integrals and compute

$$\langle s_n, s_n \rangle = 1, \quad \langle s_n, c_n \rangle = 0, \quad \langle c_n, c_n \rangle = 1.$$

Even simpler, we compute

$$\langle c_0, c_0 \rangle = 1, \quad \langle c_0, s_n \rangle = 0, \quad \langle c_0, c_n \rangle = 0$$

for all $n \ge 1$. Together this shows that B is an orthonormal system. As ist generates U it is an orthonormal basis of U.

Together, we see that B is an orthonormal basis of U consisting of eigenvectors of Δ . Every eigenspace of $\Delta|_U$ thus is generated by vectors of B. We conclude that $\Delta|_U$ has eigenvalues

$$0, 1, 4, 9, 16, \ldots, n^2, \ldots$$

with respective multiplicities $1, 2, 2, 2, \ldots$

Multiple Choice Fragen

- 1. Let A and B be complex self-adjoint $n \times n$ matrices, and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
 - (a) A + B is self-adjoint.
 - (b) λA is self-adjoint.
 - (c) λA is normal.

Explanation:

- (a) $(A+B)^* = A^* + B^* = A + B$.
- (b) With $\lambda = i$ we have that $(iA)^* = -iA^* = -iA$ is not self adjoint.
- (c) Let $B = \lambda A$. Then $B^*B = \overline{\lambda}A^*\lambda A = |\lambda|^2 AA = BB^*$.
- 2. Let A, B be complex self-adjoint $n \times n$ matrices and let $\lambda \in \mathbb{C}$. Which of the following statements hold?
 - (a) AB is self-adjoint.
 - (b) AB + BA is self-adjoint.
 - (c) AB BA is normal.
 - (d) ABA is self-adjoint.

Explanation:

- (a) $(AB)^* = B^*A^* = BA$. Ein Gegenbeispiel ist: $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$. (b) $(AB + BA)^* = B^*A^* + A^*B^* = BA + AB$.
- (c) $(AB BA)^* = B^*A^* A^*B^* = -(AB BA)$. Also:

$$(AB - BA)^* (AB - BA) = (AB - BA) (AB - BA)^* = -(AB - BA)^2$$

- (d) $(ABA)^* = A^*B^*A^* = ABA.$
- 3. Let A be a normal matrix and $p \in \mathbb{C}[t]$ be a polynomial. Which of the following statements hold?

(a)
$$p(A)^* = p(A^*).$$

(b) $A^i(A^*)^j = (A^*)^j A^i$
(c) $p(A)$ is normal.

- (d) Every eigenvalue λ of A is also an eigenvalue of p(A).
- (e) Every eigenvector v of A is also an eigenvector of p(A).

Explanation:

- (a) Wrong. $(\lambda A)^* = \overline{\lambda} A^*$. If $p(t) = \sum a_i t^i$, we have $p(A)^* = \sum \overline{a_i} (A^*)^i$.
- (b) True. We have $AA^* = A^*A$. Induction yields:

$$A^{i}(A^{*})^{j} = A^{i-1}A^{*}A(A^{*})^{j-1} = \dots = A^{i-1}(A^{*})^{j}A = \dots = (A^{*})^{j}A^{i}.$$

- (c) True. Die $a_i A^i$ $(i \ge 0)$ are normal and hence also their sum.
- (d) Wrong. A counterexample is A = 0, p(t) = 1, then p(A) = 1, which does not have 0 as eigenvalues.
- (e) True. $p(A)v = \sum a_i A^i v = \sum a_i \lambda^i v = p(\lambda)v$.

Note. Let (v_i) be an orthonormal basis of eigenvectors corresponding to the eigenvalues λ_i of A, then (v_i) is an orthonormal basis of eigenvectors to the eigenvalues $p(\lambda_i)$ of p(A).