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POSITIVE-DEFINITENESS, ISOMETRIES

1. Let K be a field in which 2 # 0, V a K-vector space, and let B be a symmetric
bilinear form on V. We define gg(v) = B(v,v) for every v € V' to be the quadratic
form associated to B. Show that

1

B(v,w) = 5(g5(v + w) — 45(v) = gp(w)).

Solution: This is straight-forward using the bilinearity and the symmetry of B.
We have

B(v+ w,v +w) — B(v,v) — B(w, w)
B(v,v+w) + B(w,v + w) — B(v,v) — B(w,w)
B(v,w) + B(w,v) (linearity in both entries)
2B(v,w) (symmetry).

g8(v +w) = q5(v) — qp(w)

2. Consider the real matrix

L2 -2 1
A=g|-1 -2 -2
2 1 -2

(a) Show that A is orthogonal and det A = 1.
(b) Determine the rotational axis and the angle of T : R? — R? v — Av.
Lésung:

(a) Direct calculations show ATA = I3 and det A = 1.

(b) By (a) the map T4 is an element of SOj3, thus it is a rotation. The rotational
axis is contained in the eigenspace of A corresponding to eigenvalue 1, which

1S 3
EigA(l):< ~1 >
1

Moreover, there exists an ordered orthonormal basis B with

1 0 0
[A]5= [0 cosp —sing |,
0 singp cos



for an rotational angle ¢ € [—m, 7]. We get

2
1+2cosp = Tr([A]g) =Tr(A) = -3
and thus

¢ = arccos(—5/6) = m— arccos(5/6) ~ 146.44°.

Aliter: Once you have identified the axis of rotation, find a vector that is
orthogonal to it, e.g.

1

3

0

Now, its image Av, which we denote w, is also in the plane orthogonal to the
axis of rotation and we can calculate the angle ¢ using

¢ = arccos(cos(yp)) = arccos <%> '

3. Which of the following three real symmetrix matrices are positive definite?

33 2 3 3 0 -1 0
6 3 4
31 1 2 0 6 1 1
A=y 1 2| B= i;g’ C=1_11 8 2

3 213 0 1 2 5
Hinweis: Verwende das Hauptminorenkriterium.
Losung: Let A;, B;, C; be the corresponding first minors.
As det Ay = det @ il)’) = —6 is negative, the matrix A is not positive definite.

However, we have det B; = 6, 33, 170 for ¢ = 1, 2, 3 all positive, hence B is
positive definite. Similarly, we have det C; = 3, 18, 135, 592 for ¢ = 1,...,4 all
positive, hence C' is positive definite as well.

4. Let A€ M,x,(R) be a symmetric matrix. Show that the following statements are
equivalent:
(A) A is positive definite, i.e. vZ' Av > 0 for all v # 0;
(B) All eigenvalues of A are positive;
(C) There exists an invertible symmetric matrix S € M, ., (R) such that S? = A.
Solution: (A) = (B): Let v be an eigenvector of A associated to an eigenvalue

A. Without loss of generality, we may assume that it is normalised so that 27z = 1.
Since we assume (A), we have

0<2TAX = 2" e = \aTa = \.



(B) = (C): Since A is symmetric, by the spectral theorem there exists a matrix
@ € O3(R) such that

A1
Q1AQ = =D,

where {\;} are the (not necessarily distinct) eigenvalues of A. Let D’ be the dia-
gonal matrix with the 4/\;’s on the diagonal. Then D> = D = Q7' AQ), so

QDQ ' = QPR = A

Since @ € O3, we have Q' = Q7. From there you can easily observe that Q D'Q”
is symmetric and invertible.

(C) = (A): Let S be an invertible symmetric real matrix such that S? = A.
Since S is invertible, we have

VoeR": S-v=0 < v=0.
Hence, for any v € R™ ~\ {0},

vl Av = 07 8% = T ST Sy = (Sv)T(Sv) = ||Sv||* > 0.

. Show: For every orthogonal endomorphism f of an n-dimensional Euclidean vec-
torspace V', we have
| Tr(f)] < n.

For which f do we have equality?

Losung: Note that Tr(f) = Tr(A) for any matrix A € M, ,(R) representing f
with respect to an orthonormal basis 5. We show that A is an orthogonal matrix,

ie. ATA=1,=AAT.
Indeed, since for any u,v € V' it holds that {fu, fv) = (u,v), we have
(Au)" M (Av) = u" ATM Av = u" M,

where M is the matrix representing the inner product with respect to B. Since
this holds for any pair u,v € V', we have

ATMA = M.

It follows from the fact that B is orthonormal that M = I,,. Thereupon, ATA = I,,.
We deduce that the columns of A form an orthonormal basis of V', and therefore
that each diagonal entry a;; of A has norm smaller than 1. This shows

Tr(f) = Tr(A) < n.

3



Finally, equality will hold if every entry on the diagonal has norm exactly 1 and if
they all have the same sign, i.e. if A = I, or A = —I,. In turn, we conclude that
f is the identity or minus the identity in this case.

Aliter: By the spectral theorem, there exists an oredered orthonormal basis B of V,
such that the representation matrix of f with respect to B is of the form

Dy
D,

where Dy is +1 or (% ) with af + b} = 1.

a,

In the first case, we have | Tr(Dy)| = 1 and in the second case | Tr(Dy)| = |2ax| < 2.
Together, this yields

()] = | Y Te(D)] < Y I Te(Dy)] < .

Equality holds if and only if for all Dy, of the second type | Tr(Dy)| = 2 holds and
if all diagonal entries of [M]8 have the same sign. This is the case if and only if

Aliter w/o spectral theorem: Let B = (by, ..., b,) be an arbitray ordered orthomor-
mal basis of V. For every 1 < j < n we have

Fbg) = 35 i F(b3)) b
i—1
Thus f has a representation matrix [M¢]8 = ((b;, f(b;)))i;. This yields
Tr(f) = Te([My]5) = Db (b))
i=1

As f is orthogonal, for every ¢ we have ||b;| = || f(b;)| = 1. The Cauchy-Schwarz-
inequality yields

Kb, FODI <A IBIE 1@ =1
Summation gives | Tr(f)| < n, as desired.

Moreover, we have | Tr(f)| = n if and only if the real numbers {b;, f(b;)) are all 1 or
all —1. In this case we have for every ¢ equality in the Cauchy-Schwarz-inequality,
and hence f(b;) is linear dependent of b;. Thus f(b;) = b; for all i, or f(b;) = —b;
for all ¢, therefore f = +idy.



6. Consider two 2-dimensional subspaces E;, F» < R3. Describe the set of elements
T € SO3(R) such that
TE, = E,

in terms of orthogonal bases of F; and Ej.
Hint: Start by assuming that F; = FEy = Sp(ey, e3).

Solution: We start by determining and fixing two orthonormal bases vy, v9, v3 and
wy, wy, w3 of R with vy,v9 € E; and wy,ws € FE5. This yields orthogonal ma-
trices My := (viv9v3) and My := (wjwsws). These have determinant +1 and
after replacing vs by —wvs or w, with —ws; respectively if necessary, we can reach
dassdet (M;) = det (M) = 1.

Note that rotations of R? form the Group SO(3) of all orthogonal matrices with

determinant 1. In particular, every composition of rotations and the inverses of
every rotations is again a rotation, and by construction M; and M, are rotations.

Now let Fy be the subvectorspace spanned by the standard basis vectors ey, e5. By
construction we have M1 Ey = E; and MsFEy = Fs. For an arbitrary rotation 1" we
then have

TE1 = EQ — TM1E0 = M2E0 — M{lTMlEO = Eo.

Hence D = M2_1TM1 is a rotatoin with DEy = Ey, and T = MgDMl_l. It
remains to determine all rotations D with DEy, = Ey. Such a rotation needs to
map the orthogonal complement of Ejy onto itself. This is generated by es. By
|Des| = |es| = 1 we then have Des = tes.

In the case of Des = e3, we have that D is a rotation around the axis Res, and all
of these are given by the matrices

a b 0
Dy,=1 —=b a 0
0 01
for (a,b) = (cos ¢, sin ¢) with ¢ € R. Then
1 0 0
S=10 -1 0
0 0 -1
is a rotation with SEy = Ey and Ses3 = —e3. In the case Des = —e3 we thus

have that S™'D is a rotation with S™'DE; = E, and S~ 'Des = es. Therefore
S™D = D,, for a ¢ and thus D = SD,,. The set of all rotations D with DE, = Ej
therefore is

{Dy | pe R} U {SD, | ¢ € R}

The set of all rotations 7" with TE, = E5 hence is
{MyD, M | pe R} U {MsSD, M | p € R}.



