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Positive-definiteness, isometries

1. Let K be a field in which 2 ‰ 0, V a K-vector space, and let B be a symmetric
bilinear form on V . We define qBpvq “ Bpv, vq for every v P V to be the quadratic
form associated to B. Show that

Bpv, wq “
1

2
pqBpv ` wq ´ qBpvq ´ qBpwqq.

Solution: This is straight-forward using the bilinearity and the symmetry of B.
We have

qBpv ` wq ´ qBpvq ´ qBpwq “ Bpv ` w, v ` wq ´ Bpv, vq ´ Bpw,wq

“ Bpv, v ` wq ` Bpw, v ` wq ´ Bpv, vq ´ Bpw,wq

“ Bpv, wq ` Bpw, vq (linearity in both entries)

“ 2Bpv, wq (symmetry).

2. Consider the real matrix

A :“
1

3

¨

˝

2 ´2 1
´1 ´2 ´2
2 1 ´2

˛

‚.

(a) Show that A is orthogonal and detA “ 1.

(b) Determine the rotational axis and the angle of TA : R2 Ñ R2, v ÞÑ Av.

Lösung :

(a) Direct calculations show ATA “ I3 and detA “ 1.

(b) By (a) the map TA is an element of SO3, thus it is a rotation. The rotational
axis is contained in the eigenspace of A corresponding to eigenvalue 1, which
is

EigAp1q “

〈¨

˝

3
´1
1

˛

‚

〉
.

Moreover, there exists an ordered orthonormal basis B with

rAs
B
B “

¨

˝

1 0 0
0 cosφ ´ sinφ
0 sinφ cosφ

˛

‚,
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for an rotational angle φ P r´π, πs. We get

1 ` 2 cosφ “ TrprAs
B
Bq “ TrpAq “ ´

2

3
,

and thus

φ “ arccosp´5{6q “ π ´ arccosp5{6q « 146.44˝.

Aliter : Once you have identified the axis of rotation, find a vector that is
orthogonal to it, e.g.

¨

˝

1
3
0

˛

‚.

Now, its image Av, which we denote w, is also in the plane orthogonal to the
axis of rotation and we can calculate the angle φ using

φ “ arccospcospφqq “ arccos

ˆ

xv, wy

||v|| ||w||

˙

.

3. Which of the following three real symmetrix matrices are positive definite?

A :“

¨

˚

˚

˝

3 3 2 3
3 1 1 2
2 1 2 1
3 2 1 3

˛

‹

‹

‚

, B :“

¨

˝

6 3 4
3 7 3
4 3 8

˛

‚, C :“

¨

˚

˚

˝

3 0 ´1 0
0 6 1 1

´1 1 8 2
0 1 2 5

˛

‹

‹

‚

.

Hinweis: Verwende das Hauptminorenkriterium.

Lösung : Let Ai, Bi, Ci be the corresponding first minors.

As detA2 “ det
`

3 3
3 1

˘

“ ´6 is negative, the matrix A is not positive definite.
However, we have detBi “ 6, 33, 170 for i “ 1, 2, 3 all positive, hence B is
positive definite. Similarly, we have detCi “ 3, 18, 135, 592 for i “ 1, . . . , 4 all
positive, hence C is positive definite as well.

4. Let A P MnˆnpRq be a symmetric matrix. Show that the following statements are
equivalent:

(A) A is positive definite, i.e. vTAv ą 0 for all v ‰ 0;

(B) All eigenvalues of A are positive;

(C) There exists an invertible symmetric matrix S P MnˆnpRq such that S2 “ A.

Solution: (A) ùñ (B): Let v be an eigenvector of A associated to an eigenvalue
λ. Without loss of generality, we may assume that it is normalised so that xTx “ 1.
Since we assume (A), we have

0 ă xTAX “ xTλx “ λxTx “ λ.
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(B) ùñ (C): Since A is symmetric, by the spectral theorem there exists a matrix

Q P O3pRq such that

Q´1AQ “

¨

˚

˝

λ1

. . .

λn

˛

‹

‚

“: D,

where tλiu are the (not necessarily distinct) eigenvalues of A. Let D1 be the dia-
gonal matrix with the

?
λi’s on the diagonal. Then D12 “ D “ Q´1AQ, so

pQD1Q´1
q
2

“ QpD1
q
2Q´1

“ A.

Since Q P O3, we have Q
´1 “ QT . From there you can easily observe that QD1QT

is symmetric and invertible.

(C) ùñ (A): Let S be an invertible symmetric real matrix such that S2 “ A.
Since S is invertible, we have

@v P Rn : S ¨ v “ 0 ðñ v “ 0.

Hence, for any v P Rn ∖ t0u,

vTAv “ vTS2v “ vTSTSv “ pSvq
T

pSvq “ ||Sv||2 ą 0.

5. Show: For every orthogonal endomorphism f of an n-dimensional Euclidean vec-
torspace V , we have

|Trpfq| ď n.

For which f do we have equality?

Lösung : Note that Trpfq “ TrpAq for any matrix A P MnˆnpRq representing f
with respect to an orthonormal basis B. We show that A is an orthogonal matrix,
i.e. ATA “ In “ AAT .

Indeed, since for any u, v P V it holds that xfu, fvy “ xu, vy, we have

pAuq
TMpAvq “ uTATMAv “ uTMv,

where M is the matrix representing the inner product with respect to B. Since
this holds for any pair u, v P V , we have

ATMA “ M.

It follows from the fact that B is orthonormal that M “ In. Thereupon, A
TA “ In.

We deduce that the columns of A form an orthonormal basis of V , and therefore
that each diagonal entry aii of A has norm smaller than 1. This shows

Trpfq “ TrpAq ď n.
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Finally, equality will hold if every entry on the diagonal has norm exactly 1 and if
they all have the same sign, i.e. if A “ In or A “ ´In. In turn, we conclude that
f is the identity or minus the identity in this case.

Aliter : By the spectral theorem, there exists an oredered orthonormal basis B of V ,
such that the representation matrix of f with respect to B is of the form

rMf s
B
B “

¨

˚

˝

D1

. . .

Dr

˛

‹

‚

,

where Dk is ˘1 or
`

ak bk
´bk ak

˘

with a2k ` b2k “ 1.

In the first case, we have |TrpDkq| “ 1 and in the second case |TrpDkq| “ |2ak| ď 2.
Together, this yields

|Trpfq| “ |

r
ÿ

k“1

TrpDkq| ď

r
ÿ

k“1

|TrpDkq| ď n.

Equality holds if and only if for all Dk of the second type |TrpDkq| “ 2 holds and
if all diagonal entries of rMf sBB have the same sign. This is the case if and only if
f “ ˘ idV .

Aliter w/o spectral theorem: Let B “ pb1, . . . , bnq be an arbitray ordered orthomor-
mal basis of V . For every 1 ď j ď n we have

fpbjq “

n
ÿ

i“1

xbi, fpbjqy ¨ bi.

Thus f has a representation matrix rMf sBB “ pxbi, fpbjqyqij. This yields

Trpfq “ TrprMf s
B
Bq “

n
ÿ

i“1

xbi, fpbiqy.

As f is orthogonal, for every i we have }bi} “ }fpbiq} “ 1. The Cauchy-Schwarz-
inequality yields

|xbi, fpbiqy| ď

b

||bi||2 ||fpbjq||2 “ 1.

Summation gives |Trpfq| ď n, as desired.

Moreover, we have |Trpfq| “ n if and only if the real numbers xbi, fpbiqy are all 1 or
all ´1. In this case we have for every i equality in the Cauchy-Schwarz-inequality,
and hence fpbiq is linear dependent of bi. Thus fpbiq “ bi for all i, or fpbiq “ ´bi
for all i, therefore f “ ˘ idV .
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6. Consider two 2-dimensional subspaces E1, E2 Ă R3. Describe the set of elements
T P SO3pRq such that

TE1 “ E2,

in terms of orthogonal bases of E1 and E2.

Hint : Start by assuming that E1 “ E2 “ Sppe1, e2q.

Solution: We start by determining and fixing two orthonormal bases v1, v2, v3 and
w1, w2, w3 of R with v1, v2 P E1 and w1, w2 P E2. This yields orthogonal ma-
trices M1 :“ pv1v2v3q and M2 :“ pw1w2w3q. These have determinant ˘1 and
after replacing v3 by ´v3 or wr with ´w3 respectively if necessary, we can reach
dass det pM1q “ det pM2q “ 1.

Note that rotations of R3 form the Group SOp3q of all orthogonal matrices with
determinant 1. In particular, every composition of rotations and the inverses of
every rotations is again a rotation, and by construction M1 and M2 are rotations.

Now let E0 be the subvectorspace spanned by the standard basis vectors e1, e2. By
construction we have M1E0 “ E1 and M2E0 “ E2. For an arbitrary rotation T we
then have

TE1 “ E2 ðñ TM1E0 “ M2E0 ðñ M´1
2 TM1E0 “ E0.

Hence D :“ M´1
2 TM1 is a rotatoin with DE0 “ E0, and T “ M2DM´1

1 . It
remains to determine all rotations D with DE0 “ E0. Such a rotation needs to
map the orthogonal complement of E0 onto itself. This is generated by e3. By
}De3} “ }e3} “ 1 we then have De3 “ ˘e3.

In the case of De3 “ e3, we have that D is a rotation around the axis Re3, and all
of these are given by the matrices

Dφ :“

¨

˝

a b 0
´b a 0
0 0 1

˛

‚

for pa, bq “ pcosφ, sinφq with φ P R. Then

S :“

¨

˝

1 0 0
0 ´1 0
0 0 ´1

˛

‚

is a rotation with SE0 “ E0 and Se3 “ ´e3. In the case De3 “ ´e3 we thus
have that S´1D is a rotation with S´1DE0 “ E0 and S´1De3 “ e3. Therefore
S´1D “ Dφ for a φ and thus D “ SDφ. The set of all rotations D with DE0 “ E0

therefore is
tDφ | φ P Ru Y tSDφ | φ P Ru

The set of all rotations T with TE1 “ E2 hence is
␣

M2DφM
´1
1 | φ P R

(

Y
␣

M2SDφM
´1
1 | φ P R

(

.
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