Musterlösung Serie 23

Positive-definiteness, ISOMETRIES

1. Let K be a field in which $2 \neq 0, V$ a K-vector space, and let B be a symmetric bilinear form on V. We define $q_{B}(v)=B(v, v)$ for every $v \in V$ to be the quadratic form associated to B. Show that

$$
B(v, w)=\frac{1}{2}\left(q_{B}(v+w)-q_{B}(v)-q_{B}(w)\right) .
$$

Solution: This is straight-forward using the bilinearity and the symmetry of B. We have

$$
\begin{aligned}
q_{B}(v+w)-q_{B}(v)-q_{B}(w) & =B(v+w, v+w)-B(v, v)-B(w, w) \\
& =B(v, v+w)+B(w, v+w)-B(v, v)-B(w, w) \\
& =B(v, w)+B(w, v) \quad \text { (linearity in both entries) } \\
& =2 B(v, w) \quad \text { (symmetry). }
\end{aligned}
$$

2. Consider the real matrix

$$
A:=\frac{1}{3}\left(\begin{array}{rrr}
2 & -2 & 1 \\
-1 & -2 & -2 \\
2 & 1 & -2
\end{array}\right) .
$$

(a) Show that A is orthogonal and $\operatorname{det} A=1$.
(b) Determine the rotational axis and the angle of $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, v \mapsto A v$.

Lösung:

(a) Direct calculations show $A^{T} A=I_{3}$ and $\operatorname{det} A=1$.
(b) By (a) the map T_{A} is an element of SO_{3}, thus it is a rotation. The rotational axis is contained in the eigenspace of A corresponding to eigenvalue 1 , which is

$$
\operatorname{Eig}_{A}(1)=\left\langle\left(\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right)\right\rangle
$$

Moreover, there exists an ordered orthonormal basis \mathcal{B} with

$$
[A]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right)
$$

for an rotational angle $\varphi \in[-\pi, \pi]$. We get

$$
1+2 \cos \varphi=\operatorname{Tr}\left([A]_{\mathcal{B}}^{\mathcal{B}}\right)=\operatorname{Tr}(A)=-\frac{2}{3}
$$

and thus

$$
\varphi=\arccos (-5 / 6)=\pi-\arccos (5 / 6) \approx 146.44^{\circ}
$$

Aliter: Once you have identified the axis of rotation, find a vector that is orthogonal to it, e.g.

$$
\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

Now, its image $A v$, which we denote w, is also in the plane orthogonal to the axis of rotation and we can calculate the angle φ using

$$
\varphi=\arccos (\cos (\varphi))=\arccos \left(\frac{\langle v, w\rangle}{\|v\|\|w\|}\right) .
$$

3. Which of the following three real symmetrix matrices are positive definite?

$$
A:=\left(\begin{array}{llll}
3 & 3 & 2 & 3 \\
3 & 1 & 1 & 2 \\
2 & 1 & 2 & 1 \\
3 & 2 & 1 & 3
\end{array}\right), \quad B:=\left(\begin{array}{lll}
6 & 3 & 4 \\
3 & 7 & 3 \\
4 & 3 & 8
\end{array}\right), \quad C:=\left(\begin{array}{cccc}
3 & 0 & -1 & 0 \\
0 & 6 & 1 & 1 \\
-1 & 1 & 8 & 2 \\
0 & 1 & 2 & 5
\end{array}\right) .
$$

Hinweis: Verwende das Hauptminorenkriterium.
Lösung: Let A_{i}, B_{i}, C_{i} be the corresponding first minors.
As $\operatorname{det} A_{2}=\operatorname{det}\left(\begin{array}{ll}3 & 3 \\ 3 & 1\end{array}\right)=-6$ is negative, the matrix A is not positive definite. However, we have $\operatorname{det} B_{i}=6,33,170$ for $i=1,2,3$ all positive, hence B is positive definite. Similarly, we have $\operatorname{det} C_{i}=3,18,135,592$ for $i=1, \ldots, 4$ all positive, hence C is positive definite as well.
4. Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix. Show that the following statements are equivalent:
(A) A is positive definite, i.e. $v^{T} A v>0$ for all $v \neq 0$;
(B) All eigenvalues of A are positive;
(C) There exists an invertible symmetric matrix $S \in M_{n \times n}(\mathbb{R})$ such that $S^{2}=A$.

Solution: $(\mathrm{A}) \Longrightarrow(\mathrm{B})$: Let v be an eigenvector of A associated to an eigenvalue λ. Without loss of generality, we may assume that it is normalised so that $x^{T} x=1$. Since we assume (A), we have

$$
0<x^{T} A X=x^{T} \lambda x=\lambda x^{T} x=\lambda
$$

$(B) \Longrightarrow(C):$ Since A is symmetric, by the spectral theorem there exists a matrix $Q \in \mathrm{O}_{3}(\mathbb{R})$ such that

$$
Q^{-1} A Q=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)=: D
$$

where $\left\{\lambda_{i}\right\}$ are the (not necessarily distinct) eigenvalues of A. Let D^{\prime} be the diagonal matrix with the $\sqrt{\lambda_{i}}$'s on the diagonal. Then $D^{\prime 2}=D=Q^{-1} A Q$, so

$$
\left(Q D^{\prime} Q^{-1}\right)^{2}=Q\left(D^{\prime}\right)^{2} Q^{-1}=A
$$

Since $Q \in \mathrm{O}_{3}$, we have $Q^{-1}=Q^{T}$. From there you can easily observe that $Q D^{\prime} Q^{T}$ is symmetric and invertible.
$(\mathrm{C}) \Longrightarrow(\mathrm{A})$: Let S be an invertible symmetric real matrix such that $S^{2}=A$. Since S is invertible, we have

$$
\forall v \in \mathbb{R}^{n}: S \cdot v=0 \Longleftrightarrow v=0 .
$$

Hence, for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
v^{T} A v=v^{T} S^{2} v=v^{T} S^{T} S v=(S v)^{T}(S v)=\|S v\|^{2}>0 .
$$

5. Show: For every orthogonal endomorphism f of an n-dimensional Euclidean vectorspace V, we have

$$
|\operatorname{Tr}(f)| \leqslant n
$$

For which f do we have equality?
Lösung: Note that $\operatorname{Tr}(f)=\operatorname{Tr}(A)$ for any matrix $A \in M_{n \times n}(\mathbb{R})$ representing f with respect to an orthonormal basis \mathcal{B}. We show that A is an orthogonal matrix, i.e. $A^{T} A=I_{n}=A A^{T}$.

Indeed, since for any $u, v \in V$ it holds that $\langle f u, f v\rangle=\langle u, v\rangle$, we have

$$
(A u)^{T} M(A v)=u^{T} A^{T} M A v=u^{T} M v
$$

where M is the matrix representing the inner product with respect to \mathcal{B}. Since this holds for any pair $u, v \in V$, we have

$$
A^{T} M A=M
$$

It follows from the fact that \mathcal{B} is orthonormal that $M=I_{n}$. Thereupon, $A^{T} A=I_{n}$. We deduce that the columns of A form an orthonormal basis of V, and therefore that each diagonal entry $a_{i i}$ of A has norm smaller than 1 . This shows

$$
\operatorname{Tr}(f)=\operatorname{Tr}(A) \leqslant n .
$$

Finally, equality will hold if every entry on the diagonal has norm exactly 1 and if they all have the same sign, i.e. if $A=I_{n}$ or $A=-I_{n}$. In turn, we conclude that f is the identity or minus the identity in this case.

Aliter: By the spectral theorem, there exists an oredered orthonormal basis \mathcal{B} of V, such that the representation matrix of f with respect to \mathcal{B} is of the form

$$
\left[M_{f}\right]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{lll}
D_{1} & & \\
& \ddots & \\
& & D_{r}
\end{array}\right)
$$

where D_{k} is ± 1 or $\left(\begin{array}{cc}a_{k} & b_{k} \\ -b_{k} & a_{k}\end{array}\right)$ with $a_{k}^{2}+b_{k}^{2}=1$.
In the first case, we have $\left|\operatorname{Tr}\left(D_{k}\right)\right|=1$ and in the second case $\left|\operatorname{Tr}\left(D_{k}\right)\right|=\left|2 a_{k}\right| \leqslant 2$. Together, this yields

$$
|\operatorname{Tr}(f)|=\left|\sum_{k=1}^{r} \operatorname{Tr}\left(D_{k}\right)\right| \leqslant \sum_{k=1}^{r}\left|\operatorname{Tr}\left(D_{k}\right)\right| \leqslant n .
$$

Equality holds if and only if for all D_{k} of the second type $\left|\operatorname{Tr}\left(D_{k}\right)\right|=2$ holds and if all diagonal entries of $\left[M_{f}\right]_{\mathcal{B}}^{\mathcal{B}}$ have the same sign. This is the case if and only if $f= \pm \mathrm{id}_{V}$.
Aliter $w /$ o spectral theorem: Let $\mathcal{B}=\left(b_{1}, \ldots, b_{n}\right)$ be an arbitray ordered orthomormal basis of V. For every $1 \leqslant j \leqslant n$ we have

$$
f\left(b_{j}\right)=\sum_{i=1}^{n}\left\langle b_{i}, f\left(b_{j}\right)\right\rangle \cdot b_{i} .
$$

Thus f has a representation matrix $\left[M_{f}\right]_{\mathcal{B}}^{\mathcal{B}}=\left(\left\langle b_{i}, f\left(b_{j}\right)\right\rangle\right)_{i j}$. This yields

$$
\operatorname{Tr}(f)=\operatorname{Tr}\left(\left[M_{f}\right]_{\mathcal{B}}^{\mathcal{B}}\right)=\sum_{i=1}^{n}\left\langle b_{i}, f\left(b_{i}\right)\right\rangle .
$$

As f is orthogonal, for every i we have $\left\|b_{i}\right\|=\left\|f\left(b_{i}\right)\right\|=1$. The Cauchy-Schwarzinequality yields

$$
\left|\left\langle b_{i}, f\left(b_{i}\right)\right\rangle\right| \leqslant \sqrt{\left\|b_{i}\right\|^{2}\left\|f\left(b_{j}\right)\right\|^{2}}=1 .
$$

Summation gives $|\operatorname{Tr}(f)| \leqslant n$, as desired.
Moreover, we have $|\operatorname{Tr}(f)|=n$ if and only if the real numbers $\left\langle b_{i}, f\left(b_{i}\right)\right\rangle$ are all 1 or all -1 . In this case we have for every i equality in the Cauchy-Schwarz-inequality, and hence $f\left(b_{i}\right)$ is linear dependent of b_{i}. Thus $f\left(b_{i}\right)=b_{i}$ for all i, or $f\left(b_{i}\right)=-b_{i}$ for all i, therefore $f= \pm \mathrm{id}_{V}$.
6. Consider two 2-dimensional subspaces $E_{1}, E_{2} \subset \mathbb{R}^{3}$. Describe the set of elements $T \in \mathrm{SO}_{3}(\mathbb{R})$ such that

$$
T E_{1}=E_{2},
$$

in terms of orthogonal bases of E_{1} and E_{2}.
Hint: Start by assuming that $E_{1}=E_{2}=\operatorname{Sp}\left(e_{1}, e_{2}\right)$.
Solution: We start by determining and fixing two orthonormal bases v_{1}, v_{2}, v_{3} and w_{1}, w_{2}, w_{3} of \mathbb{R} with $v_{1}, v_{2} \in E_{1}$ and $w_{1}, w_{2} \in E_{2}$. This yields orthogonal matrices $M_{1}:=\left(v_{1} v_{2} v_{3}\right)$ and $M_{2}:=\left(w_{1} w_{2} w_{3}\right)$. These have determinant ± 1 and after replacing v_{3} by $-v_{3}$ or w_{r} with $-w_{3}$ respectively if necessary, we can reach $\operatorname{dass} \operatorname{det}\left(M_{1}\right)=\operatorname{det}\left(M_{2}\right)=1$.
Note that rotations of \mathbb{R}^{3} form the Group $\mathrm{SO}(3)$ of all orthogonal matrices with determinant 1. In particular, every composition of rotations and the inverses of every rotations is again a rotation, and by construction M_{1} and M_{2} are rotations.
Now let E_{0} be the subvectorspace spanned by the standard basis vectors e_{1}, e_{2}. By construction we have $M_{1} E_{0}=E_{1}$ and $M_{2} E_{0}=E_{2}$. For an arbitrary rotation T we then have

$$
T E_{1}=E_{2} \Longleftrightarrow T M_{1} E_{0}=M_{2} E_{0} \quad \Longleftrightarrow \quad M_{2}^{-1} T M_{1} E_{0}=E_{0} .
$$

Hence $D:=M_{2}^{-1} T M_{1}$ is a rotatoin with $D E_{0}=E_{0}$, and $T=M_{2} D M_{1}^{-1}$. It remains to determine all rotations D with $D E_{0}=E_{0}$. Such a rotation needs to map the orthogonal complement of E_{0} onto itself. This is generated by e_{3}. By $\left\|D e_{3}\right\|=\left\|e_{3}\right\|=1$ we then have $D e_{3}= \pm e_{3}$.
In the case of $D e_{3}=e_{3}$, we have that D is a rotation around the axis $\mathbb{R} e_{3}$, and all of these are given by the matrices

$$
D_{\varphi}:=\left(\begin{array}{ccc}
a & b & 0 \\
-b & a & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for $(a, b)=(\cos \varphi, \sin \varphi)$ with $\varphi \in \mathbb{R}$. Then

$$
S:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

is a rotation with $S E_{0}=E_{0}$ and $S e_{3}=-e_{3}$. In the case $D e_{3}=-e_{3}$ we thus have that $S^{-1} D$ is a rotation with $S^{-1} D E_{0}=E_{0}$ and $S^{-1} D e_{3}=e_{3}$. Therefore $S^{-1} D=D_{\varphi}$ for a φ and thus $D=S D_{\varphi}$. The set of all rotations D with $D E_{0}=E_{0}$ therefore is

$$
\left\{D_{\varphi} \mid \varphi \in \mathbb{R}\right\} \cup\left\{S D_{\varphi} \mid \varphi \in \mathbb{R}\right\}
$$

The set of all rotations T with $T E_{1}=E_{2}$ hence is

$$
\left\{M_{2} D_{\varphi} M_{1}^{-1} \mid \varphi \in \mathbb{R}\right\} \cup\left\{M_{2} S D_{\varphi} M_{1}^{-1} \mid \varphi \in \mathbb{R}\right\}
$$

