Musterlösung Serie 24

Bilinear forms, Singular values decomposition, Jordan Normal form

1. (a) Determine a singular value decomposition $A=Q D R$ of the real matrix

$$
A:=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

(b) Determine a singular value decomposition of A^{T}.

Lösung:
(a) We compute the matrix

$$
A^{T} A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

and the corresponding characteristic polynomial

$$
P_{A^{T} A}(X)=\operatorname{det}\left(\begin{array}{cc}
2-X & -1 \\
-1 & 2-X
\end{array}\right)=X^{2}-4 X+3=(X-3)(X-1) .
$$

Hence $A^{T} A$ has Eigenvalues $\lambda_{1}:=3$ and $\lambda_{2}:=1$. The singular values of A therefore are $\sigma_{1}:=\sqrt{3}$ and $\sigma_{2}:=1$ and the matrix D is

$$
D:=\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) .
$$

The normed eigenvectors of $A^{T} A$ corresponding to the eigenvalues λ_{1} resp. λ_{2} are

$$
v_{1}:=\frac{1}{\sqrt{2}}\binom{1}{-1} \quad \text { resp. } \quad v_{2}:=\frac{1}{\sqrt{2}}\binom{1}{1} .
$$

These are the columns of R^{T}, thus we consider the orthogonal Matrix

$$
R:=\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)^{T}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

The desired equation $A R^{-1}=Q D$ implies that for $i=1,2$ the i-th column of Q is equal to $1 / \sigma_{i}$ times the i-th column of $A R^{-1}$. Thus we have $Q:=$ $\left(w_{1} w_{2} w_{3}\right)$ with

$$
w_{1}:=\frac{1}{\sigma_{2}} A v_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w_{2}:=\frac{1}{\sigma_{1}} A v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

and an arbitrary vector w_{3}, such that $\left(w_{1}, w_{2}, w_{3}\right)$ is an orthonormal basis. For example, Gram-Schmidt for the basis $\left(w_{1}, w_{2}, e_{1}\right)$ with $e_{1}:=(1,0,0)^{T}$ yields

$$
w_{3}:=\frac{e_{1}-\left\langle e_{1}, w_{1}\right\rangle w_{1}-\left\langle e_{1}, w_{2}\right\rangle w_{2}}{\left\|e_{1}-\left\langle e_{1}, w_{1}\right\rangle w_{1}-\left\langle e_{1}, w_{2}\right\rangle w_{2}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) .
$$

The desired decomposition thus is

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)=A=Q D R=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 & 0 & \sqrt{2} \\
-1 & \sqrt{3} & \sqrt{2} \\
1 & \sqrt{3} & -\sqrt{2}
\end{array}\right) \cdot\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

(b) The transpose of an orthogonal matrix is again orthogonal. Thus $A^{T}=$ $R^{T} D^{T} Q^{T}$ is again a singular value decomposition.
2. Consider the real matrix

$$
A=\left(\begin{array}{ccc}
14 & -13 & 8 \\
-13 & 14 & 8 \\
8 & 8 & -7
\end{array}\right) \in M_{3 \times 3}(\mathbb{R})
$$

Find a matrix $P \in \mathrm{O}_{3}(\mathbb{R})$ such that $P^{-1} A P$ is diagonal.
Solution: ONB:

$$
\mathcal{B}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)\right\}
$$

consisting of eigenvectors of A such that

$$
P^{-1} A P=\left(\begin{array}{ccc}
27 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & -15
\end{array}\right) .
$$

3. Let V be an n-dimensional vector space over a field K. Show the following statements using the lemma about generalized eigenspaces seen in the lectures, but without using the Jordan Normal Form theorem:
(a) Suppose that $N \in \operatorname{End}(V)$ is nilpotent. Then 0 is an eigenvalue of N and it is the only one.
(b) If $N \in \operatorname{End}(V)$ is nilpotent, then $N^{n}=O_{n \times n}$. In other words, the nilpotency index of N is smaller or equal to $\operatorname{dim}(V)$.
(c) Suppose that $N \in \operatorname{End}(V)$ is nilpotent and assume that $p_{N}(x)$ splits as a product of linear factors in $K[x]$. Then $p_{N}(x)=(-x)^{n}$.
(d) Let $T \in \operatorname{End}(V)$ and assume that $p_{T}(x)$ splits into linear factors in $K[x]$. Let $\eta \in K$ and define $S=T-\eta \operatorname{Id}_{V}$. Then $p_{S}(x)$ also splits into a product of linear factors over $K[x]$. In fact, $p_{S}(x)=p_{T}(x+\eta)$.
(e) Let $T \in \operatorname{End}(V)$ and assume that $\lambda \in K$ is the only eigenvalue of T and that $p_{T}(x)$ splits as a product of linear factors in $K[x]$. Define $N=T-\lambda \operatorname{Id}_{V}$. Then $p_{N}(x)=(-x)^{n}$, and $N^{n}=O_{n \times n}$.

Solution:

(a) This was shown in serie 16, exercise 5 .
(b) By (a), 0 is an eigenvalue of N. We consider the generalised eigenspace $\mathrm{Eig}_{N}(0)$. We have

$$
\tilde{\operatorname{Eig}}_{N}(0)=\bigcup_{k=0}^{\infty} \operatorname{ker}\left(N^{k}\right)=V
$$

since there exists an integer m such that N^{m} vanishes. By lemma 1 in the notes jordan.b, we also have

$$
\tilde{\operatorname{Eig}}_{N}(0)=\operatorname{ker}\left(N^{n}\right)
$$

Hence $V=\operatorname{ker}\left(N^{n}\right)$, which implies that N^{n} vanishes.
(c) Since $p_{N}(x)$ splits as a product of linear factors in $K[x]$, we can write it as

$$
p_{N}(x)=\prod_{k=1}^{n}\left(\lambda_{i}-x\right),
$$

where the λ_{k} 's are the (not necessarily distinct) eigenvalues of N. It follows from (a) that $p_{N}(x)=(-x)^{n}$.
(d) For $\mu \in K$, we have

$$
\left(T-\eta \operatorname{Id}_{V}\right) u=\mu u \quad \Longleftrightarrow \quad T u=(\eta+\mu) u
$$

Thereupon, a scalar $\mu \in K$ is an eigenvalue of S if and only if $\mu+\eta$ is an
eigenvalue of T. Since $p_{T}(x)$ splits into linear factors in $K[x]$, we have

$$
\begin{aligned}
p_{T}(x+\eta) & =\prod_{\lambda \text { eigenvalue of } T}(\lambda-(x+\eta)) \\
& =\prod_{\lambda \text { eigenvalue of } T}(\lambda-\eta-x) \\
& =\prod_{\lambda \text { eigenvalue of } S}(\mu-x) \\
& =p_{S}(x) .
\end{aligned}
$$

Note that $p_{S}(x)$ splits into a product of linear factors since its roots are the set $\{\lambda-\eta \mid \lambda$ is an eigenvalue of $T\}$, and by assumption, the eigenvalues of T are in K and so is η.
(e) We start by showing that N is nilpotent. Indeed, by the first, proposition on page 6 of the lecture notes jordan.b, we have

$$
\begin{aligned}
V=\oplus_{\eta \text { eigenvalue of } T} \tilde{\operatorname{Eig}}_{T}(\eta) & =\tilde{\operatorname{Eig}}_{T}(\lambda) \\
& =\bigcup_{k=1}^{\infty} \operatorname{ker}\left(\left(T-\lambda \operatorname{Id}_{V}\right)^{k}\right) \\
& =\operatorname{ker}\left(\left(T-\lambda \operatorname{Id}_{V}\right)^{n}\right)
\end{aligned}
$$

where we used lemma 1 in the same lecture notes to obtain the last equality. Hence N^{n} is the trivial endomorphism. Now, it follows from (c) that $p_{N}(x)=$ $(-x)^{n}$.
4. Determine the Jordan normal form of the following matrix over \mathbb{R} and over \mathbb{F}_{3} :

$$
A:=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Lösung: Over \mathbb{R}, the characteristic polynomial of A is $(X-1)^{2}(X-4)$. The eigenspace to the eigenvalue 4 thus has dimension 1 . Next, we compute $\operatorname{rank}\left(A-I_{3}\right)$ $=1$; hence the eigenspace to eigenvalue 1 has dimension 2 . Therefore, there eixists a basis consisting of eigenvectors and the matrix is diagonalisable over \mathbb{R} with Jordan normal form

$$
\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Over \mathbb{F}_{3} the characteristic polynomial is equal to $(X-1)^{3}$; thus A has exactly one eigenspace, which corresponds to $X-1$. We compute

$$
A-I_{3}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

and $\left(A-I_{3}\right)^{k}=0$ für $k \geqslant 2$. From $\operatorname{dim} \operatorname{Kern}\left(A-I_{3}\right)=2$ it follows that there exist Jordan blocks of size 1 and 2 . Thus the matrix A over \mathbb{F}_{3} has Jordan normal form

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

5. Determine the Jordan normal form and the corresponding base change matrices of the real matrix

$$
A:=\left(\begin{array}{llll}
2 & 2 & 2 & 2 \\
0 & 3 & 0 & 2 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Lösung: The characteristic polynomial of A is

$$
\operatorname{char}_{A}(X)=X^{4}-11 X^{3}+45 X^{2}-81 X+54=(X-2) \cdot(X-3)^{3}
$$

We treat 2 and 3 separately.
Eigenvalue 2: The space $\tilde{\operatorname{Eig}}_{A}(2)$ is one-dimensional and equal to the eigenspace of A corresponding to 2 . We compute $\operatorname{Ker}\left(A-2 \mathrm{Id}_{4}\right)$ and find the eigenvector

$$
v_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Eigenvalue 3: For $B:=A-3 \operatorname{Id}_{4}$, we have

$$
B=\left(\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B^{2}=\left(\begin{array}{cccc}
1 & -2 & -2 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=-B^{3}
$$

This yields

k	1	2	3	4	\cdots
$\operatorname{rank}\left(B^{k}\right)$	2	1	1	1	\cdots
$\operatorname{dim} \operatorname{Ker}\left(L_{B^{k}}\right)$	2	3	3	3	\cdots
$\# k \times k$-Jordan block to EV 3	1	1	0	0	\cdots

We compute

$$
\tilde{\operatorname{Eig}}_{A}(3)=\operatorname{Ker}\left(L_{B^{3}}\right)=\left\langle\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-6 \\
0 \\
0 \\
1
\end{array}\right)\right\rangle .
$$

Next, we search for a vector $v_{2} \in \tilde{\operatorname{Eig}}_{A}(3)$, whose image under L_{B} is non-zero. One example is

$$
v_{2}:=\left(\begin{array}{c}
-6 \\
0 \\
0 \\
1
\end{array}\right) \quad \text { with } \quad B v_{2}=\left(\begin{array}{l}
8 \\
2 \\
2 \\
0
\end{array}\right) .
$$

We search for another vector $v_{3} \in \operatorname{Kern}\left(L_{B}\right) \backslash\left\langle B v_{2}\right\rangle$, e.g.

$$
v_{3}:=\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right)
$$

Then $v_{2}, B v_{2}, v_{3}$ is a basis of $\tilde{\operatorname{Eig}}_{A}(3)$.
Combining the cases: By the decomposition into generalized eigenspaces $b:=$ $\left(v_{1}, B v_{2}, v_{2}, v_{3}\right)$ is a basis \mathbb{R}^{4}. By construction, we have $A v_{1}=2 v_{1}$ and $A\left(B v_{2}\right)=$ $3\left(B v_{2}\right)$ and $A v_{2}=B v_{2}+3 v_{2}$ as well as $A v_{3}=3 v_{3}$. For the base change matrix, we have

$$
S:=\left(v_{1}\left|v_{3}\right| B v_{2} \mid v_{2}\right)=\left(\begin{array}{cccc}
1 & 2 & 8 & -6 \\
0 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

hence

$$
S^{-1} A S=\left(\begin{array}{c|c|cc}
2 & 0 & 0 & 0 \\
\hline 0 & 3 & 0 & 0 \\
\hline 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right) .
$$

This is the Jordan normal form of A.
6. Example regarding special relativity. Define the symmetric blinear forms: $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ for all $v=(x, y, z, t)^{T}$ and $v^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)^{T}$ in \mathbb{R}^{4} by

$$
s\left(v, v^{\prime}\right):=x x^{\prime}+y y^{\prime}+z z^{\prime}-c t t^{\prime},
$$

where $c>0$ is a fixed parameter. The space $M:=\left(\mathbb{R}^{4}, s\right)$ is called Minkowski space (sometimes Minkowski spacetime) and the parameter c is called light speed. We use the normalization $c=1$.

A linear map $F: M \rightarrow M$ is called isometry or Lorentz transformation, if

$$
\forall v, w \in \mathbb{R}^{4}: s(F(v), F(w))=s(v, w)
$$

(a) Show that every isometry is bijective
(b) Show that the following endomorphisms are isometries of M :
i. Left multiplication with $\left(\begin{array}{c|c}T & 0 \\ \hline 0 & \pm 1\end{array}\right)$ für jedes $T \in O(3)$.
ii. A Lorentz boost in x-direction with speed $v<c=1$, given by left multiplication with the matrix

$$
B:=\left(\begin{array}{cccc}
\gamma & & & -v \gamma \\
& 1 & & \\
& & 1 & \\
-v \gamma & & & \gamma,
\end{array}\right)
$$

$$
\text { for } \gamma:=1 / \sqrt{1-v^{2}} .
$$

(c) The subset $\{x \in M \mid s(x, x)=0\}$ is called light cone in M. Prove the „relativistic football theorem": Every linear isometry φ with $\operatorname{det}(\varphi)=1$ has an eigenvector in the light cone.

Remark. For $c \rightarrow \infty$ the light cone approaches the subspace $\{t=0\}$ and the statement reduces to the classical case.

Lösung:

(a) Let $F: M \rightarrow M$ be an isometry, and let $v=\left(x_{1}, \ldots, x_{4}\right)^{T}$ be an arbitrary element contained in the kernel of F. Denote by e_{1}, \ldots, e_{4} the standard basis of $M=\mathbb{R}^{4}$. Then for all $i=1, \ldots, 4$ we have

$$
\pm x_{i}=s\left(v, e_{i}\right)=s\left(F(v), F\left(e_{i}\right)\right)=s\left(0, e_{i}\right)=0
$$

and so $v=0$. This means that $\operatorname{Kern}(F)=\{0\}$, and as injective endomorphism of finite-dimensional vector spaces F is also bijective.
(b) (i) Follows from direct computations
(ii) For all $v=(x, y, z, t)^{T}$ and $v^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)^{T}$ in M we have

$$
\begin{aligned}
s\left(B v, B v^{\prime}\right) & =(\gamma x-v \gamma t)\left(\gamma x^{\prime}-v \gamma t^{\prime}\right)+y y^{\prime}+z z^{\prime}-(-v \gamma x+\gamma t)\left(-v \gamma x^{\prime}+\gamma t^{\prime}\right) \\
& =\left(\gamma^{2}-v^{2} \gamma^{2}\right) x x^{\prime}+y y^{\prime}+z z^{\prime}-\left(\gamma^{2}-v^{2} \gamma^{2}\right) t t^{\prime} \\
& =x x^{\prime}+y y^{\prime}+z z^{\prime}-t t^{\prime} \\
& =s(v, w),
\end{aligned}
$$

hence the Lorentzboost L_{B} is an isometry.
(c) Let $\varphi: M \rightarrow M$ be a linear isometry with $\operatorname{det}(\varphi)=1$.

Step 1: There exists an φ-invariant subspace U of dimension 2.
Proof: Every irreducible factor of the characteristic polynomial of φ had degree 1 or 2 . If there exists an irreducible factor of degree 2 we can write the Jordan normal form of φ with an 2×2-block in the upper left corner. Otherweise, all irreducible factors have degree 1 and the Jordan normal form of φ is an upper triangular matrix. In both cases, the first two basis vectors generate an φ-invariant subspace of dimension 2 .

Step 2: The „orthogonal complement"

$$
U^{\perp}=\{v \in M \mid \forall u \in U: s(u, v)=0\}
$$

also is a φ-invariant subspace of dimension 2 .
Proof: As in the case of a scalar product, since s is non-degenerate.
Step 3: We have $U \varsubsetneqq U^{\perp}$.
Proof: The restriction of s on the subspace V generated by $t=0$ is positive definite. Moreover, we have

$$
\begin{aligned}
\operatorname{dim}(U \cap V) & =\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U+V) \\
& \geqslant \operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(M)=2+3-4=1
\end{aligned}
$$

Hence, there exists a non-zero vector $u \in U \cap V$, for which we have $s(u, u)>0$. Hence $u \notin U^{\perp}$.

Step 4: Proof in the case of $U \cap U^{\perp} \neq 0$.
Proof: Using steps 1 and 2 we get that $U \cap U^{\perp}$ is an φ-invariant subspaces, and by step 3 it has dimension 1 . Every non-zero vector u contained there hence is an eigenvector of φ. By definition of U^{\perp} it satisfies $s(u, u)=0$, as desired.

From now on, we assume $U \cap U^{\perp}=0$. Then we have $M=U \oplus U^{\perp}$.
Step 5: After exchanging U and U^{\perp} if possible we can assume that s is positive definite on U and indefinite on U^{\perp}.

Proof: Consider any ordered basis of U and extend it with an ordered basis of U^{\perp} to a basis B of M. By definition of U^{\perp} the representation matrix $[s]_{B}$ is a block diagonal matrix with blocks of size 2 . The signature of s thus is the sum of the signatures of $\left.s\right|_{U \times U}$ and $\left.s\right|_{U^{\perp} \times U^{\perp}}$. As s has signature $(3,1)$ one of the restrictions needs to habe signature $(2,0)$ and the other signature $(1,1)$.

Step 6: For the restrictions of the given isometry

$$
\varphi_{U}:=\left.\varphi\right|_{U}: U \rightarrow U \quad \text { and } \quad \varphi_{U^{\perp}}:=\left.\varphi\right|_{U^{\perp}}: U^{\perp} \rightarrow U^{\perp}
$$

we have $\operatorname{det}\left(\varphi_{U}\right)=\operatorname{det}\left(\varphi_{U^{\perp}}\right)= \pm 1$.
Proof: The restriction φ_{U} is an isometry with respect to $\left.s\right|_{U \times U}$, hence we have $\operatorname{det}\left(\varphi_{U}\right)= \pm 1$. Moreover, by assumption we get

$$
\operatorname{det}\left(\varphi_{U}\right) \cdot \operatorname{det}\left(\varphi_{U^{\perp}}\right)=\operatorname{det}(\varphi)=1
$$

Together this yields $\operatorname{det}\left(\varphi_{U^{\perp}}\right)=\operatorname{det}\left(\varphi_{U}\right)$.
Step 7: Proof in the case $\operatorname{det}\left(\varphi_{U}\right)=\operatorname{det}\left(\varphi_{U^{\perp}}\right)=-1$.
Proof: Here φ_{U} is an isometry of the 2-dimensional Euclidean vectorspace U with determinant -1 , hence it is a reflection with eigenvalues +1 and -1 . Moreover, we have that $\varphi_{U^{\perp}}$ is an endomorphism of the 2-dimensional real vectorspace U^{\perp} with determinant -1 . Hence the charakteristisc polynomial splits into linear factors over \mathbb{R} and thus there exists an eigenvector $v \in U^{\perp}$, we call its eigenvalue λ. If $s(v, v)=0$, this is the desired eigenvector in the light cone. Otherwise, the computation

$$
s(v, v)=s(\varphi(v), \varphi(v))=s(\lambda v, \lambda v)=\lambda^{2} \cdot s(v, v)
$$

yields $\lambda= \pm 1$. As $\operatorname{det}\left(\varphi_{U^{\perp}}\right)=-1$, we get that $\varphi_{U^{\perp}}$ also needs to have eigenvalue $-1 / \lambda=\mp 1$. Together this shwos that φ has eigenvalues ± 1 with respective multiplicity 2 .
Both Eigenspaces are then φ-invariant subspaces of dimension 2. After replacing U and U^{\perp} by these, the restriction $\varphi_{U^{\perp}}$ thus is scalar. As $\left.s\right|_{U^{\perp} \times U^{\perp}}$ is indefinite, there exists a vector $v \in U^{\perp}$ with $s(v, v)=0$. This is the searched eigenvector in the light cone.

Step 8: Proof in the case of $\operatorname{det}\left(\varphi_{U}\right)=\operatorname{det}\left(\varphi_{U^{\perp}}\right)=1$.
Proof: As $\left.s\right|_{U^{\perp} \times U^{\perp}}$ is indefinite, there exists a basis B of U^{\perp} with

$$
\left[\left.s\right|_{U \perp \times U^{\perp}}\right]_{B}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

For the representation matrix $A:={ }_{B}\left[\varphi_{U^{\perp}}\right]_{B}$ we have $A^{T}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\operatorname{det}(A)=1$. Direct computations show that these conditions are equivalent to

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

for $a, b \in \mathbb{R}$ with $a^{2}-b^{2}=1$. The column vector $\binom{1}{1}$ corresponds to an eigenvector $\varphi_{U^{\perp}}$ with eigenvalue $a+b$ in the light cone.

Single Choice. In each exercise, exactly one answer is correct.

1. Let f be an endomorphism of a finite-dimensional vector space V and let λ be an eigenvalue of f. Which statement is generally false?
(a) Every eigenvector of f corresponding to the eigenvalue λ lies in the eigenspace $\tilde{\mathrm{Eig}}_{f}(\lambda)$.
(b) Every vector in $\tilde{\operatorname{Eig}}_{f}(\lambda)$ is an eigenvector of f corresponding to the eigenvalue λ.
(c) The generalized eigenspace $\tilde{\operatorname{Eig}}_{f}(\lambda)$ is not the zero space.
(d) For every eigenvalue μ of f with $\mu \neq \lambda$, we have $\tilde{\operatorname{Eig}}_{f}(\mu) \cap \tilde{\operatorname{Eig}}_{f}(\lambda)=\langle 0\rangle$.

Explanation: The generalized eigenspace of the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ with respect to $X-1$ is two-dimensional, but the eigenspace is one-dimensional.
2. For every endomorphism f of an n-dimensional vector space V whose characteristic polynomial factors into linear factors, and every eigenvalue λ of f we have:
(a) $\tilde{\operatorname{Eig}}_{f}(\lambda)=\operatorname{Kern}\left(f-\lambda \mathrm{id}_{V}\right)$.
(b) $\operatorname{dim}\left(\operatorname{Eig}_{f}(\lambda)\right)=1$.
(c) $\operatorname{dim}\left(\operatorname{Eig}_{f}(\lambda)\right)=n$.
(d) $\tilde{\operatorname{Eig}}_{f}(\lambda)=\operatorname{Kern}\left(\left(f-\lambda \operatorname{id}_{V}\right)^{n}\right)$.

Explanation: Let m be the algebraic multiplicity of λ. Then we have $m \leqslant n$ and $\tilde{\operatorname{Eig}}_{f}(\lambda)=\operatorname{Kern}\left(\left(f-\lambda \mathrm{id}_{V}\right)^{m}\right) \subset \operatorname{Kern}\left(\left(f-\lambda \mathrm{id}_{V}\right)^{n}\right)$. By the decomposition formula with respect to generalized eigenspaces, it follows that this inclusion is an equality.
3. The generalized eigenspace of the real matrix $A:=\left(\begin{array}{cccc}2 & 3 & -1 & 5 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 3\end{array}\right)$ with respect to $X-2$ is
(a) One-dimensional
(b) Two-dimensional
(c) Three-dimensional
(d) Four-dimensional

Explanation: Regardless of what is above the diagonal, the characteristic polynomial is $(X-2)^{3}(X-3)$; therefore, the generalized eigenspace with respect to $X-2$ has dimension 3.
4. Let A be a 3×3 matrix with $A \neq 0$ and $A^{2}=0$. Then, the Jordan normal form of A has
(a) 1 Jordan block.
(b) 2 Jordan blocks.
(c) 3 Jordan blocks.
(d) It depends on the exact matrix A.

Explanation: A nilpotent matrix has only the eigenvalue 0 , so the possible Jordan normal forms are $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. The first matrix has a non-zero square, and because A is also not the zero matrix, only the middle option remains, so the Jordan normal form has two Jordan blocks.

Multiple Choice Fragen

1. Which of the following statements is true: For arbitrary integers $n>m \geqslant 1$, there exists a square matrix with...
(a) characteristic polynomial $X^{m}+X^{n}$.
(b) minimal polynomial X^{m} and characteristic polynomial X^{n}.
(c) minimal polynomial $X^{m} \cdot\left(X^{n}-1\right)$.

Explanation: The companion matrix of a polynomial has exactly this polynomial as its minimal and characteristic polynomial; hence, (a) and (c) are correct. Also, (b) is correct, for example, by taking a block diagonal matrix with a Jordan block of size m and $n-m$ Jordan blocks of size 1 .

