Lineare Algebra II

Musterlösung Serie 24

BILINEAR FORMS, SINGULAR VALUES DECOMPOSITION, JORDAN NORMAL FORM

1. (a) Determine a singular value decomposition A = QDR of the real matrix

$$A := \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

(b) Determine a singular value decomposition of A^T .

Lösung:

(a) We compute the matrix

$$A^{T}A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

and the corresponding characteristic polynomial

$$P_{A^T A}(X) = \det \begin{pmatrix} 2-X & -1 \\ -1 & 2-X \end{pmatrix} = X^2 - 4X + 3 = (X-3)(X-1).$$

Hence $A^T A$ has Eigenvalues $\lambda_1 := 3$ and $\lambda_2 := 1$. The singular values of A therefore are $\sigma_1 := \sqrt{3}$ and $\sigma_2 := 1$ and the matrix D is

$$D := \begin{pmatrix} \sqrt{3} & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix}$$

The normed eigenvectors of $A^T A$ corresponding to the eigenvalues λ_1 resp. λ_2 are

$$v_1 := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 resp. $v_2 := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

These are the columns of \mathbb{R}^T , thus we consider the orthogonal Matrix

$$R := (v_1 \ v_2)^T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

The desired equation $AR^{-1} = QD$ implies that for i = 1, 2 the *i*-th column of Q is equal to $1/\sigma_i$ times the *i*-th column of AR^{-1} . Thus we have $Q := (w_1 \ w_2 \ w_3)$ with

$$w_1 := \frac{1}{\sigma_2} A v_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$$
 and $w_2 := \frac{1}{\sigma_1} A v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}$

and an arbitrary vector w_3 , such that (w_1, w_2, w_3) is an orthonormal basis. For example, Gram-Schmidt for the basis (w_1, w_2, e_1) with $e_1 := (1, 0, 0)^T$ yields

$$w_3 := \frac{e_1 - \langle e_1, w_1 \rangle w_1 - \langle e_1, w_2 \rangle w_2}{||e_1 - \langle e_1, w_1 \rangle w_1 - \langle e_1, w_2 \rangle w_2||} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}.$$

The desired decomposition thus is

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = A = QDR = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & 0 & \sqrt{2} \\ -1 & \sqrt{3} & \sqrt{2} \\ 1 & \sqrt{3} & -\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} .$$

- (b) The transpose of an orthogonal matrix is again orthogonal. Thus $A^T = R^T D^T Q^T$ is again a singular value decomposition.
- 2. Consider the real matrix

$$A = \begin{pmatrix} 14 & -13 & 8\\ -13 & 14 & 8\\ 8 & 8 & -7 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

Find a matrix $P \in O_3(\mathbb{R})$ such that $P^{-1}AP$ is diagonal. Solution: ONB:

$$\mathcal{B} = \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix} \right\}$$

consisting of eigenvectors of A such that

$$P^{-1}AP = \begin{pmatrix} 27 & 0 & 0\\ 0 & 9 & 0\\ 0 & 0 & -15 \end{pmatrix}.$$

3. Let V be an n-dimensional vector space over a field K. Show the following statements using the lemma about generalized eigenspaces seen in the lectures, but without using the Jordan Normal Form theorem:

- (a) Suppose that $N \in \text{End}(V)$ is nilpotent. Then 0 is an eigenvalue of N and it is the only one.
- (b) If $N \in \text{End}(V)$ is nilpotent, then $N^n = O_{n \times n}$. In other words, the nilpotency index of N is smaller or equal to dim(V).
- (c) Suppose that $N \in \text{End}(V)$ is nilpotent and assume that $p_N(x)$ splits as a product of linear factors in K[x]. Then $p_N(x) = (-x)^n$.
- (d) Let $T \in \text{End}(V)$ and assume that $p_T(x)$ splits into linear factors in K[x]. Let $\eta \in K$ and define $S = T \eta \operatorname{Id}_V$. Then $p_S(x)$ also splits into a product of linear factors over K[x]. In fact, $p_S(x) = p_T(x + \eta)$.
- (e) Let $T \in \text{End}(V)$ and assume that $\lambda \in K$ is the only eigenvalue of T and that $p_T(x)$ splits as a product of linear factors in K[x]. Define $N = T \lambda \operatorname{Id}_V$. Then $p_N(x) = (-x)^n$, and $N^n = O_{n \times n}$.

Solution:

- (a) This was shown in serie 16, exercise 5.
- (b) By (a), 0 is an eigenvalue of N. We consider the generalised eigenspace $\operatorname{Eig}_{N}(0)$. We have

$$\tilde{\operatorname{Eig}}_N(0) = \bigcup_{k=0}^{\infty} \ker(N^k) = V,$$

since there exists an integer m such that N^m vanishes. By lemma 1 in the notes jordan.b, we also have

$$\tilde{\text{Eig}}_N(0) = \ker(N^n).$$

Hence $V = \ker(N^n)$, which implies that N^n vanishes.

(c) Since $p_N(x)$ splits as a product of linear factors in K[x], we can write it as

$$p_N(x) = \prod_{k=1}^n (\lambda_i - x),$$

where the λ_k 's are the (not necessarily distinct) eigenvalues of N. It follows from (a) that $p_N(x) = (-x)^n$.

(d) For $\mu \in K$, we have

$$(T - \eta \operatorname{Id}_V)u = \mu u \iff Tu = (\eta + \mu)u.$$

Thereupon, a scalar $\mu \in K$ is an eigenvalue of S if and only if $\mu + \eta$ is an

eigenvalue of T. Since $p_T(x)$ splits into linear factors in K[x], we have

$$p_T(x + \eta) = \prod_{\substack{\lambda \text{ eigenvalue of } T}} (\lambda - (x + \eta))$$
$$= \prod_{\substack{\lambda \text{ eigenvalue of } T}} (\lambda - \eta - x)$$
$$= \prod_{\substack{\lambda \text{ eigenvalue of } S}} (\mu - x)$$
$$= p_S(x).$$

Note that $p_S(x)$ splits into a product of linear factors since its roots are the set $\{\lambda - \eta \mid \lambda \text{ is an eigenvalue of } T\}$, and by assumption, the eigenvalues of T are in K and so is η .

(e) We start by showing that N is nilpotent. Indeed, by the first , proposition on page 6 of the lecture notes jordan.b, we have

$$V = \bigoplus_{\eta \text{ eigenvalue of } T} \tilde{\text{Eig}}_{T}(\eta) = \tilde{\text{Eig}}_{T}(\lambda)$$
$$= \bigcup_{k=1}^{\infty} \ker((T - \lambda \operatorname{Id}_{V})^{k})$$
$$= \ker((T - \lambda \operatorname{Id}_{V})^{n}),$$

where we used lemma 1 in the same lecture notes to obtain the last equality. Hence N^n is the trivial endomorphism. Now, it follows from (c) that $p_N(x) = (-x)^n$.

4. Determine the Jordan normal form of the following matrix over \mathbb{R} and over \mathbb{F}_3 :

$$A := \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Lösung: Over \mathbb{R} , the characteristic polynomial of A is $(X - 1)^2(X - 4)$. The eigenspace to the eigenvalue 4 thus has dimension 1. Next, we compute rank $(A-I_3)$ = 1; hence the eigenspace to eigenvalue 1 has dimension 2. Therefore, there eixists a basis consisting of eigenvectors and the matrix is diagonalisable over \mathbb{R} with Jordan normal form

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Over \mathbb{F}_3 the characteristic polynomial is equal to $(X-1)^3$; thus A has exactly one eigenspace, which corresponds to X-1. We compute

$$A - I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

and $(A - I_3)^k = 0$ für $k \ge 2$. From dim Kern $(A - I_3) = 2$ it follows that there exist Jordan blocks of size 1 and 2. Thus the matrix A over \mathbb{F}_3 has Jordan normal form

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

5. Determine the Jordan normal form and the corresponding base change matrices of the real matrix

$$A := \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 3 & 0 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Lösung: The characteristic polynomial of A is

$$\operatorname{char}_{A}(X) = X^{4} - 11X^{3} + 45X^{2} - 81X + 54 = (X - 2) \cdot (X - 3)^{3}.$$

We treat 2 and 3 separately.

Eigenvalue 2: The space $\tilde{\text{Eig}}_A(2)$ is one-dimensional and equal to the eigenspace of A corresponding to 2. We compute $\text{Ker}(A - 2 \text{ Id}_4)$ and find the eigenvector

$$v_1 := \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}.$$

Eigenvalue 3: For $B := A - 3 \operatorname{Id}_4$, we have

This yields

k	1	2	3	4	
$\operatorname{rank}(B^k)$	2	1	1	1	
$\dim \operatorname{Ker}(L_{B^k})$	2	3	3	3	
# $k \times k$ -Jordan block to EV 3	1	1	0	0	

We compute

$$\tilde{\text{Eig}}_{A}(3) = \text{Ker}(L_{B^{3}}) = \left\langle \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -6\\0\\0\\1 \end{pmatrix} \right\rangle.$$

Next, we search for a vector $v_2 \in \tilde{\text{Eig}}_A(3)$, whose image under L_B is non-zero. One example is

$$v_2 := \begin{pmatrix} -6\\0\\0\\1 \end{pmatrix} \quad \text{with} \quad Bv_2 = \begin{pmatrix} 8\\2\\2\\0 \end{pmatrix}.$$

We search for another vector $v_3 \in \text{Kern}(L_B) \smallsetminus \langle Bv_2 \rangle$, e.g.

$$v_3 := \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}.$$

Then v_2, Bv_2, v_3 is a basis of $\tilde{\text{Eig}}_A(3)$.

Combining the cases: By the decomposition into generalized eigenspaces $b := (v_1, Bv_2, v_2, v_3)$ is a basis \mathbb{R}^4 . By construction, we have $Av_1 = 2v_1$ and $A(Bv_2) = 3(Bv_2)$ and $Av_2 = Bv_2 + 3v_2$ as well as $Av_3 = 3v_3$. For the base change matrix, we have

$$S := (v_1 \mid v_3 \mid Bv_2 \mid v_2) = \begin{pmatrix} 1 & 2 & 8 & -6 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

hence

$$S^{-1}AS = \begin{pmatrix} 2 & 0 & 0 & 0 \\ \hline 0 & 3 & 0 & 0 \\ \hline 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

This is the Jordan normal form of A.

6. Example regarding special relativity. Define the symmetric blinear form $s \colon \mathbb{R}^4 \to \mathbb{R}^4$ for all $v = (x, y, z, t)^T$ and $v' = (x', y', z', t')^T$ in \mathbb{R}^4 by

$$s(v, v') := xx' + yy' + zz' - ctt',$$

where c > 0 is a fixed parameter. The space $M := (\mathbb{R}^4, s)$ is called *Minkowski* space (sometimes Minkowski spacetime) and the parameter c is called *light speed*. We use the normalization c = 1.

A linear map $F: M \to M$ is called *isometry* or *Lorentz transformation*, if

$$\forall v, w \in \mathbb{R}^4 \colon s(F(v), F(w)) = s(v, w) \,.$$

- (a) Show that every isometry is bijective.
- (b) Show that the following endomorphisms are isometries of M:
 - i. Left multiplication with $\left(\begin{array}{c|c} T & 0 \\ \hline 0 & \pm 1 \end{array}\right)$ für jedes $T \in O(3)$.
 - ii. A Lorentz boost in x-direction with speed v < c = 1, given by left multiplication with the matrix

$$B := \begin{pmatrix} \gamma & & -v\gamma \\ & 1 & & \\ & & 1 & \\ -v\gamma & & & \gamma, \end{pmatrix}$$

for $\gamma := 1/\sqrt{1 - v^2}$.

(c) The subset $\{x \in M \mid s(x, x) = 0\}$ is called *light cone in* M. Prove the "relativistic football theorem": Every linear isometry φ with $det(\varphi) = 1$ has an eigenvector in the light cone.

Remark. For $c \to \infty$ the light cone approaches the subspace $\{t = 0\}$ and the statement reduces to the classical case.

Lösung:

(a) Let $F: M \to M$ be an isometry, and let $v = (x_1, \ldots, x_4)^T$ be an arbitrary element contained in the kernel of F. Denote by e_1, \ldots, e_4 the standard basis of $M = \mathbb{R}^4$. Then for all $i = 1, \ldots, 4$ we have

$$\pm x_i = s(v, e_i) = s(F(v), F(e_i)) = s(0, e_i) = 0,$$

and so v = 0. This means that $\text{Kern}(F) = \{0\}$, and as injective endomorphism of finite-dimensional vector spaces F is also bijective.

(b) (i) Follows from direct computations

(ii) For all $v = (x, y, z, t)^T$ and $v' = (x', y', z', t')^T$ in M we have

$$\begin{aligned} s(Bv, Bv') &= (\gamma x - v\gamma t)(\gamma x' - v\gamma t') + yy' + zz' - (-v\gamma x + \gamma t)(-v\gamma x' + \gamma t') \\ &= (\gamma^2 - v^2\gamma^2)xx' + yy' + zz' - (\gamma^2 - v^2\gamma^2)tt' \\ &= xx' + yy' + zz' - tt' \\ &= s(v, w), \end{aligned}$$

hence the Lorentzboost L_B is an isometry.

(c) Let $\varphi: M \to M$ be a linear isometry with $\det(\varphi) = 1$.

Step 1: There exists an φ -invariant subspace U of dimension 2.

Proof: Every irreducible factor of the characteristic polynomial of φ had degree 1 or 2. If there exists an irreducible factor of degree 2 we can write the Jordan normal form of φ with an 2 × 2-block in the upper left corner. Otherweise, all irreducible factors have degree 1 and the Jordan normal form of φ is an upper triangular matrix. In both cases, the first two basis vectors generate an φ -invariant subspace of dimension 2.

Step 2: The "orthogonal complement"

$$U^{\perp} = \{ v \in M \mid \forall u \in U \colon s(u, v) = 0 \}$$

also is a φ -invariant subspace of dimension 2.

Proof: As in the case of a scalar product, since s is non-degenerate. \Box Step 3: We have $U \subsetneq U^{\perp}$.

Proof: The restriction of s on the subspace V generated by t = 0 is positive definite. Moreover, we have

$$\dim(U \cap V) = \dim(U) + \dim(V) - \dim(U + V) \\ \ge \dim(U) + \dim(V) - \dim(M) = 2 + 3 - 4 = 1.$$

Hence, there exists a non-zero vector $u \in U \cap V$, for which we have s(u, u) > 0. Hence $u \notin U^{\perp}$.

Step 4: Proof in the case of $U \cap U^{\perp} \neq 0$.

Proof: Using steps 1 and 2 we get that $U \cap U^{\perp}$ is an φ -invariant subspaces, and by step 3 it has dimension 1. Every non-zero vector u contained there hence is an eigenvector of φ . By definition of U^{\perp} it satisfies s(u, u) = 0, as desired.

From now on, we assume $U \cap U^{\perp} = 0$. Then we have $M = U \oplus U^{\perp}$.

Step 5: After exchanging U and U^{\perp} if possible we can assume that s is positive definite on U and indefinite on U^{\perp} .

Proof: Consider any ordered basis of U and extend it with an ordered basis of U^{\perp} to a basis B of M. By definition of U^{\perp} the representation matrix $[s]_B$ is a block diagonal matrix with blocks of size 2. The signature of s thus is the sum of the signatures of $s|_{U\times U}$ and $s|_{U^{\perp}\times U^{\perp}}$. As s has signature (3,1) one of the restrictions needs to habe signature (2,0) and the other signature (1,1).

Step 6: For the restrictions of the given isometry

$$\varphi_U := \varphi|_U : U \to U$$
 and $\varphi_{U^{\perp}} := \varphi|_{U^{\perp}} : U^{\perp} \to U^{\perp}$

we have $det(\varphi_U) = det(\varphi_{U^{\perp}}) = \pm 1$.

Proof: The restriction φ_U is an isometry with respect to $s|_{U \times U}$, hence we have $\det(\varphi_U) = \pm 1$. Moreover, by assumption we get

$$\det(\varphi_U) \cdot \det(\varphi_{U^{\perp}}) = \det(\varphi) = 1$$

Together this yields $det(\varphi_{U^{\perp}}) = det(\varphi_U)$.

Step 7: Proof in the case $det(\varphi_U) = det(\varphi_{U^{\perp}}) = -1$.

Proof: Here φ_U is an isometry of the 2-dimensional Euclidean vectorspace U with determinant -1, hence it is a reflection with eigenvalues +1 and -1. Moreover, we have that $\varphi_{U^{\perp}}$ is an endomorphism of the 2-dimensional real vectorspace U^{\perp} with determinant -1. Hence the charakteristic polynomial splits into linear factors over \mathbb{R} and thus there exists an eigenvector $v \in U^{\perp}$, we call its eigenvalue λ . If s(v, v) = 0, this is the desired eigenvector in the light cone. Otherwise, the computation

$$s(v,v) = s(\varphi(v),\varphi(v)) = s(\lambda v,\lambda v) = \lambda^2 \cdot s(v,v),$$

yields $\lambda = \pm 1$. As $\det(\varphi_{U^{\perp}}) = -1$, we get that $\varphi_{U^{\perp}}$ also needs to have eigenvalue $-1/\lambda = \mp 1$. Together this shows that φ has eigenvalues ± 1 with respective multiplicity 2.

Both Eigenspaces are then φ -invariant subspaces of dimension 2. After replacing U and U^{\perp} by these, the restriction $\varphi_{U^{\perp}}$ thus is scalar. As $s|_{U^{\perp}\times U^{\perp}}$ is indefinite, there exists a vector $v \in U^{\perp}$ with s(v, v) = 0. This is the searched eigenvector in the light cone.

Step 8: Proof in the case of $\det(\varphi_U) = \det(\varphi_{U^{\perp}}) = 1$. **Proof:** As $s|_{U^{\perp} \times U^{\perp}}$ is indefinite, there exists a basis B of U^{\perp} with

$$[s|_{U^{\perp}\times U^{\perp}}]_B = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

For the representation matrix $A := {}_{B}[\varphi_{U^{\perp}}]_{B}$ we have $A^{T} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\det(A) = 1$. Direct computations show that these conditions are equivalent to

$$A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

for $a, b \in \mathbb{R}$ with $a^2 - b^2 = 1$. The column vector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ corresponds to an eigenvector $\varphi_{U^{\perp}}$ with eigenvalue a + b in the light cone.

Single Choice. In each exercise, exactly one answer is correct.

- 1. Let f be an endomorphism of a finite-dimensional vector space V and let λ be an eigenvalue of f. Which statement is generally false?
 - (a) Every eigenvector of f corresponding to the eigenvalue λ lies in the eigenspace $\tilde{\text{Eig}}_{f}(\lambda)$.
 - (b) Every vector in $\tilde{\text{Eig}}_f(\lambda)$ is an eigenvector of f corresponding to the eigenvalue λ .
 - (c) The generalized eigenspace $\tilde{\text{Eig}}_f(\lambda)$ is not the zero space.
 - (d) For every eigenvalue μ of f with $\mu \neq \lambda$, we have $\tilde{\text{Eig}}_f(\mu) \cap \tilde{\text{Eig}}_f(\lambda) = \langle 0 \rangle$.

Explanation: The generalized eigenspace of the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with respect to X - 1 is two-dimensional, but the eigenspace is one-dimensional.

- 2. For every endomorphism f of an n-dimensional vector space V whose characteristic polynomial factors into linear factors, and every eigenvalue λ of f we have:
 - (a) $\operatorname{Eig}_f(\lambda) = \operatorname{Kern}(f \lambda \operatorname{id}_V).$
 - (b) $\dim(\tilde{\operatorname{Eig}}_f(\lambda)) = 1.$
 - (c) $\dim(\tilde{\operatorname{Eig}}_{f}(\lambda)) = n.$

(d)
$$| \tilde{\operatorname{Eig}}_f(\lambda) = \operatorname{Kern}((f - \lambda \operatorname{id}_V)^n).$$

Explanation: Let m be the algebraic multiplicity of λ . Then we have $m \leq n$ and $\operatorname{Eig}_f(\lambda) = \operatorname{Kern}((f - \lambda \operatorname{id}_V)^m) \subset \operatorname{Kern}((f - \lambda \operatorname{id}_V)^n)$. By the decomposition formula with respect to generalized eigenspaces, it follows that this inclusion is an equality.

3. The generalized eigenspace of the real matrix $A := \begin{pmatrix} 2 & 3 & -1 & 5 \\ 0 & 2 & -3 & 1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ with respect

to X-2 is

- (a) One-dimensional
- (b) Two-dimensional
- (c) Three-dimensional
- (d) Four-dimensional

Explanation: Regardless of what is above the diagonal, the characteristic polynomial is $(X-2)^3(X-3)$; therefore, the generalized eigenspace with respect to X-2 has dimension 3.

- 4. Let A be a 3×3 matrix with $A \neq 0$ and $A^2 = 0$. Then, the Jordan normal form of A has
 - (a) 1 Jordan block.
 - (b) 2 Jordan blocks.
 - (c) 3 Jordan blocks.
 - (d) It depends on the exact matrix A.

Explanation: A nilpotent matrix has only the eigenvalue 0, so the possible Jordan normal forms are $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. The first matrix has a non-zero square, and because A is also not the zero matrix, only the middle option remains, so the Jordan normal form has two Jordan blocks.

Multiple Choice Fragen

- 1. Which of the following statements is **true**: For arbitrary integers $n > m \ge 1$, there exists a square matrix with...
 - (a)
- characteristic polynomial $X^m + X^n$.
 - (b) minimal polynomial X^m and characteristic polynomial X^n .
 - (c) minimal polynomial $X^m \cdot (X^n 1)$.

Explanation: The companion matrix of a polynomial has exactly this polynomial as its minimal and characteristic polynomial; hence, (a) and (c) are correct. Also, (b) is correct, for example, by taking a block diagonal matrix with a Jordan block of size m and n - m Jordan blocks of size 1.