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Musterlösung Serie 24

Bilinear forms, Singular values decomposition, Jordan Normal form

1. (a) Determine a singular value decomposition A “ QDR of the real matrix

A :“

¨

˝

1 ´1
0 1
1 0

˛

‚.

(b) Determine a singular value decomposition of AT .

Lösung :

(a) We compute the matrix

ATA “

ˆ

1 0 1
´1 1 0

˙

¨

˝

1 ´1
0 1
1 0

˛

‚“

ˆ

2 ´1
´1 2

˙

and the corresponding characteristic polynomial

PATApXq “ det

ˆ

2 ´ X ´1
´1 2 ´ X

˙

“ X2
´ 4X ` 3 “ pX ´ 3qpX ´ 1q.

Hence ATA has Eigenvalues λ1 :“ 3 and λ2 :“ 1. The singular values of A
therefore are σ1 :“

?
3 and σ2 :“ 1 and the matrix D is

D :“

¨

˝

?
3 0
0 1
0 0

˛

‚ .

The normed eigenvectors of ATA corresponding to the eigenvalues λ1 resp.
λ2 are

v1 :“
1

?
2

ˆ

1
´1

˙

resp. v2 :“
1

?
2

ˆ

1
1

˙

.

These are the columns of RT , thus we consider the orthogonal Matrix

R :“ pv1 v2q
T

“
1

?
2

ˆ

1 ´1
1 1

˙

.
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The desired equation AR´1 “ QD implies that for i “ 1, 2 the i-th column
of Q is equal to 1{σi times the i-th column of AR´1. Thus we have Q :“
pw1 w2 w3q with

w1 :“
1

σ2

Av1 “
1

?
6

¨

˝

2
´1
1

˛

‚ and w2 :“
1

σ1

Av2 “
1

?
2

¨

˝

0
1
1

˛

‚

and an arbitrary vector w3, such that pw1, w2, w3q is an orthonormal basis.
For example, Gram-Schmidt for the basis pw1, w2, e1q with e1 :“ p1, 0, 0qT

yields

w3 :“
e1 ´ xe1, w1yw1 ´ xe1, w2yw2

||e1 ´ xe1, w1yw1 ´ xe1, w2yw2||
“

1
?
3

¨

˝

1
1

´1

˛

‚ .

The desired decomposition thus is

¨

˝

1 ´1
0 1
1 0

˛

‚ “ A “ QDR “
1

?
6

¨

˝

2 0
?
2

´1
?
3

?
2

1
?
3 ´

?
2

˛

‚¨

¨

˝

?
3 0
0 1
0 0

˛

‚¨
1

?
2

ˆ

1 ´1
1 1

˙

.

(b) The transpose of an orthogonal matrix is again orthogonal. Thus AT “

RTDTQT is again a singular value decomposition.

2. Consider the real matrix

A “

¨

˝

14 ´13 8
´13 14 8
8 8 ´7

˛

‚P M3ˆ3pRq.

Find a matrix P P O3pRq such that P´1AP is diagonal.

Solution: ONB:

B “

$

&

%

1
?
2

¨

˝

1
´1
0

˛

‚,
1

?
3

¨

˝

1
1
1

˛

‚,
1

?
6

¨

˝

1
1

´2

˛

‚

,

.

-

consisting of eigenvectors of A such that

P´1AP “

¨

˝

27 0 0
0 9 0
0 0 ´15

˛

‚.

3. Let V be an n-dimensional vector space over a field K. Show the following state-
ments using the lemma about generalized eigenspaces seen in the lectures, but
without using the Jordan Normal Form theorem:
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(a) Suppose that N P EndpV q is nilpotent. Then 0 is an eigenvalue of N and it
is the only one.

(b) If N P EndpV q is nilpotent, then Nn “ Onˆn. In other words, the nilpotency
index of N is smaller or equal to dimpV q.

(c) Suppose that N P EndpV q is nilpotent and assume that pNpxq splits as a
product of linear factors in Krxs. Then pNpxq “ p´xqn.

(d) Let T P EndpV q and assume that pT pxq splits into linear factors in Krxs. Let
η P K and define S “ T ´ η IdV . Then pSpxq also splits into a product of
linear factors over Krxs. In fact, pSpxq “ pT px ` ηq.

(e) Let T P EndpV q and assume that λ P K is the only eigenvalue of T and that
pT pxq splits as a product of linear factors in Krxs. Define N “ T ´ λ IdV .
Then pNpxq “ p´xqn, and Nn “ Onˆn.

Solution:

(a) This was shown in serie 16, exercise 5.

(b) By (a), 0 is an eigenvalue of N . We consider the generalised eigenspace
ẼigNp0q. We have

ẼigNp0q “

8
ď

k“0

kerpNk
q “ V,

since there exists an integer m such that Nm vanishes. By lemma 1 in the
notes jordan.b, we also have

ẼigNp0q “ kerpNn
q.

Hence V “ kerpNnq, which implies that Nn vanishes.

(c) Since pNpxq splits as a product of linear factors in Krxs, we can write it as

pNpxq “

n
ź

k“1

pλi ´ xq,

where the λk’s are the (not necessarily distinct) eigenvalues of N . It follows
from (a) that pNpxq “ p´xqn.

(d) For µ P K, we have

pT ´ η IdV qu “ µu ðñ Tu “ pη ` µqu.

Thereupon, a scalar µ P K is an eigenvalue of S if and only if µ ` η is an
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eigenvalue of T . Since pT pxq splits into linear factors in Krxs, we have

pT px ` ηq “
ź

λ eigenvalue of T

pλ ´ px ` ηqq

“
ź

λ eigenvalue of T

pλ ´ η ´ xq

“
ź

λ eigenvalue of S

pµ ´ xq

“ pSpxq.

Note that pSpxq splits into a product of linear factors since its roots are the
set tλ ´ η | λ is an eigenvalue of T u, and by assumption, the eigenvalues of
T are in K and so is η.

(e) We start by showing that N is nilpotent. Indeed, by the first , proposition on
page 6 of the lecture notes jordan.b, we have

V “ ‘η eigenvalue of T ẼigT pηq “ ẼigT pλq

“

8
ď

k“1

kerppT ´ λ IdV q
k
q

“ kerppT ´ λ IdV q
n
q,

where we used lemma 1 in the same lecture notes to obtain the last equality.
Hence Nn is the trivial endomorphism. Now, it follows from (c) that pNpxq “

p´xqn.

4. Determine the Jordan normal form of the following matrix over R and over F3:

A :“

¨

˝

2 1 1
1 2 1
1 1 2

˛

‚

Lösung : Over R, the characteristic polynomial of A is pX ´ 1q2pX ´ 4q. The
eigenspace to the eigenvalue 4 thus has dimension 1. Next, we compute rankpA´I3q
“ 1; hence the eigenspace to eigenvalue 1 has dimension 2. Therefore, there eixists
a basis consisting of eigenvectors and the matrix is diagonalisable over R with
Jordan normal form

¨

˝

4 0 0
0 1 0
0 0 1

˛

‚.

Over F3 the characteristic polynomial is equal to pX ´ 1q3; thus A has exactly one
eigenspace, which corresponds to X ´ 1. We compute

A ´ I3 “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚
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and pA´ I3qk “ 0 für k ě 2. From dimKernpA´ I3q “ 2 it follows that there exist
Jordan blocks of size 1 and 2. Thus the matrix A over F3 has Jordan normal form

¨

˝

1 1 0
0 1 0
0 0 1

˛

‚ .

5. Determine the Jordan normal form and the corresponding base change matrices
of the real matrix

A :“

¨

˚

˚

˝

2 2 2 2
0 3 0 2
0 0 3 2
0 0 0 3

˛

‹

‹

‚

.

Lösung : The characteristic polynomial of A is

charApXq “ X4
´ 11X3

` 45X2
´ 81X ` 54 “ pX ´ 2q ¨ pX ´ 3q

3 .

We treat 2 and 3 separately.

Eigenvalue 2: The space ẼigAp2q is one-dimensional and equal to the eigenspace
of A corresponding to 2. We compute KerpA ´ 2 Id4q and find the eigenvector

v1 :“

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

.

Eigenvalue 3: For B :“ A ´ 3 Id4, we have

B “

¨

˚

˚

˝

´1 2 2 2
0 0 0 2
0 0 0 2
0 0 0 0

˛

‹

‹

‚

and B2
“

¨

˚

˚

˝

1 ´2 ´2 6
0 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

“ ´B3.

This yields

k 1 2 3 4 ¨ ¨ ¨

rankpBkq 2 1 1 1 ¨ ¨ ¨

dimKerpLBkq 2 3 3 3 ¨ ¨ ¨

# k ˆ k-Jordan block to EV 3 1 1 0 0 ¨ ¨ ¨
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We compute

ẼigAp3q “ KerpLB3q “

C

¨

˚

˚

˝

2
1
0
0

˛

‹

‹

‚

,

¨

˚

˚

˝

2
0
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

´6
0
0
1

˛

‹

‹

‚

G

.

Next, we search for a vector v2 P ẼigAp3q, whose image under LB is non-zero. One
example is

v2 :“

¨

˚

˚

˝

´6
0
0
1

˛

‹

‹

‚

with Bv2 “

¨

˚

˚

˝

8
2
2
0

˛

‹

‹

‚

.

We search for another vector v3 P KernpLBq ∖ xBv2y, e.g.

v3 :“

¨

˚

˚

˝

2
1
0
0

˛

‹

‹

‚

.

Then v2, Bv2, v3 is a basis of ẼigAp3q.

Combining the cases: By the decomposition into generalized eigenspaces b :“
pv1, Bv2, v2, v3q is a basis R4. By construction, we have Av1 “ 2v1 and ApBv2q “

3pBv2q and Av2 “ Bv2 ` 3v2 as well as Av3 “ 3v3. For the base change matrix, we
have

S :“ pv1 | v3 | Bv2 | v2q “

¨

˚

˚

˝

1 2 8 ´6
0 1 2 0
0 0 2 0
0 0 0 1

˛

‹

‹

‚

,

hence

S´1AS “

¨

˚

˚

˝

2 0 0 0
0 3 0 0
0 0 3 1
0 0 0 3

˛

‹

‹

‚

.

This is the Jordan normal form of A.

6. Example regarding special relativity. Define the symmetric blinear forms : R4 Ñ R4

for all v “ px, y, z, tqT and v1 “ px1, y1, z1, t1qT in R4 by

spv, v1
q :“ xx1

` yy1
` zz1

´ ctt1,

where c ą 0 is a fixed parameter. The space M :“ pR4, sq is called Minkowski
space (sometimes Minkowski spacetime) and the parameter c is called light speed.
We use the normalization c “ 1.
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A linear map F : M Ñ M is called isometry or Lorentz transformation, if

@v, w P R4 : s
`

F pvq, F pwq
˘

“ spv, wq .

(a) Show that every isometry is bijective.

(b) Show that the following endomorphisms are isometries of M :

i. Left multiplication with

ˆ

T 0
0 ˘1

˙

für jedes T P Op3q.

ii. A Lorentz boost in x-direction with speed v ă c “ 1, given by left multi-
plication with the matrix

B :“

¨

˚

˚

˝

γ ´vγ
1

1
´vγ γ,

˛

‹

‹

‚

for γ :“ 1{
?
1 ´ v2.

(c) The subset tx P M | spx, xq “ 0u is called light cone in M . Prove the
”
rela-

tivistic football theorem“: Every linear isometry φ with detpφq “ 1 has an
eigenvector in the light cone.

Remark. For c Ñ 8 the light cone approaches the subspace tt “ 0u and the
statement reduces to the classical case.

Lösung :

(a) Let F : M Ñ M be an isometry, and let v “ px1, . . . , x4q
T be an arbitrary

element contained in the kernel of F . Denote by e1, . . . , e4 the standard basis
of M “ R4. Then for all i “ 1, . . . , 4 we have

˘xi “ spv, eiq “ spF pvq, F peiqq “ sp0, eiq “ 0,

and so v “ 0. This means that KernpF q “ t0u, and as injective endomorphism
of finite-dimensional vector spaces F is also bijective.

(b) (i) Follows from direct computations

(ii) For all v “ px, y, z, tqT and v1 “ px1, y1, z1, t1qT in M we have

spBv,Bv1q “ pγx ´ vγtqpγx1 ´ vγt1q ` yy1 ` zz1 ´ p´vγx ` γtqp´vγx1 ` γt1q

“ pγ2 ´ v2γ2qxx1 ` yy1 ` zz1 ´ pγ2 ´ v2γ2qtt1

“ xx1 ` yy1 ` zz1 ´ tt1

“ spv, wq ,

hence the Lorentzboost LB is an isometry.
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(c) Let φ : M Ñ M be a linear isometry with detpφq “ 1.

Step 1: There exists an φ-invariant subspace U of dimension 2.

Proof: Every irreducible factor of the characteristic polynomial of φ had
degree 1 or 2. If there exists an irreducible factor of degree 2 we can write
the Jordan normal form of φ with an 2 ˆ 2-block in the upper left corner.
Otherweise, all irreducible factors have degree 1 and the Jordan normal form
of φ is an upper triangular matrix. In both cases, the first two basis vectors
generate an φ-invariant subspace of dimension 2.

Step 2: The
”
orthogonal complement“

UK
“ tv P M | @u P U : spu, vq “ 0u

also is a φ-invariant subspace of dimension 2.

Proof: As in the case of a scalar product, since s is non-degenerate.

Step 3: We have U Ř UK.

Proof: The restriction of s on the subspace V generated by t “ 0 is positive
definite. Moreover, we have

dimpU X V q “ dimpUq ` dimpV q ´ dimpU ` V q

ě dimpUq ` dimpV q ´ dimpMq “ 2 ` 3 ´ 4 “ 1.

Hence, there exists a non-zero vector u P UXV , for which we have spu, uq ą 0.
Hence u R UK.

Step 4: Proof in the case of U X UK ‰ 0.

Proof: Using steps 1 and 2 we get that U X UK is an φ-invariant subspaces,
and by step 3 it has dimension 1. Every non-zero vector u contained there
hence is an eigenvector of φ. By definition of UK it satisfies spu, uq “ 0, as
desired.

From now on, we assume U X UK “ 0. Then we have M “ U ‘ UK.

Step 5: After exchanging U and UK if possible we can assume that s is
positive definite on U and indefinite on UK.

Proof: Consider any ordered basis of U and extend it with an ordered basis
of UK to a basis B of M . By definition of UK the representation matrix rssB

is a block diagonal matrix with blocks of size 2. The signature of s thus is
the sum of the signatures of s|UˆU and s|UKˆUK . As s has signature p3, 1q

one of the restrictions needs to habe signature p2, 0q and the other signature
p1, 1q.
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Step 6: For the restrictions of the given isometry

φU :“ φ|U : U Ñ U and φUK :“ φ|UK : UK
Ñ UK

we have detpφUq “ detpφUKq “ ˘1.

Proof: The restriction φU is an isometry with respect to s|UˆU , hence we
have detpφUq “ ˘1. Moreover, by assumption we get

detpφUq ¨ detpφUKq “ detpφq “ 1

Together this yields detpφUKq “ detpφUq.

Step 7: Proof in the case detpφUq “ detpφUKq “ ´1.

Proof: Here φU is an isometry of the 2-dimensional Euclidean vectorspace
U with determinant ´1, hence it is a reflection with eigenvalues `1 and ´1.
Moreover, we have that φUK is an endomorphism of the 2-dimensional real
vectorspace UK with determinant ´1. Hence the charakteristisc polynomial
splits into linear factors over R and thus there exists an eigenvector v P UK,
we call its eigenvalue λ. If spv, vq “ 0, this is the desired eigenvector in the
light cone. Otherwise, the computation

spv, vq “ spφpvq, φpvqq “ spλv, λvq “ λ2
¨ spv, vq,

yields λ “ ˘1. As detpφUKq “ ´1, we get that φUK also needs to have
eigenvalue ´1{λ “ ¯1. Together this shwos that φ has eigenvalues ˘1 with
respective multiplicity 2.

Both Eigenspaces are then φ-invariant subspaces of dimension 2. After re-
placing U and UK by these, the restriction φUK thus is scalar. As s|UKˆUK is
indefinite, there exists a vector v P UK with spv, vq “ 0. This is the searched
eigenvector in the light cone.

Step 8: Proof in the case of detpφUq “ detpφUKq “ 1.

Proof: As s|UKˆUK is indefinite, there exists a basis B of UK with

rs|UKˆUKsB “

ˆ

1 0
0 ´1

˙

.

For the representation matrix A :“ BrφUKsB we have AT
`

1 0
0 ´1

˘

A “
`

1 0
0 ´1

˘

and
detpAq “ 1. Direct computations show that these conditions are equivalent
to

A “

ˆ

a b
b a

˙

for a, b P R with a2 ´ b2 “ 1. The column vector
`

1
1

˘

corresponds to an
eigenvector φUK with eigenvalue a ` b in the light cone.
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Single Choice. In each exercise, exactly one answer is correct.

1. Let f be an endomorphism of a finite-dimensional vector space V and let λ be an
eigenvalue of f . Which statement is generally false?

(a) Every eigenvector of f corresponding to the eigenvalue λ lies in the eigenspace
Ẽigf pλq.

(b) Every vector in Ẽigf pλq is an eigenvector of f corresponding to the eigenvalue

λ.

(c) The generalized eigenspace Ẽigf pλq is not the zero space.

(d) For every eigenvalue µ of f with µ ‰ λ, we have Ẽigf pµq X Ẽigf pλq “ x0y.

Explanation: The generalized eigenspace of the matrix p 1 1
0 1 q with respect to X ´1

is two-dimensional, but the eigenspace is one-dimensional.

2. For every endomorphism f of an n-dimensional vector space V whose characteristic
polynomial factors into linear factors, and every eigenvalue λ of f we have:

(a) Ẽigf pλq “ Kernpf ´ λ idV q.

(b) dimpẼigf pλqq “ 1.

(c) dimpẼigf pλqq “ n.

(d) Ẽigf pλq “ Kernppf ´ λ idV qnq.

Explanation: Let m be the algebraic multiplicity of λ. Then we have m ď n and
Ẽigf pλq “ Kernppf´λ idV qmq Ă Kernppf´λ idV qnq. By the decomposition formula
with respect to generalized eigenspaces, it follows that this inclusion is an equality.

3. The generalized eigenspace of the real matrix A :“

¨

˚

˚

˝

2 3 ´1 5
0 2 ´3 1
0 0 2 ´2
0 0 0 3

˛

‹

‹

‚

with respect

to X ´ 2 is

(a) One-dimensional

(b) Two-dimensional

(c) Three-dimensional

(d) Four-dimensional

Explanation: Regardless of what is above the diagonal, the characteristic polyno-
mial is pX´2q3pX´3q; therefore, the generalized eigenspace with respect to X´2
has dimension 3.
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4. Let A be a 3 ˆ 3 matrix with A ‰ 0 and A2 “ 0. Then, the Jordan normal form
of A has

(a) 1 Jordan block.

(b) 2 Jordan blocks.

(c) 3 Jordan blocks.

(d) It depends on the exact matrix A.

Explanation: A nilpotent matrix has only the eigenvalue 0, so the possible Jordan

normal forms are
´

0 1 0
0 0 1
0 0 0

¯

,
´

0 1 0
0 0 0
0 0 0

¯

,
´

0 0 0
0 0 0
0 0 0

¯

. The first matrix has a non-zero square,

and because A is also not the zero matrix, only the middle option remains, so the
Jordan normal form has two Jordan blocks.
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Multiple Choice Fragen

1. Which of the following statements is true: For arbitrary integers n ą m ě 1, there
exists a square matrix with...

(a) characteristic polynomial Xm ` Xn.

(b) minimal polynomial Xm and characteristic polynomial Xn.

(c) minimal polynomial Xm ¨ pXn ´ 1q.

Explanation: The companion matrix of a polynomial has exactly this polynomial
as its minimal and characteristic polynomial; hence, (a) and (c) are correct. Also,
(b) is correct, for example, by taking a block diagonal matrix with a Jordan block
of size m and n ´ m Jordan blocks of size 1.
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