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Jordan Normal form, Multilinear algebra

1. Prove the following propositions:

(a) For all K-vector spaces V1, . . . , Vr and W , we have that MultK(V1, . . . , Vr;W )
is a subspace of the vector space of all maps V1 × · · · × Vr → W .

(b) Consider linear maps of K-vector spaces fi : V
′
i → Vi for 1 ⩽ i ⩽ r as well as

g : W → W ′. Then we get a linear map

MultK(V1, . . . , Vr;W ) → MultK(V
′
1 , . . . , V

′
r ;W

′),

φ 7→ g ◦ φ ◦ (f1 × · · · × fr).

Lösung :

(a) For every 1 ⩽ i ⩽ r and vj ∈ Vj for j ̸= i consider the map

ε : Vi −→ V1 × · · · × Vr, v 7→ (v1, . . . , vi−1, v, vi+1, . . . , vr).

We note that ε depends on the choices of i, v1, . . . , vi−1, vi+1, . . . , vr, but
suppress this in the notation in orter to aid readability. By definition, the
map φ : V1 × · · · × Vr → W is multilinear if and only if for every choice of
i, v1, . . . , vi−1, vi+1, . . . , vr the composition φ ◦ ε : Vi → W is linear.

For the zero map φ0 : V1 × · · · × Vr → W is φ0 ◦ ε again the zero map, hence
linear. Now let φ1, φ2 : V1×· · ·×Vr → W be multilinear maps and let λ ∈ K.
Then φ1 ◦ ε and φ2 ◦ ε are linear and thus (φ1 + φ2) ◦ εi = φ1 ◦ εi + φ2 ◦ εi
and (λ · φ1) ◦ ε = λ · (φ1 ◦ ε) are linear as well, because we know that linear
combinations of linear maps are linear. Varration of i, v1, . . . , vi−1, vi+1, . . . , vr
and so of ε yields that φ0 and φ1 + φ2 and λ · φ1 are multilinear.

Together, this shows that MultK(V1, . . . , Vr;W ) is a subspace.

(b) For every 1 ⩽ i ⩽ r and v′j ∈ V ′
j for j ̸= i consider the map

ε′ : V ′
i −→ V ′

1 × · · · × V ′
r , v′ 7→ (v′1, . . . , v

′
i−1, v

′, v′i+1, . . . , v
′
r).

By definition, a map φ′ : V ′
1 × · · · × V ′

r → W ′ is multilinear if and only if for
all i, v′1, . . . , v

′
i−1, v

′
i+1, . . . , v

′
r the composite map φ′ ◦ ε′ : V ′

i → W ′ is linear.
Moreover, set vj := fj(v

′
j) for all j ̸= i and ε : Vi → V1 × · · · × Vr like in (a).

Then we have (f1 × · · · × fr) ◦ ε′ = ε ◦ fi.
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Consider a linear map φ ∈ MultK(V1, . . . , Vr;W ). For every choice of
i, v′1, . . . , v

′
i−1, v

′
i+1, . . . , v

′
r and thus of ε′ and ε as above, we have that φ ◦

ε : Vi → W is linear. Then

g ◦ φ ◦ (f1 × · · · × fr) ◦ ε′ = g ◦ (φ ◦ ε) ◦ fi

is also linear as composition of linear maps. Hence g ◦ φ ◦ (f1 × · · · × fr) is
multilinear; the map from the proposition is thus well defined.

Now consider multilinear maps φ1, φ2 : V1 × · · · × Vr → W and λ ∈ K. Since
g is linear, we have

g ◦ (λφ1+φ2)◦ (f1×· · ·×fr) = λg ◦φ1 ◦ (f1×· · ·×fr)+g ◦φ2 ◦ (f1×· · ·×fr).

Therefore, the map from the proposition is linear.

2. Let K be a field. Consider the space K[x]n of polynomials over K of degree at
most n.

(a) Find a Jordan normal form for the endomorphism

D : K[x]n → K[x]n
p(x) 7→ p′(x)

(b) Find a Jordan normal form for the endomorphism

D2 : K[x]n → K[x]n
p(x) 7→ p′′(x)

Solution:

(a) The matrix representation of D with respect to the standard basis B is

[D]BB =


0 1

0 2
. . . . . .

0 n
0


We read-off that its only eigenvalue is 0 and that dimker

(
[D]BB

)
= 1. Hence

a Jordan normal form of D is given by the Jordan block J0,n.

(b) We have

[D2]
B
B =



0 0 2!
0 0 3!

. . . . . . . . .

0 0 n!
(n−2)!

0 0
0


.
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Again, we read-off that its only eigenvalue is 0 and that dimker
(
[D2]

B
B
)
=

2. Hence, a Jordan normal form will comprise two blocks with 0’s on the
diagonal.

To figure out the size of each block, we compute the minimal polynomial
of [D2]

B
B. We know that it is a divisor of the characteristic polynomial Xn.

Moreover, for k ⩾ 1, the matrix ([D2]
B
B)

k is the matrix representation of the
endomorphism

D2 ◦D2 ◦ · · · ◦D2︸ ︷︷ ︸
k times

= D ◦D ◦ · · · ◦D︸ ︷︷ ︸
2k times

.

Hence the smallest power for which it vanishes is ⌈n
2
⌉, which implies that the

minimal polynomial of [D2]
B
B is X⌈n

2
⌉. This shows that the size of the biggest

block in a JNF of D2 is ⌈n
2
⌉. Since there are 2 blocks, the other block has size

⌊n
2
⌋.

3. Determine a Jordan normal form over C of the matrix

A :=


−1 −1 0 1
0 0 1 0
0 −1 0 0
−2 0 1 1


Lösung : We start by computing the characteristic polynomial developing with
respect to the first column

det(A−XI4) =

∣∣∣∣∣∣∣∣
−1−X −1 0 1

0 −X 1 0
0 −1 −X 0
−2 0 1 1−X

∣∣∣∣∣∣∣∣
= (−1−X) ·

∣∣∣∣∣∣
−X 1 0
−1 −X 0
0 1 −1−X

∣∣∣∣∣∣+ 2 ·

∣∣∣∣∣∣
−1 0 1
−X 1 0
−1 −X 0

∣∣∣∣∣∣
= (X2 + 1)2

= (X − i)2(X + i)2.

Hence the eigenvalues of A are ±i and both have algebraic multiplicity 2. We now
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compute their geometric multiplicity. We have

(A− iI4) ·


a
b
c
d

 = 0

⇔


(−1− i)a− b+ d = 0

−ib+ c = 0
−b− ic = 0

−2a+ c+ (1− i)d = 0

⇔


b = 0
c = 0
d = (1 + i)a

Thereupon,

ker(A− iI4) = Sp




1
0
0

1 + i




and mg(i) = 1. Similarly, we find that mg(−i) = 1.

It follows that the Jordan normal form of A consists of 2 blocks of size 2, one for
each eigenvalue. It can be written explicitly as

−i 1 0 0
0 −i 0 0
0 0 i 1
0 0 0 i

 .

4. Often the Jordan normal form is motivated by the desire to have a matrix with as
much zeros as possible. Is the number of zeros actually maximized by the Jordan
normal form? Stated differently: Does there exist a square matrix A over a field
which has more zeros than its Jordan normal form J?

Lösung : If A is nilpotent, the assetion is true. In this case, let J be its Jordan
normal form with k Jordan blocks. Then the Eigenspace Eig0(A) = Kern(LA) has
dimension k, and hence A has rank n − k. Thus A has exactly n − k linearly
independent columns, hence at least n − k non-zero entries. This is exactly the
numbers of non-zero entries of J , As every Jordan block m to EV 0 has m − 1
non-zero entries. Therefore, the claim is true for nilpotent matrices.

In general, the assertion is false. A counterexample over Q is:

A :=


0 1 0 0
1 0 1 0
0 0 0 1
0 0 1 0

 , J :=


1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1
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Here A is a block upper triangular matrix consisting of 2× 2-blocks, and the ones
on the diagonal have characteristic polynomial X2 − 1 = (X − 1)(X + 1). Thus A
has eigenvalues ±1 with arithmetic multiplicity 2. Direct computations show, that
every eigenvalue has geometric multiplicity 1. So A has the given JNF. It contains
10 zeros, compared to 11 zeros in A.

Remark: Even if the Jordan normal form may have less zeros as the matrix we
started with, computations are still easier most of the time as the generalized
eigenspaces are clear.

5. Let B be a complex 5× 5-matrix with minimaly polynomial (X − 3)(X +5)2 and
characteristic polynomial (X − 3)2(X +5)3. Determine all possible Jordan normal
fomrs of B.

Lösung :

As B has the characteristic polynomial (X − 3)2(X + 5)3 it has eigenvalue 3 with
algebraic multiplicity 2 and eigenvalue −5 with algebraic multiplicity 3.

The factor (X − 3) has power 1 in the minimal polynomial; the largest Jordan
block to Eigenvalue 3 is thus a 1×1-block. Thus, the Jordan normal form contains
exactly 2 Jordan blocks of size 1× 1 corresponding to the eigenvalue 3.

The factor (X + 5) appears in the minimal polynomail with power 2; thus there
exists a Jordan block to eigenvalue −5 of size 2 × 2. By dimensional constraints,
this yields that there exists another Jordan block of size 1× 1.

For a Jordan normal form of B we obtain up to exchanging of the Jordan blocks
the only possibility 

3 0 0 0 0
0 3 0 0 0
0 0 −5 1 0
0 0 0 −5 0
0 0 0 0 −5

 .

6. Let A be a real square matrix. We define the exponential of such a matrix as

exp(A) =
∞∑
k=0

Ak

k!

when it converges.

(a) For λ ∈ R and n ⩾ 1, compute exp(Jλ,n).

(b) Determine the solution of the system of differential equations

x′(t) = −x(t) + 9y(t) + 9z(t)

y′(t) = 3x(t)− 6y(t)− 8z(t)

z′(t) = −4x(t) + 11y(t) + 13z(t)
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with the initial conditions x(0) = y(0) = z(0) = 1.

Hint : Use the Jordan normal form. If you need more hints, have a look at
Chapter 9.5 from Menny Akka’s notes.

(c) Determine the general real solution of the differential equation

f (3)(t)− f (2)(t) + f ′(t)− f(t) = 0.

Hint : Write the equation as a system of linear differential equations of the
first order and use the Jordan normal form.

Lösung :

(a) You have seen in the lecture that for k ⩾ 1

Jk
λ,n =



λk
(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

λk
(
k
1

)
λk−1 · · ·

(
k
1

)
λk−1

λk


In other words, the main diagonal consists of λk and the i-th diagonal over
the main diagonal consists of

(
k
i

)
λk−i as long as i ⩽ k. The diagonals after

that vanish.

It follows that the diagonal entries of exp(Jλ,n) are equal to

∞∑
k=0

λk

k!
= eλ.

The entries on the i-th diagonal above the main diagonal are equal to

∞∑
k=i

(
k

i

)
λk−i

k!
=

∞∑
k=i

k!

(k − i)!i!

λk−i

k!

=
∞∑
ℓ=0

λℓ

ℓ! i!
(where we set ℓ := k − i)

=
1

i!
eλ.

(b) We set

v(t) :=

 x(t)
y(t)
z(t)

 , A :=

 −1 9 9
3 −6 −8

−4 11 13

 , v0 =

 1
1
1

 .
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Then the system of equations is equivalent to

d

dt
v(t) = A · v(t) with boundary condition v(0) = v .

The unique solution is v(t) = exp(At) · v0.
To determine it explicitly, we transform A into Jordan normal form. The
characteristic polynomial of A is

charA(X) = X3 − 6X2 + 12X − 8 = (X − 2)3 .

For B := A− 2I3 we have

B =

 −3 9 9
3 −8 −8

−4 11 11

 , B2 =

 0 0 0
−1 3 3
1 −3 −3


and Bk = 0 for all k ⩾ 3. We choose any w ∈ R3 ∖Kern(B2), e.g.

w :=

 1
0
0

 .

Then the vectors w,Bw,B2w form a basis of R3 and with

S := (B2w,Bw,w) =

 0 −3 1
−1 3 0
1 −4 0


we get the following decomposition of A:

A = S ·

 2 1 0
0 2 1
0 0 2

 · S−1 .

The solution of exercise 1 of sheet 15 yields for all k ⩾ 0 2 1 0
0 2 1
0 0 2

k

=

2k
(
k
1

)
2k−1

(
k
2

)
2k−2

0 2k
(
k
1

)
2k−1

0 0 2k

 .

Plugging it into the exponential series yields

exp
( 2 1 0

0 2 1
0 0 2

 t
)

=
∞∑
k=0

1

k!

 2 1 0
0 2 1
0 0 2

k

tk =

e2t te2t 1
2
t2e2t

0 e2t te2t

0 0 e2t

 ,
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and hence

v(t) = exp(At) · v0 = S · exp
( 2 1 0

0 2 1
0 0 2

 t
)
· S−1v

= S · exp
( 2 1 0

0 2 1
0 0 2

 t
)
·

 −7
−2
−5


= −S ·

e2t

7
2
5

+ te2t

2
5
0

+ t2e2t

[r]5/2
0
0


= e2t

1
1
1

+ te2t

 15
−13
18

+ t2e2t

 0
5/2
−5/2


(c) We set

F (t) :=

 f(t)
f ′(t)
f ′′(t)

 and A :=

0 1 0
0 0 1
1 −1 1

 ;

then the differential equation from the exercise is equivalent to

d

dt
F (t) = A · F (t) .

The solution of this equation with arbitrary boundary condition

F (0) =

 f(0)
f ′(0)
f ′′(0)

 =

x1

x2

x3

 = v0

then is F (t) = exp(At) · v0, and the general solution for f(t) is the first entry
of F (t).

Now we compute the characteristic polynomial of A and find

charA(X) = (X − 1)(X2 + 1) .

Hence A is a 3× 3-matrix with 3 different complex eigenvalues 1 and ±i ans
so is diagonalizable over C. We continue by doing computations over C and
will only in the end reduce to R. For this, we write A = UJU−1 with a matrix
U ∈ GL3(C) and

J :=

 1 0 0
0 i 0
0 0 −i

 .
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Then we have

exp(At) · v0 = exp(U · Jt · U−1) · v0 = U · exp(Jt) · U−1v0.

The exponential series behaves well with the diagonal matrix Jt and we get

exp(Jt) = exp
( t 0 0

0 it 0
0 0 −it

)
=

 exp(t) 0 0
0 exp(it) 0
0 0 exp(−it)

)
.

Hence the first component of exp(At) ·v0 is a linear combination of exp(t) and
exp(±it) with constant coefficients in C. As exp(±it) = cos(t)± i sin(t), it is
equivalently a linear combination of exp(t), cos(t), and sin(t) with constant
coefficient in C. For the function to have real values, these coefficients must
lie in R. Hence every real solution is of the form

f(t) = aet + b cos(t) + c sin(t)

for constants a, b, c ∈ R. On the other hand, direct computations show that
every such function is a solution.

Aliter for (b): Computation of a Jordan basis of R3 with respect to A yields
a Jordan normal form of A over R:

A =

 1 1 0
1 0 1
1 −1 0

 ·

 1 0 0
0 0 1
0 −1 0

 · 1
2

 1 0 1
1 0 −1

−1 2 −1


By induction we find that for all m ⩾ 0:(

0 1
−1 0

)2m

= (−1)kI2 and

(
0 1
−1 0

)2m+1

= (−1)m
(

0 1
−1 0

)
.

Plugging this into the matrix exponential yields

exp
((

0 1
−1 0

)
t
)

=
∞∑

m=0

t2m

(2m)!

(
0 1
−1 0

)2m

+
∞∑

m=0

t2m+1

(2m+ 1)!

(
0 1
−1 0

)2m+1

=
( ∞∑

m=0

(−1)mt2m

(2m)!

)
· I2 +

( ∞∑
m=0

(−1)mt2m+1

(2m+ 1)!

)
·
(

0 1
−1 0

)
= cos(t) · I2 + sin(t) ·

(
0 1
−1 0

)
.

Together, this show

exp(At) =

 1 1 0
1 0 1
1 −1 0

 et 0 0
0 cos(t) sin(t)
0 − sin(t) cos(t)

 · 1
2

 1 0 1
1 0 −1

−1 2 −1


=

et

2

 1 0 1
1 0 1
1 0 1

+
cos(t)

2

 1 0 −1
−1 2 −1
−1 0 1

+
sin(t)

2

 −1 2 −1
−1 0 1
1 −2 1

 .
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The general solution f(t) is the first component of exp(At) · v0, i.e.

f(t) =
1

2
(x1 + x3)e

t +
1

2
(x1 − x3) cos(t) +

1

2
(−x1 + 2x2 − x3) sin(t).
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