
D-MATH Lineare Algebra I HS 2022
Prof. M. Einsiedler
Prof. P. Biran

Musterlösung Serie 13
This exercise sheet is to be handed in the week before the Frühjahr Semester
2023.

1. Consider the linear subspace

U :“
@

p2, 2, 2, 2, 2q
T , p1, 2, 2, 2, 2q

T , p1, 1, 2, 2, 2q
T
D

of V :“ R5. Determine a subset of the standard basis of R5, which maps bijectively
to a basis of V {U .

Solution: The subset needs to be the basis of a complement of U . Trial and error
finds for example the solution

␣

p0, 0, 1, 0, 0q
T , p0, 0, 0, 1, 0q

T
(

2. Let V,W be vector spaces over a field K. Let U Ď V a linear subspace, and
consider a linear map f : V Ñ W with U Ď Kerpfq. Moreover, consider the linear
map induced by the universal property of the quotient vector space

f̄ : V {U Ñ W
v ` U Ñ fpvq

Show:

(a) Kerpf̄q “ Kerpfq{U .

(b) f̄ is injective iff U “ Kerpfq.

(c) f̄ is surjective iff f is surjective.

(d) If f is surjective, then f induces an isomorphism V {Kerpfq
„
Ñ W .

The abbreviation ‘iff’ is short for ‘if and only if ’ and is very common in mathe-
matical texts. Solution:

(a) The map f̄ : V {U Ñ W satisfies f̄px ` Uq “ fpxq for all x P V . This yields

Kerpf̄q “ tv ` U | v P V ^ f̄pv ` Uq “ 0u

“ tv ` U | v P V ^ fpvq “ 0u

“ tv ` U | v P Kerpfqu

“ Kerpfq{U

(b) f̄ is injektive ðñ Kerpf̄q “ 0 ðñ Kerpfq{U “ 0 ðñ Kerpfq “ U .
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(c) We have
Impfq “ tw P W | Dv P V : fpvq “ wu

“ tw P W | Dv P V : f̄pv ` Uq “ wu

“ tw P W | Dv̄ P V {U : f̄pv̄q “ wu

“ Impf̄q.

(d) The induced map f̄ : V {Kerpfq Ñ W iis injective because of (b) and surjec-
tive because of (c). Thus, it is an isomorphism.

3. Suppose T is a function from V toW . The graph of T , denoted ΓpT q, is the subset
of V ‘ W defined by

ΓpT q “ tpv, Tvq P V ‘ W : v P V u

Prove that T is a linear map if and only if the graph of T is a linear subspace of
V ‘ W .

Remark. Formally, a function T from V toW is a subset T of V ‘W such that for
each v P V , there exists exactly one element pv, wq P T . In other words, formally
a function is what is called above its graph. We do not usually think of functions
in this formal manner. However, if we do become formal, then the exercise above
could be rephrased as follows: Prove that a function T from V to W is a linear
map if and only if T is a subspace of V ‘ W .

Solution: First assume that T : V Ñ W is linear. Let µ P K, and let v, w P V .
Then pv, Tvq, pw, Twq P ΓpT q. Moreover, we have

pv, Tvq ` µpw, Twq “ pv, Tvq ` pµw, µTvq

“ pv ` µw, Tv ` µTwq

“ pv ` µw, T pv ` µwqq P ΓpT q,

where we used that T is linear to obtain the last equality. This shows that ΓpT q

is a subspace of V ‘ W .

On the other hand, assume that ΓpT q is a linear subspace of V ‘W . We let µ P K
and v, w P V . Then pv, Tvq and pw, Twq are elements of ΓpT q, hence, by linearity,

ΓpT q Q pv, Tvq ` µpw, Twq “ pv ` µw, Tv ` µTwq.

By definition of ΓpT q, this implies that

T pv ` µwq “ Tv ` µTw.

We conclude that T is linear.

4. Let V be a finite-dimensional vector space over a field K.
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(a) Let U Ď V be a subspace and denoteW one of its linear complements. Define
an isomorphism between V and U ‘ W .

(b) Show that any linear map α : U Ñ K can be extended to a linear map α̃ on
the whole of V . Does α̃ depend on a choice of complement of U?

(c) Define an isomorphism
V ˚

– U˚
‘ W ˚.

Solution:

(a) By properties of the linear complement, we know that for any v P V there
exist a unique uv P U and a unique wv P W such that v “ uv ` wv. Define a
map

Φ : V Ñ U ‘ V
v ÞÑ puv, wvq

A direct computation shows that this map is linear. Since uv and wv are
uniquely determined by v, this map is injective. Let pu,wq P U ‘ W . Then

pu,wq “ Φpu ` wq,

which shows that Φ is surjective.

(b) Let α : U Ñ K be an arbitrary linear map. For each subspace U choose a
complement U 1 in V and define the map α̃ : V Ñ K by

α̃pvq :“ α puq

for every v “ u ` u1 with u P U and u1 P U 1. As U 1 is a linear complementt
of U , we get that α̃ is well defined. Linearity of α̃ can be verified by explicit
strait forward combinations In other words, this means α̃ P V ˚. From α̃|U “ α
the claim follows.

(c) For every linear map ℓ : V Ñ K, the restrictions ℓ|U : U Ñ K and ℓ|W :
W Ñ K are again linear. Hence we have a well defined map

ψ : V ˚
Ñ U˚

‘ W ˚, ℓ ÞÑ pℓ|U , ℓ|W q .

Direct computations show that ψ is linear. As V “ U `W , we have that any
linear map ℓ : V Ñ K is determined by its restrictions to U and W . Hence
ψ is injective.

Now consider any linear maps ℓ1 : U Ñ K and ℓ2 : W Ñ K. As every v P V
can be written as the sum u`w with u P U and w P W in a unique way, we
can construct a well defined map ℓ : V Ñ K by ℓ pu ` wq “ ℓ1 puq ` ℓ2 pwq.
Direct computations show that ℓ is linear. The construction also yields ψpℓq “

pℓ1, ℓ2q. Hence ψ is surjektive. Together we have that ψ is a bijective linear
map and therefore an isomorphism.
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5. Let pv1, . . . , vnq be an ordered basis of a vector space V , and let pv˚
1 , . . . , v

˚
nq the

corresponding dual basis of the dual vector spaceV ˚, and let pv˚˚
1 , . . . , v˚˚

n q the
dual basis corresponding to B˚ of the bidual vecot space pV ˚q

˚. Show, that the
natural isomorphism

τ : V
„
Ñ pV ˚

q
˚ , v ÞÑ τpvq

maps every vj to the corresponding v˚˚
j .

Lösung : The dual basis is characterised by the condition v˚
i pvjq “ δi,j for all

i, j. Similarly, we have v˚˚
j pv˚

i q “ δi,j for all i, j. Moreover, the evaluation map is
defined by τpvqpℓq “ ℓpvq for all v P V and ℓ P V ˚. For every pair i, j, this yields

τpvjq pv˚
i q “ v˚

i pvjq “ δi,j “ v˚˚
j pv˚

i q .

Hence the linear maps τpvjq : V
˚ Ñ K and v˚˚

j : V ˚ Ñ K are equal on the bases
pv˚

1 , . . . , v
˚
nq of V ˚ and are thus equal.

6. Let U, V,W1 and W2 be finite-dimensional vector spaces over a field K. Denote by
n the dimension of V . Show that:

(a) HompV,W1 ‘ W2q – HompV,W1q ‘ HompV,W2q

(b) HompV ‘ U,W1q – HompV,W1q ‘ HompU,W1q

(c) HompV,W q – HompW ˚, V ˚q

(d) The following map is an isomorphism

HompV, V q Ñ HompV, V q˚

T ÞÑ rS ÞÑ trpS ˝ T qs ,

where tr P HompV, V q˚ is the trace map defined by

trpT q “ trprT s
B
Bq “

n
ÿ

i“1

prT s
B
Bqii,

for any basis B of V .

Remark. You may use this in the above exercise, but as a bonus you could
first show that the map T P HompV, V q ÞÑ trpT q is independent of the choice
of basis of V.

Solution:

(a) Consider the maps

Φ : HompV,W1 ‘ W2q Ñ HompV,W1q ‘ HompV,W2q

ℓ ÞÑ ppW1
˝ ℓ, pW2

˝ ℓqq
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and

Ψ : HompV,W1q ‘ HompV,W2q Ñ HompV,W1 ‘ W2q

pℓ1, ℓ2q ÞÑ rℓ : v ÞÑ pℓ1pvq, ℓ2pvqqs

The map Φ is well-defined since the composition of linear maps is linear. You
can check that Ψ is well-defined directly from the definitions of the operations
in the product W1 ‘ W2.

Moreover, a direct computations show that

Ψ ˝ Φ “ idHompV,W1‘W2q and Φ ˝ Ψ “ idHompV,W1q‘HompV,W2q .

Using the linearity of the projections, it is also a straightforward computation
to show that Φ is linear. So, Φ is a linear map with inverse Ψ, therefore it is
an isomorphism.

(b) Consider the maps

Φ : HompV ‘ U,W1q Ñ HompV,W1q ‘ HompU,W1q

ℓ ÞÑ pℓ ˝ ιV , ℓ ˝ ιUq,

where ιV : V Ñ V ‘ U and ιU : U Ñ V ‘ U are the canonical embeddings
and

Ψ : HompV,W1q ‘ HompU,W1q Ñ HompV ‘ U,W1q

pℓ1, ℓ2q ÞÑ rℓ : pv, uq ÞÑ pℓ1pvq, ℓ2puqqs

The fact that Φ and Ψ are well-defined follows from the similar reasons as
in (a). As above, a straightforward computation shows that they are each
other’s inverse. Additionally, letting ℓ, ℓ1 P HompV ‘ U,W1q, we have

Φ : ℓ ` αℓ1
ÞÑppℓ ` αℓ1

q ˝ ιV , pℓ ` αℓ1
q ˝ ιUq

“pℓ ˝ ιV ` αpℓ1
˝ ιV q, ℓ ˝ ιU ` αpℓ1

˝ ιUqq

“pℓ ˝ ιV , ℓ ˝ ιUq ` αpℓ1
˝ ιV , ℓ

1
˝ ιUq

“Φpℓq ` αΦpℓ1
q.

So, Φ is a linear map with inverse Ψ, therefore it is an isomorphism.

(c) Consider the map

Φ : HompV,W q Ñ HompW ˚, V ˚q

T ÞÑ rΦpT q : ℓ ÞÑ ℓ ˝ T, @ℓ P W ˚s

We first check that Φ is well-defined. Let T P HompV,W q, ℓ, ℓ1 P W ˚, and
α P K. Then,

ΦpT qpℓ ` αℓ1
q “ pℓ ` αℓ1

q ˝ T

“ ℓ ˝ T ` αpℓ1
˝ T q

“ ΦpT qpℓq ` αΦpT qpℓ1
q.
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So, ΦpT q is indeed an element of HompW ˚, V ˚q for all T P HompV,W q.

Let us now show that Φ is injective. Assume that ImpT q ‰ t0u and let
w P ImpT q ∖ t0u. Extend twu to a basis B of W . Now define a map ℓ on B
by setting

ℓpwq “ 1 and @w1
P B ∖ twu : ℓpw1

q “ 0

and extend it linearly to a functional of W . Then ImpT q Ę kerpℓq implies
that ΦpT qpℓq does not vanish on the whole of V and therefore that ΦpT q is
not the 0 map. This shows that Φ is injective.

Now, let η P HompW ˚, V ˚q, let teiu
dimpW q

i“1 be a basis of W , and define a map
T : V Ñ W by letting

T pvq :“

dimpW q
ÿ

i“1

ηpe˚
i qpvqei.

Since the sum is finite and since ηpe˚
i q is linear for all i, T P HompV,W q.

Additionally, for any ℓ P W ˚, for any v P V

ΦpT qpℓqpvq “ ℓ ˝ T pvq “

dimpW q
ÿ

i“1

ηpe˚
i qpvqℓpeiq

“

dimpW q
ÿ

i“1

ηpℓpeiqe
˚
i qpvq

“ η

˜

dimpW q
ÿ

i“1

ℓpeiqe
˚
i

¸

pvq

“ ηpℓqpvq,

since
řdimpW q

i“1 ℓpeiqe
˚
i “ ℓ. This shows that Φ is surjective.

(d) Let us first show that the trace of an application is well-defined. We will use

Lemma 1. For any A,B P MnˆnpKq, we have

trpABq “ trpBAq.

Beweis. This follows from a straight-forward computation. Denote by aij,
respectively bij, the entries of A, respectively of B. Then the diagonal entries
of the product AB are given by

pABqii “

n
ÿ

k“1

aikbki, 1 ď i ď n.
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So,

trpABq “

n
ÿ

i“1

n
ÿ

k“1

aikbki

“

n
ÿ

i“1

n
ÿ

k“1

bkiaik

“

n
ÿ

k“1

n
ÿ

i“1

bkiaik “ trpBAq.

The independence of the choice of basis now follows. Observe that if B, C are
arbitrary bases of V and T P HompV, V q we have

trprT s
C
Cq “ trpridV s

B
C rT s

B
BridV s

C
Bq

“ trpridV s
B
C rT s

B
BpridV s

B
C q

´1
q

“ trpridV s
B
C pridV s

B
C q

´1
rT s

B
Bq

“ trprT s
B
Bq,

where the second-to-last equality follows from Lemma 1.

We now show that the map

HompV, V q Ñ HompV, V q˚

T ÞÑ rS ÞÑ trpS ˝ T qs ,

is well-defined. This means showing that the map

trT : HompV, V q Ñ K
S ÞÑ trpS ˝ T q

is linear. We will need the following result:

Lemma 2. The map tr : MnˆnpKq Ñ K is linear. Namely, for any A,B P

MnˆnpKq, and any α P K, the following hold:

trpA ` Bq “ trpAq ` trpBq and trpαAq “ α trpAq.

Beweis. Denote A “ paijq and B “ pbijq P MnˆnpKq. We have

trpA ` Bq “

n
ÿ

k“1

pA ` Bqkk

“

n
ÿ

k“1

akk ` bkk

“

n
ÿ

k“1

akk `

n
ÿ

k“1

bkk “ trpAq ` trpBq.
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We now consider αA. We have,

trpαAq “

n
ÿ

k“1

pαAqkk

“

n
ÿ

k“1

αakk

“ α
n
ÿ

k“1

akk “ α trpAq.

Linearity of trT . Let S, S
1 P HompV, V q and α P K, then

trT pS ` αS 1
q “ trppS ` αS 1

q ˝ T q

“ trpS ˝ T ` αpS 1
˝ T qq

“ trprS ˝ T ` αpS 1
˝ T qs

B
Bq

“ trprSs
B
BrT s

B
B ` αrS 1

s
B
BrT s

B
Bq

“ trprSs
B
BrT s

B
Bq ` α trprS 1

s
B
BrT s

B
Bq

“ trT pSq ` α trT pS 1
q.

We deduce that trT P HompV, V q˚.

Injectivity. We now show that the above map is injective. Fix T and assume
that trT is the 0 map. Then for all S P HompV, V q,

0 “ trprSs
B
BrT s

B
Bq “

n
ÿ

i“1

n
ÿ

k“1

siktki,

where we used the notation T “ ptijq and S “ psijq. Fix pm,nq P t1, . . . , nu2.
Define Sm,n “ ps̃ijq P HompV, V q such that all the entries of rSm,nsBB vanish
except for s̃mn “ 1. We deduce that

0 “ trprSm,ns
B
BrT s

B
Bq “ tnm.

Since pm,nq was arbitrary, this shows that rT sBB “ 0 and therefore that T is
the 0 map.

To conclude, remember that V is finite -dimensional, which implies that
HompV, V q is too. It follows that dimpHompV, V qq “ dimpHompV, V q˚q and
hence, since the given map is injective, it is an isomorphism.
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Single Choice. In each exercise, exactly one answer is correct.

1. Let dimV “ 4. Then there exists φ P V ˚ with dimKerφ “ 2.

(a) Correct

✓ False

Solution: φ P V ˚ means that φ P HomKpV,Kq. If now dimKerφ “ 2 was true,
the dimension formula

dimV “ dim Imφ ` dimKerφ

would yield dim Imφ “ 2. This contradicts dim Imφ ď dimK “ 1.

2. Every finite dimensional vector space is the dual of another finite dimensional
vecor space.

✓ Correct

(a) False

3. The set of all invertible n ˆ n-matrices is...

✓ not a real linear subspace of MnpRq

(a) a real linear subspace of MnpRq

Solution: The set is not closed under addition. Indeed, we have

ˆ

1 0
0 1

˙

` p´1q

ˆ

1 0
0 1

˙

“

ˆ

0 0
0 0

˙

and the zero matrix is not invertible.

4. Let f : V Ñ W be an arbitrary homomorphism between two K-vector spaces.
Which of the following five assertions is not equivalent to the others?

(a) f is injective.

(b) The dual map f˚ : W ˚ Ñ V ˚ is surjective.

(c) The zero element of V is the only element mapped to the zero element of W .

✓ There exists a Homomorphism g : W Ñ V with f ˝ g “ idW .

(d) For every v P V zt0u there exists ℓ P W ˚ with ℓpfpvqq ‰ 0.

(e) All five assertions are equivalent.
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Solution: Assertion (d) is equivalent to f being surjective, but not equivalent to
injectivity and hence not to (a). Assertion (a) is equivalent to Kernpfq “ 0 and thus
to (c). As the exercise is correctly stated, (d) must be the correct answer. Indeed,
(a) beeing equivalent to (b) was proved in exercise 17 of the repetition exercise
sheet. Moreover, an element w P W is not equal to zero if and only if there exists
ℓ P W ˚ with ℓpwq ‰ 0. Hence (e) is equivalent to @v P V zt0u : fpvq ‰ 0, and hence
equivalent to (a).

Multiple Choice Fragen.

1. For what value of parameter x is matrix A “

´

1 x 1
3 3 x
0 3 1

¯

not invertible?

(a) 0

(b) 1

✓ 2

(c) 3

(d) 4
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