D-MATH Lineare Algebra | HS 2022
Prof. M. Einsiedler
Prof. P. Biran . .

Musterlosung Serie 13

This exercise sheet is to be handed in the week before the Friithjahr Semester
2023.

1. Consider the linear subspace
U:={(2,2,2,2,2)"(1,2222)7" (1,1,2,2,2)")

of V := R®. Determine a subset of the standard basis of R®, which maps bijectively
to a basis of V/U.

Solution: The subset needs to be the basis of a complement of U. Trial and error
finds for example the solution

{(0,0,1,0,0)",(0,0,0,1,0)"}

2. Let V,W be vector spaces over a field K. Let U < V a linear subspace, and
consider a linear map f: V' — W with U < Ker(f). Moreover, consider the linear
map induced by the universal property of the quotient vector space

v - w
v+ U — f(v)

Show:
(a) Ker(f) = Ker(f)/U.
(b) f is injective iff U = Ker(f).

) K
) f

(c) f f is surjective iff f is surjective.
)

~

(d) If f is surjective, then f induces an isomorphism V/Ker(f) — W.

The abbreviation ‘iff " is short for ‘“if and only if " and is very common in mathe-
matical texts. Solution:

(a) The map f:V/U — W satisfies f(x + U) = f(z) for all x € V. This yields

Ker(f) ={v+U|veV A flv+U)=0}
={v+U|veV A f(v) =0}
={v+ U |veKer(f)}
~ Ker(f)/U

(b) f is injektive == Ker(f) = 0 «= Ker(f)/U = 0 < Ker(f) = U.
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(c) We have
Im(f) ={weW |FveV: f(v) =w}
={weW |weV: flo+U)=w}
={weW |JveV/U: f(v) =w}

= Im(f).
(d) The induced map f : V/Ker(f) — W iis injective because of (b) and surjec-

tive because of (¢). Thus, it is an isomorphism.

3. Suppose T'is a function from V to W. The graph of T', denoted I'(T’), is the subset
of V@ W defined by

() ={(v,Tv)eVAW :veV}
Prove that T is a linear map if and only if the graph of T is a linear subspace of

VeW.

Remark. Formally, a function T from V' to W is a subset T of V@ W such that for
each v € V| there exists exactly one element (v, w) € T. In other words, formally
a function is what is called above its graph. We do not usually think of functions
in this formal manner. However, if we do become formal, then the exercise above
could be rephrased as follows: Prove that a function 7" from V' to W is a linear
map if and only if T" is a subspace of V@ W.

Solution: First assume that T : V' — W is linear. Let € K, and let v,w € V.
Then (v, Tv), (w, Tw) € T'(T). Moreover, we have

(v, Tv) + p(w, Tw) = (v, Tv) + (pw, uTv)
= (v + pw, Tv + pTw)
= (v + pw, T(v+ pw)) € I(T),

where we used that T is linear to obtain the last equality. This shows that ['(T')
is a subspace of V@ W.

On the other hand, assume that ['(T') is a linear subspace of V@ W. We let p e K
and v,w € V. Then (v,Tv) and (w, Tw) are elements of I'(T"), hence, by linearity,

(T) > (v,Tv) + p(w, Tw) = (v + pw, Tv + pTw).
By definition of I'(T"), this implies that
T(v+ pw)=Tv+ pTw.
We conclude that 7' is linear.

4. Let V be a finite-dimensional vector space over a field K.
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()
(b)
(c)

Let U < V be a subspace and denote W one of its linear complements. Define
an isomorphism between V and U @ W.

Show that any linear map a : U — K can be extended to a linear map & on
the whole of V. Does & depend on a choice of complement of U?

Define an isomorphism
ViU W*,

Solution:

(a)

By properties of the linear complement, we know that for any v € V' there
exist a unique u, € U and a unique w, € W such that v = u, + w,. Define a
map

d: V - UV

v (Uy, wy)

A direct computation shows that this map is linear. Since u, and w, are
uniquely determined by v, this map is injective. Let (u,w) € U @ W. Then

(u,w) = P(u + w),

which shows that ® is surjective.

Let a : U — K be an arbitrary linear map. For each subspace U choose a
complement U’ in V' and define the map & : V' — K by

a(v) = a(u)

for every v = u + o with w € U and v’ € U’. As U’ is a linear complementt
of U, we get that & is well defined. Linearity of & can be verified by explicit
strait forward combinations In other words, this means & € V*. From a|y = «
the claim follows.

For every linear map ¢ : V — K, the restrictions {|y : U — K and /|y :
W — K are again linear. Hence we have a well defined map

I VES T WS, L (L, )

Direct computations show that 1) is linear. As V = U + W, we have that any
linear map ¢ : V' — K is determined by its restrictions to U and W. Hence
1) is injective.

Now consider any linear maps ¢; : U — K and ¥y : W — K. Aseveryve V
can be written as the sum u + w with v € U and w € W in a unique way, we
can construct a well defined map ¢ : V' — K by £ (u+ w) = {1 (u) + {2 (w).
Direct computations show that £ is linear. The construction also yields ¢ (¢) =
(¢1,03). Hence 1 is surjektive. Together we have that 1 is a bijective linear
map and therefore an isomorphism.



5. Let (vy,...,v,) be an ordered basis of a vector space V, and let (vf,..., n) the

corresponding dual basis of the dual vector spaceV*, and let (vi*, ... v**) the
dual basis corresponding to B* of the bidual vecot space (V*)*. Show, that the
natural isomorphism

VS (VH* v 7(v)
maps every v; to the corresponding v;™.

Losung: The dual basis is characterised by the condition v} (v;) = §;; for all
i,j. Similarly, we have vi* (vj') = d;; for all i, j. Moreover, the evaluation map is
defined by 7(v)(¢) = (v ) for all v e V and £ € V*. For every pair i, j, this yields

7(v;) (vf) = vf (v5) = 6 = vi* (v]).

Hence the linear maps 7(v;) : V* — K and vi* : V* — K are equal on the bases
(vf,...,v}) of V* and are thus equal.

. Let U, V,W; and W5 be finite-dimensional vector spaces over a field K. Denote by
n the dimension of V. Show that:

(a) Hom(V,W; @ Ws5) = Hom(V, W;) @ Hom(V, Ws)
(b) Hom(V @ U, W;) =~ Hom(V, W;) @ Hom(U, W)
(¢c) Hom(V, W) =~ Hom(W*, V*)

)

(d) The following map is an isomorphism

Hom(V,V) —  Hom(V,V)*
T — [S—tr(SoT)],

where tr € Hom(V, V)* is the trace map defined by

w(T) = e([71) = Y (7))

for any basis B of V.

Remark. You may use this in the above exercise, but as a bonus you could
first show that the map 7' e Hom(V, V') — tr(T) is independent of the choice
of basis of V.

Solution:

(a) Consider the maps

®: Hom(V,W;®W,) — Hom(V,W;)® Hom(V, W)
g — (pwlo£7pWQO£))



and
U : Hom(V,W;)® Hom(V,W,;) —  Hom(V,W; ® W,)
(41, 42) = [lrv= (G(v), L2(v))]
The map & is well-defined since the composition of linear maps is linear. You

can check that W is well-defined directly from the definitions of the operations
in the product W7 @ Ws.

Moreover, a direct computations show that

Vo® =idyomvmaen,) and @ oW = idgemv,w,)@Hom(V,Ws) -

Using the linearity of the projections, it is also a straightforward computation
to show that @ is linear. So, ® is a linear map with inverse W, therefore it is
an isomorphism.

Consider the maps

®: Hom(VeoUW;) — Hom(V,W;)® Hom(U, W)
1 — (Lo, low),

where vy : V - VAU and 1y : U - V @ U are the canonical embeddings
and
U Hom(V,W;)®Hom(U, W;) — Hom(V @ U, W)
(41, 65) = [0 (v,u) = (6(v), La(u))]
The fact that & and ¥ are well-defined follows from the similar reasons as

in (a). As above, a straightforward computation shows that they are each
other’s inverse. Additionally, letting ¢, ¢ € Hom(V @ U, W;), we have

Q:l+al >((l+al)ouw,l+al')ou)

(Cowy +a(l’ ow),low + all o))
=(louwy,low)+all ow,l o)

D) + ad ().

So, ® is a linear map with inverse W, therefore it is an isomorphism.
Consider the map

¢ : Hom(V,W) — Hom(W*,V*)
T — [®(T):l— LT, YleW¥|

We first check that ® is well-defined. Let T' € Hom(V, W), ¢,¢' € W*  and
a € K. Then,

(MYl +al)y=l+al)oT
=loT+a(l'oT)
= O(T)(4) + a®(T) ().



So, ®(T) is indeed an element of Hom(W* V*) for all T € Hom(V, W).
Let us now show that ® is injective. Assume that Im(7") # {0} and let
w e Im(7T) \ {0}. Extend {w} to a basis B of W. Now define a map ¢ on B
by setting

l(w)=1 and Yw' € B~ {w}:l(w') =0
and extend it linearly to a functional of W. Then Im(T") & ker(¢) implies
that ®(7")(¢) does not vanish on the whole of V' and therefore that ®(T) is

not the 0 map. This shows that ® is injective.

Now, let n € Hom(W*, V*), let {ei}?i:?(w) be a basis of W, and define a map

T :V — W by letting

dim(W)
T()i= Y uleh)ve

Since the sum is finite and since n(ef) is linear for all i, T' € Hom(V, W).
Additionally, for any ¢ € W*, for any v € V

dim (W)

=1
di

=1
= n(0)(

since Z?i:r?(w) l(e;)ef = L. This shows that ® is surjective.

VS

> e<ei>ez‘> w)
v),

Let us first show that the trace of an application is well-defined. We will use

Lemma 1. For any A, B € M,»,(K), we have
tr(AB) = tr(BA).

Beweis. This follows from a straight-forward computation. Denote by a;;,
respectively b;;, the entries of A, respectively of B. Then the diagonal entries
of the product AB are given by

n

(AB);; = Z aibr, 1<i<n.
k=1



So,

O

The independence of the choice of basis now follows. Observe that if B,C are
arbitrary bases of V' and T' € Hom(V, V') we have

tr([7]e) = tr([idv]e[T]Elidv]5)
= tr([idy J¢[T13([idv]E) ™)
= tr([idv]¢([idv]e) ' [TT5)
= tr([T]3),
where the second-to-last equality follows from Lemma 1.
We now show that the map

Hom(V,V) —  Hom(V,V)*
T — [S—tr(SoT)],

is well-defined. This means showing that the map

try : Hom(V,V) — K
S — tr(SoT)

is linear. We will need the following result:

Lemma 2. The map tr : My« (K) — K is linear. Namely, for any A, B €
M, wn(K), and any o € K, the following hold:

tr(A+ B) =tr(A) +tr(B) and tr(ad) = atr(A).
Beweis. Denote A = (a;;) and B = (b;;) € Myx,(K). We have

I
M=

tr(A + B) (A + B)

>
Il
—

I
M:

akk + b

el
Il
—_

|
i Ms

2"1 ber = tr(A) + tr(B).



We now consider aA. We have,

(670793

=2l
"
=« Z agr = atr(A)

Linearity of try. Let S,5" € Hom(V,V) and a € K, then

trr(S + aS’) = tr((S + aS") o T)

oT + a(S"oT))
[SoT +a(S o T)IE)
[SIEIT]E + alS'TEIT15)
[SI5IT15) + ate([SIEIT]E)
7(S) + atrr(S").

(
r(So
r(
(
(

t
t
t
tr
t
tr

T

We deduce that try € Hom(V, V)*.

Injectivity. We now show that the above map is injective. Fix T" and assume
that try is the 0 map. Then for all S € Hom(V, V),

0 = tr([SIB[TIE) = > > siwtui,
i=1k=1

where we used the notation 7' = (¢;;) and S = (s;5). Fix (m,n) € {1,...,n}%
Define S,,, = (3;;) € Hom(V, V) such that all the entries of [S,, |5 vanish
except for 5,,, = 1. We deduce that

.

0 = tr([SmnlBITIE) =

nm:-

Since (m,n) was arbitrary, this shows that [T]5 = 0 and therefore that T is
the 0 map.

To conclude, remember that V' is finite -dimensional, which implies that
Hom(V, V) is too. It follows that dim(Hom(V,V)) = dim(Hom(V,V)*) and

hence, since the given map is injective, it is an isomorphism.



Single Choice. In each exercise, exactly one answer is correct.

1. Let dim V' = 4. Then there exists ¢ € V* with dim Ker ¢ = 2.

(a) Correct
v False

Solution: ¢ € V* means that ¢ € Homg (V, K). If now dimKer ¢ = 2 was true,
the dimension formula

dim V' = dim Im ¢ + dim Ker ¢
would yield dim Im ¢ = 2. This contradicts dimIm ¢ < dim K = 1.

2. Every finite dimensional vector space is the dual of another finite dimensional
vecor space.

v Correct
(a) False

3. The set of all invertible n x n-matrices is...

v/ not a real linear subspace of M, (R)
(a) a real linear subspace of M, (R)

Solution: The set is not closed under addition. Indeed, we have

(o1) (s d)-(00)

and the zero matrix is not invertible.

4. Let f : V — W be an arbitrary homomorphism between two K-vector spaces.
Which of the following five assertions is not equivalent to the others?
(a) f is injective.
(b) The dual map f*: W* — V* is surjective.
(c) The zero element of V' is the only element mapped to the zero element of .
v' There exists a Homomorphism ¢g : W — V with fog = idy.
(d) For every v € V\{0} there exists £ € W* with ¢(f(v)) # 0.

(e) All five assertions are equivalent.



Solution: Assertion (d) is equivalent to f being surjective, but not equivalent to
injectivity and hence not to (a). Assertion (a) is equivalent to Kern(f) = 0 and thus
to (c). As the exercise is correctly stated, (d) must be the correct answer. Indeed,
(a) beeing equivalent to (b) was proved in exercise 17 of the repetition exercise
sheet. Moreover, an element w € W is not equal to zero if and only if there exists
¢ e W* with £(w) # 0. Hence (e) is equivalent to Vv € V\{0} : f(v) # 0, and hence
equivalent to (a).

Multiple Choice Fragen.

1. For what value of parameter x is matrix A = ( (:1’5 g§ %) not invertible?
(a) O
(b) 1
v 2
(c) 3
(d) 4
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