Übungsserie 4

Abgabe bis zum 24. März

Bonuspunkte können in Aufgaben 1-4 erarbeitet werden

Aufgabe 1. Zeigen Sie, dass die Inversion an der Einheitssphäre $S^{n-1} \subseteq \mathbb{R}^n$, also die Abbildung

$$x \in \mathbb{R}^n \setminus \{0\} \longmapsto \frac{x}{\|x\|^2}$$

differenzierbar ist und bestimmen Sie die Ableitung. Zeigen Sie, dass die Jacobi-Matrix proportional zu einer orthogonalen Matrix ist. Was ist die geometrische Deutung?

Aufgabe 2. (1) Bestimmen Sie die Richtung des steilsten Anstiegs der Funktion $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ gegeben durch $f(x, y, z) := xyz + 3e^xy$ im Punkt $(0, 1, 3) \in \mathbb{R}^3$.

- (2) Finden Sie alle kritischen Punkte der Funktion $f:(x,y) \in \mathbb{R}^2 \longmapsto x^3 y^3 + 3\alpha xy$ zu $\alpha \in \mathbb{R}$. Entscheiden Sie jeweils, ob es sich um ein Extremum handelt und wenn ja, ob ein lokales Minimum oder Maximum angenommen wird.
- (3) Bestimmen Sie die Taylor-Approximation 2. Ordnung der Funktion

$$f: (0,\infty)^2 \longrightarrow \mathbb{R}, (x,y) \longmapsto \frac{x-y}{x+y}$$

im Punkt $(1,1) \in \mathbb{R}^2$.

Aufgabe 3. Seien $y_1, \ldots, y_k \in \mathbb{R}^n$ gegeben. Zeigen Sie, dass es genau einen Punkt gibt, für den

$$f(x) = ||x - y_1||^2 + \dots + ||x - y_k||^2$$

minimal wird und bestimmen Sie diesen Punkt.

Aufgabe 4. Es seien $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ und $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ die Funktionen definiert durch

$$f(x,y) = \begin{pmatrix} x\cos(y) \\ x\sin(y) \\ x^2 \end{pmatrix} \quad \text{und} \quad g(x,y,z) = \begin{pmatrix} 2-y^2 \\ y \\ z \end{pmatrix}.$$

Berechnen Sie das Differential $D_{(x,y)}(g \circ f)$ auf zwei Arten:

- (1) indem Sie zuerst explizit die Komposition $g \circ f$ berechnen;
- (2) unter Verwendung der Kettenregel.

Aufgabe 5. (Zweite Version 30.03) Wir sagen, dass eine Funktion $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ zweimal partiell differenzierbar ist, falls alle partielle Ableitungen bis zu und mit der zweiten Ordnung existieren (siehe Amann und Escher, Analysis II). Natürlich gilt, dass falls f zweimal stetig differenzierbar ist, dann ist f zweimal partiell differenzierbar. In der folgenden Übung zeigen wir, dass zweimal partiell differenzierbare Funktionen im Allgemeinen den Satz von Schwarz nicht erfüllen.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert für alle für $(x,y)^t \in \mathbb{R}^2$ durch

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{falls } (x,y) \neq (0,0), \\ 0 & \text{falls } (x,y) = (0,0). \end{cases}$$

Zeigen Sie, dass f zweimal partiell differenzierbar ist, und dass $\partial_{xy} f(0,0) = -\partial_{yx} f(0,0) = 1$.

Beachte: Wir sagen, dass eine Funktion $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ zweimal differenzierbat ist, falls ∇f differenzierbar ist. Tatsächlich gilt der Satz von Schwarz auch für zweimal differenzierbare Funktionen (im Widerspruch zur vorherigen Version dieser "Ubung).

Aufgabe 6. Für $n \in \mathbb{N}$ bezeichnen wir mit $GL_n(\mathbb{R})$ die Menge der invertierbaren $n \times n$ -Matrizen mit reellen Einträgen, betrachtet als Teilmenge von $Mat_{n,n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$.

- (1) Zeigen Sie, dass $GL_n(\mathbb{R})$ eine offene Teilmenge von $Mat_{n,n}(\mathbb{R})$ ist.
- (2) Zeigen Sie, dass die Abbildung

inv:
$$GL_n(\mathbb{R}) \longrightarrow GL_n(\mathbb{R}), A \longmapsto A^{-1}$$

stetig ist.

(3) Zeigen Sie, dass inv differenzierbar ist und bestimmen Sie für $A \in GL_n(\mathbb{R})$ das Differential D_A inv.

Aufgabe 7. Multiple choice Aufgabe. Kreuzen Sie die richtigen Antworten an (es kann mehr als eine richtige Antwort geben).

(1) Die Hesse-Matrix $H(x_0)$ der Funktion $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ sei in einem kritischen Punkt x_0 von f positiv semidefinit, d.h. es gelte $\langle v, H(x_0)v \rangle \geq 0$ für alle $v \in \mathbb{R}^n$. Welche der folgenden Aussagen gelten dann notwendigerweise?

W

- (a) x_0 ist ein striktes lokales Minimum von f.
- (b) x_0 ist ein (möglicherweise nicht striktes) lokales Minimum von f.
- (c) x_0 ist kein lokales Maximum von f.
- (d) Keine der obige Aussagen.
- (2) Welche der folgenden Aussagen über reguläre und kritische Werte bzw. Punkte gelten im Allgemeinen?

		W
(e)	Jeder Punkt im Urbild eines regulären Wertes ist ein regulärer Punkt.	
(f)	Das Bild eines kritischen Punktes ist ein kritischer Wert.	
(g)	Jeder Punkt im Urbild eines kritischen Wertes ist ein kritischer Punkt.	
(h)	Das Bild eines regulären Punktes ist ein regulärer Wert.	