Probeprüfung Analysis II

Rechnungen

Aufgabe 1.

- (a) [2 Punkte] Für welchen Wert c > 0 berührt das Ellipsoid $x^2 + 2y^2 + 3z^2 = c$ die Ebene 2x + 2y + 3z = 9 tangential, und
- (b) [2 Punkte] in welchem Punkt?

Aufgabe 2. [4 Punkte] Berechnen Sie den von der Kurve $\gamma: [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}^2$, $\gamma(t) = (\cos(t), \sin(2t))$, eingeschlossenen Flächeninhalt.

Aufgabe 3. [4 Punkte] Wird die Strecke von (2,0,-1) nach (1,0,1) um die z-Achse rotiert, so entsteht eine Rotationsfläche S. Berechnen Sie den Fluss des Vektorfeldes $(x,y,z)\mapsto (\frac{1}{2}x,\frac{1}{2}y,-z)$ durch S von innen nach aussen.

Aufgabe 4. Gegeben sei die Differentialgleichung y'' + 2y' + 2y = 0 für eine reelle Funktion y = y(t). Bestimmen Sie

- (a) [1 Punkt] die allgemeine Lösung dieser Gleichung sowie
- (b) [3 Punkte] die Lösung des Anfangwertproblems y'' + 2y' + 2y = 6, y(0) = y'(0) = 0.

MC-Aufgaben

Aufgabe 5. [3 Punkte] Welche der folgenden Aussagen über vollständige metrische Räume sind stets wahr?

- (a) Jede vollständige Teilmenge eines metrischen Raumes ist abgeschlossen.
- (b) Jede abgeschlossene Teilmenge eines vollständigen metrischen Raumes ist vollständig.
- (c) Jeder vollständige und beschränkte metrische Raum ist kompakt.
- (d) Jeder kompakte metrische Raum ist vollständig und beschränkt.

Aufgabe 6. [3 Punkte] Sei $U \subseteq \mathbb{R}^n$ eine nichtleere, offene Teilmenge und $f: U \to \mathbb{R}^m$ eine Funktion. Welche der folgenden Aussagen sind stets wahr?

- (a) Existieren alle partiellen Ableitungen von f in einem Punkt $x_0 \in U$, so ist f in x_0 stetig.
- (b) Existieren alle Richtungsableitungen von f in einem Punkt $x_0 \in U$, so ist f in x_0 differenzierbar.
- (c) Existieren alle partiellen Ableitungen von f auf ganz U und sind diese stetig, so ist f auf U differenzierbar.
- (d) Ist f auf ganz U differenzierbar, so existieren alle partiellen Ableitungen von f auf U und diese sind stetig.

Aufgabe 7. [3 Punkte] Welche der folgenden Aussagen über Untermannigfaltigkeiten sind stets wahr?

- (a) Ist M eine k-dimensionale Untermannigfaltigkeit von \mathbb{R}^n und $N \subset M$ offen in M, so ist N selbst eine k-dimensionale Untermannigfaltigkeit von \mathbb{R}^n .
- (b) Die Vereinigung von zwei disjunkten k-dimensionalen Untermannigfaltigkeiten von \mathbb{R}^n ist eine k-dimensionale Untermannigfaltigkeit von \mathbb{R}^n .
- (c) Das kartesische Produkt einer k-dimensionalen Untermannigfaltigkeit des \mathbb{R}^m und einer l-dimensionalen Untermannigfaltigkeit des \mathbb{R}^n ist eine (k+l)-dimensionale Untermannigfaltigkeit des \mathbb{R}^{m+n} .
- (d) Sind M, N zwei (n-1)-dimensionale Untermannigfaltigkeiten von \mathbb{R}^n für $n \geq 2$, und gilt $T_pM \neq T_pN$ für alle $p \in M \cap N$, so ist $M \cap N$ eine (n-2)-dimensionale Untermannigfaltigkeit von \mathbb{R}^n .

Aufgabe 8. [3 Punkte] Sei A eine reelle $n \times n$ -Matrix. Welche der folgenden Aussagen über die Lösungen des linearen Differentialgleichungssystems $\dot{x} = Ax$ sind stets wahr?

- (a) Jede Lösung $x: \mathbb{R} \to \mathbb{R}^n$ mit $\sup_{t>0} ||x(t)||_2 = \infty$ wächst für $t \to \infty$ exponentiell.
- (b) Es gibt genau dann eine nicht-triviale konstante Lösung $x \colon \mathbb{R} \to \mathbb{R}^n$, wenn $\det(A) = 0$ ist.
- (c) Ist A reell diagonalisierbar und existiert eine nicht-triviale beschränkte Lösung $x: \mathbb{R} \to \mathbb{R}^n$, so ist 0 ein Eigenwert von A.
- (d) Ist A komplex diagonalisierbar und existiert eine nicht-triviale beschränkte Lösung $x \colon \mathbb{R} \to \mathbb{R}^n$, so ist 0 ein Eigenwert von A.

Theorie und Anwendungen

Aufgabe 9. Es seien X, Y zwei metrische Räume, und X sei kompakt.

- (a) [2 Punkte] Zeigen Sie, dass f(X) kompakt ist.
- (b) [3 Punkte] Zeigen Sie, dass jede stetige Funktion $f: X \to Y$ gleichmässig stetig ist.

Aufgabe 10. Sei $f: U \to \mathbb{R}^n$ ein stetiges Vektorfeld auf einem Gebiet $U \subseteq \mathbb{R}^n$

- (a) [2 Punkte] Zeigen Sie: Gibt es zu f ein Potential $F: U \to \mathbb{R}$, so ist f konservativ.
- (b) [2 Punkte] Zeigen Sie: Ist f stetig differenzierbar und besitzt f ein Potential, so erfüllt $f = (f_1, \ldots, f_n)$ die Integrabilitätsbedingungen $\partial_j f_k = \partial_k f_j$ für alle $j, k \in \{1, \ldots, n\}$.
- (c) [3 Punkte] Geben Sie ein Beispiel eines Gebiets $U \subseteq \mathbb{R}^2$ und eines konservativen glatten Vektorfelds $f = (f_1, f_2) \colon U \to \mathbb{R}^2$, welches die Integrabilitätsbedingung $\partial_1 f_2 = \partial_2 f_1$ erfüllt aber kein Potential besitzt (diese Eigenschaften sind nachzuweisen).

Aufgabe 11. [5 Punkte] Sei $f: [a, b] \to \mathbb{R}_{>0}$ eine positive stetige Funktion, a < b. Zeigen Sie:

$$\int_{a}^{b} f(x) \, dx \int_{a}^{b} \frac{1}{f(x)} \, dx \ge (b - a)^{2}.$$

Aufgabe 12. [5 Punkte] Sei $U \subseteq \mathbb{R}^3$ eine offene Menge, $B \subset U$ ein glatt berandeter, kompakter und zusammenhängender Bereich mit äusserem Einheitsnormalenfeld $\mathbf{n} \colon \partial B \to \mathbb{R}^3$, und sei $u \colon U \to \mathbb{R}$ eine harmonische Funktion mit Aussennormalableitung $\partial_{\mathbf{n}} u = \langle \nabla u, \mathbf{n} \rangle \colon \partial B \to \mathbb{R}$. Zeigen Sie, dass

$$\int_{B} \|\nabla u\|^{2} d \operatorname{vol} = \int_{\partial B} u \, \partial_{\mathbf{n}} u \, dA$$

gilt und folgern Sie daraus, dass u auf B konstant sein muss, falls $u|_{\partial B} = 0$ oder $\partial_{\mathbf{n}} u = 0$ ist.