Question 1 (10 points)

Let \mathcal{A} be an algebra of sets on a set X and $\lambda: \mathcal{A} \rightarrow[0,+\infty]$ a pre-measure on \mathcal{A}. We define the mapping $\mu: \mathcal{P}(X) \rightarrow[0,+\infty]$ as

$$
\mu(E):=\inf \left\{\sum_{k=1}^{\infty} \lambda\left(A_{k}\right) \mid A_{1}, A_{2}, \ldots \in \mathcal{A}, E \subseteq \bigcup_{k=1}^{\infty} A_{k}\right\}
$$

for any set $E \subseteq X$. One can then show that μ is a measure.
1.Q1. [2 points] State Carathéodory's measurability criterion with respect to μ.

Solution: Carathéodory's criterion states that a set $A \subseteq X$ is measurable if and only if for any set $E \subseteq X$,

$$
\mu(E)=\mu(E \backslash A)+\mu(E \cap A)
$$

holds.
1.Q2. [4 points] Show that for every $A \in \mathcal{A}$, it holds that $\lambda(A)=\mu(A)$.

Solution: Since $\{A, \varnothing, \varnothing, \ldots\}$ is a covering of A by sets in \mathcal{A} and $\lambda(\varnothing)=0$, it clearly holds that $\mu(A) \leq \lambda(A)$.
For the reverse inequality, let $A_{1}, A_{2}, \ldots \in \mathcal{A}$ be such that $A \subseteq \bigcup_{k=1}^{\infty} A_{i}$ and define the sets $B_{k}:=A_{k} \cap A \backslash\left(A_{1} \cup \cdots \cup A_{k-1}\right)$. Since $A \in \mathcal{A}$, by the properties of an algebra we see that $B_{k} \in \mathcal{A}$. Moreover they are pairwise disjoint by construction and satisfy

$$
\bigcup_{k=1}^{\infty} B_{k}=\bigcup_{k=1}^{\infty} A \cap A_{k} \backslash\left(A_{1} \cup \cdots \cup A_{k-1}\right)=\bigcup_{k=1}^{\infty} A \cap A_{k}=A \cap \bigcup_{k=1}^{\infty} A_{k}=A
$$

Therefore $\lambda(A)=\sum_{k=1}^{\infty} \lambda\left(B_{k}\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)$. Taking the infimum over all such collections we deduce that $\lambda(A) \leq \mu(A)$.
1.Q3. [4 points] Prove that every set $A \in \mathcal{A}$ is μ-measurable.

Solution: Let $E \in \mathcal{P}(X)$ be arbitrary. The inequality $\mu(E) \leq \mu(E \backslash A)+\mu(E \cap A)$ follows from the subadditivity of the measure μ.
For the opposite one, let $A_{1}, A_{2}, \ldots \in \mathcal{A}$ cover E and observe that the collections $\left\{A_{i} \backslash A\right\}$ and $\left\{A_{i} \cap A\right\}$ are covers of $E \backslash A$ and $E \cap A$ (respectively) also by sets in \mathcal{A}. Then, using the additivity of λ,

$$
\mu(E \backslash A)+\mu(E \cap A) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k} \backslash A\right)+\lambda\left(A_{k} \cap A\right)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)
$$

We now finish by taking the infimum over all such collections $\left\{A_{i}\right\}$.

Question 2 (14 points)

2.Q1. [2 points] Let (Ω, μ) be a measure space. For $1 \leq p<+\infty$, define the space $L^{p}(\Omega, \mu)$.

Solution: For $1 \leq p<+\infty$, we define $L^{p}(\Omega, \mu)$ to be the space of measurable functions $f: \Omega \rightarrow \overline{\mathbb{R}}$ such that

$$
\|f\|_{L^{p}(\Omega, \mu)}^{p}:=\int_{\Omega}|f|^{p} d \mu<+\infty
$$

up to almost everywhere equivalence.
Fix $1 \leq p<+\infty$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $L^{p}(\Omega, \mu)$.
2.Q2. [4 points] Show that there is a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ such that

$$
\sum_{k=1}^{\infty}\left\|f_{n_{k}}-f_{n_{k+1}}\right\|_{L^{p}(\Omega, \mu)}<+\infty
$$

Solution: We take inducively n_{k} to be bigger than n_{k-1} and to satisfy that $\forall n \geq n_{k}$, $\left\|f_{n}-f_{n_{k}}\right\|_{L^{p}} \leq 2^{-k}$. This is possible thanks to the fact that $\left\{f_{n}\right\}$ is a Cauchy sequence in L^{p}. The desired sum clearly converges with this choice.
2.Q3. [4 points] Show that the function $g(x):=\sum_{k=1}^{\infty}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|$ is in $L^{p}(\Omega, \mu)$ and is finite μ-almost everywhere.

Solution: Let $g_{K}(x):=\sum_{k=1}^{K}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|$ and observe that $g_{K} \nearrow g$ monotonically almost everywhere. On the other hand, by the Minkowski inequality,

$$
\left\|g_{K}\right\|_{L^{p}} \leq \sum_{k=1}^{K}\left\|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right\|_{L^{p}} \leq C
$$

where C is the value of the finite sum in part (a). Observe that also $g_{K}^{p} \nearrow g^{p}$ monotonically almost everywhere, thus by Beppo Levi's theorem,

$$
\int_{\Omega} g^{p}=\lim _{k \rightarrow \infty} \int_{\Omega} g_{k}^{p}=\lim _{k \rightarrow \infty}\left\|g_{k}\right\|_{L^{p}}^{p} \leq C^{p}<+\infty
$$

Hence g is in L^{p} and in particular finite almost everywhere.
2.Q4. [4 points] Prove that there exists a function $f \in L^{p}(\Omega, \mu)$ such that $\left\|f_{n_{k}}-f\right\|_{L^{p}(\Omega, \mu)} \rightarrow$ 0 as $k \rightarrow \infty$ and deduce that $L^{p}(\Omega, \mu)$ is complete.

Solution: We have seen that for μ-almost every $x \in \Omega$ the sum $\sum_{k=1}^{\infty}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|$ converges. Since an absolutely converging series of real numbers is converging, this means that the sequence $f_{n_{K}}(x)=f_{n_{1}}(x)+\sum_{k=1}^{K-1}\left(f_{n_{k+1}}(x)-f_{n_{k}}(x)\right)$ converges for almost every x to a value that we call $f(x)$. As the limit of measurable functions f is measurable. Moreover,

$$
|f| \leq\left|f_{n_{1}}\right|+g \in L^{p}(\Omega, \mu)
$$

and by applying dominated convergence to the functions $\left|f-f_{n_{K}}\right|^{p} \leq\left(|f|+\left|f_{n_{K}}\right|\right)^{p} \leq$ $\left(|f|+g+\left|f_{n_{1}}\right|\right)^{p} \in L^{1}$ we deduce that

$$
\lim _{K \rightarrow \infty}\left\|f-f_{n_{K}}\right\|_{L^{p}}^{p}=0
$$

Finally, since the whole sequence $\left\{f_{n}\right\}$ is Cauchy and a subsequence of it converges, all the sequence must converge as well. Thus completeness is proven.

Question 3 (6 points)
Compute the following limits:
3.Q1. [3 points]

$$
\lim _{m \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+x^{m}} d x
$$

Solution: Observe that for $0 \leq x<1, x^{m} \rightarrow 0$ as $m \rightarrow \infty$, whereas for $x>1$, $x^{m} \xrightarrow{m \rightarrow \infty}+\infty$. Hence, if we define $f_{m}(x)$ to be the integrand, $f_{m} \rightarrow \chi_{[0,1]}$ almost everywhere. In order to apply Lebesgue's dominated convergence theorem, we need to find a dominating function. For $x \leq 1, f_{m}(x) \leq 1$. On the other hand, for $x>1$ and $m \geq 2$, observe that $x^{2} \leq x^{m}$, which implies that $f_{m}(x) \leq \frac{1}{1+x^{2}}$. Thus the function $g(x)=\chi_{[0,1]}(x)+\frac{1}{1+x^{2}}$ dominates $\left\{f_{m}\right\}$ and is summable, hence we can pass to the limit

$$
\lim _{m \rightarrow \infty} \int_{0}^{\infty} f_{m}(x) d x=\int_{0}^{\infty} \chi_{[0,1]}(x) d x=1
$$

3.Q2. [3 points]

$$
\lim _{m \rightarrow \infty} \int_{0}^{1} \sum_{k=0}^{m} \frac{x^{k}}{k!} d x
$$

Solution: Since the summands are positive, the sum inside the integral is a monotone function of m for each x. Therefore we can apply Beppo Levi's monotone convergence theorem and deduce

$$
\lim _{m \rightarrow \infty} \int_{0}^{1} \sum_{k=0}^{m} \frac{x^{k}}{k!} d x=\int_{0}^{1} \sum_{k=0}^{\infty} \frac{x^{k}}{k!} d x=\int_{0}^{1} e^{x} d x=e^{1}-e^{0}=e-1 .
$$

Question 4 (8 points)

Let H be a complex vector space and consider a function $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{C}$.
4.Q1. [2 points] Define what it means for the pair $(H,\langle\cdot, \cdot\rangle)$ to be a complex Hilbert space.

Solution: To start, $(H,\langle\cdot, \cdot\rangle)$ must be an inner product space. That is, the map $\langle\cdot, \cdot\rangle$ must be a positive-definite, conjugate-symmetric sesquilinear form, namely for all $u, v, w \in$ H and for all $\lambda \in \mathbb{C}$ we must have

$$
\langle\lambda v, w\rangle=\lambda\langle v, w\rangle, \quad\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle, \quad \overline{\langle v, w\rangle}=\langle w, v\rangle
$$

and $\langle v, v\rangle>0$ unless $v=0$. Finally, the normed vector space $(H,\|\cdot\|)$ must be complete (i.e., all Cauchy sequences must have a limit), where the norm is defined through the scalar product as $\|v\|:=\sqrt{\langle v, v\rangle}$.

From now on assume that $(H,\langle\cdot, \cdot\rangle)$ is indeed a Hilbert space.
4.Q2. [3 points] Let $V \subset H$ be a vector subspace. Providing all the necessary assumptions, state the projection theorem on V. More precisely, define the closest-point projection operator $\pi_{V}: H \rightarrow V$ and characterize $\pi_{V}(v)$ (the projection of a point v) by a suitable orthogonality condition. No proofs are required.

Solution: Assume that $V \subset H$ is a closed linear subspace. Then for any $v \in H$ there exists a unique $\pi_{V}(v) \in V$ such that

$$
\left\|v-\pi_{V}(v)\right\|=\min _{w \in V}\|v-w\|
$$

Moreover $\pi_{V}(x)$ is characterized by the following orthogonality property:

$$
\left\langle v-\pi_{V}(v), w\right\rangle=0 \quad \text { for any } w \in V .
$$

4.Q3. [3 points] Assume $H:=L^{2}(\mathbb{R})$ with the standard L^{2} scalar product and let V be the subspace of all odd functions in $L^{2}(\mathbb{R})$. After checking the necessary assumptions, prove that

$$
\pi_{V}(f)(x)=\frac{f(x)-f(-x)}{2}
$$

Solution: First observe that the subspace of odd functions in $L^{2}(\mathbb{R})$ is linear and closed. Linearity is obvious; to check closedness let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of odd functions in $L^{2}(\mathbb{R})$ converging in $L^{2}(\mathbb{R})$ to a function f. Then, up to a subsequence, $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges a.e. to f. It follows that $f_{n}(x)+f_{n}(-x)$ converges a.e. to $f(x)+f(-x)$, so that for a.e.

$$
x \in \mathbb{R}
$$

$$
f(x)+f(-x)=\lim _{n \rightarrow \infty} f_{n}(x)+f_{n}(-x)=0
$$

i.e. f is odd.

From the Projection Theorem it follows that there exists a projection $\pi_{o d d}$ to the subspace of odd functions. To check that $\pi_{o d d}$ has the form given in the exercise we first observe that for any $f \in L^{2}(\mathbb{R}), \pi_{V}(f)(x)=\frac{f(x)-f(-x)}{2}$ is odd. Finally we check that π_{V} satisfies the characterizing orthogonality condition: for any $g \in L^{2}(\mathbb{R})$ odd we have

$$
\left\langle f-\pi_{V}(f), g\right\rangle=\int_{\mathbb{R}} \frac{f(x)+f(-x)}{2} g(x) d x=0
$$

Here the integral is equal to zero since $\frac{f(x)+f(-x)}{2}$ is even and g is odd.

Question 5 (10 points)

5.Q1. [2 points] Compute the Fourier transform of $f(t):=\chi_{[-1 / 2,1 / 2]}(t), t \in \mathbb{R}$.

Solution:

$$
\begin{aligned}
\hat{f}(\xi) & =(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}} f(x) e^{-i \xi x} d x=(2 \pi)^{-\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-i \xi x} d x=(2 \pi)^{-\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}}(\cos (\xi x)-i \sin (\xi x)) d x \\
& =\left.(2 \pi)^{-\frac{1}{2}} \frac{\sin (\xi x)}{\xi}\right|_{-\frac{1}{2}} ^{\frac{1}{2}}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{\sin \left(\frac{\xi}{2}\right)}{\xi}
\end{aligned}
$$

5.Q2. [3 points] Given u, v in $L^{1}(\mathbb{R})$, express $\mathcal{F}(u * v)$ in terms of \hat{u} and \hat{v}. Prove rigorously your formula and specify whether $\mathcal{F}(u * v)$ is computed in the L^{1} or in the L^{2} sense.

Solution: Observe that $u * v \in L^{1}$ by Young's inequality. Thus we can compute

$$
\begin{aligned}
\mathcal{F}(u * v)(\xi) & =(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} u(x-y) v(y) d y\right) e^{-i \xi x} d x \\
& =(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} u(x-y) e^{-i(x-y) \xi} v(y) e^{-i y \xi} d x\right) d y \\
& =(2 \pi)^{-\frac{1}{2}} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} u(z) e^{-i z \xi} v(y) e^{-i y \xi} d z\right) d y \\
& =\int_{\mathbb{R}} \hat{u}(\xi) v(y) e^{-i y \xi} d y=(2 \pi)^{\frac{1}{2}} \hat{u}(\xi) \hat{v}(\xi),
\end{aligned}
$$

where in the second step we used Fubini theorem, while in the third we used the substitution $z=x-y($ for fixed $y)$.
5.Q3. [3 points] Check that $g(t):=(f * f)(t)$ is equal to $(1-|t|)_{+}$for all $t \in \mathbb{R}$ and compute \hat{g}.

Solution: First we check that $g(t)=(1-|t|)_{+}$:

$$
g(t)=\int_{\mathbb{R}} \chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(t-s) \chi_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(s) d s=\mathcal{L}^{1}\left(\left[t-\frac{1}{2}, t+\frac{1}{2}\right] \cap\left[-\frac{1}{2}, \frac{1}{2}\right]\right) .
$$

If $|t|>1$, then the intersection $\left[t-\frac{1}{2}, t+\frac{1}{2}\right] \cap\left[-\frac{1}{2}, \frac{1}{2}\right]$ is empty and $g(t)=0$.
If $t \in[0,1]$, then $\left[t-\frac{1}{2}, t+\frac{1}{2}\right] \cap\left[-\frac{1}{2}, \frac{1}{2}\right]=\left[t-\frac{1}{2}, \frac{1}{2}\right]$ and $g(t)=\frac{1}{2}-\left(t-\frac{1}{2}\right)=1-t$.
If $t \in[-1,0]$, then $\left[t-\frac{1}{2}, t+\frac{1}{2}\right] \cap\left[-\frac{1}{2}, \frac{1}{2}\right]=\left[-\frac{1}{2}, t+\frac{1}{2}\right]$ and $g(t)=t+\frac{1}{2}-\left(-\frac{1}{2}\right)=1+t$.
We conclude that $g(t)=(1-|t|)_{+}$.

Next we compute \hat{g}. By the previous point we have

$$
\begin{aligned}
\hat{g}(\xi) & =\mathcal{F}(f * f)(\xi)=(2 \pi)^{\frac{1}{2}}(\hat{f}(\xi))^{2}=(2 \pi)^{\frac{1}{2}}\left(\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{\sin \left(\frac{\xi}{2}\right)}{\xi}\right)^{2} \\
& =\frac{2^{\frac{3}{2}}}{\pi^{\frac{1}{2}}} \frac{\sin ^{2}\left(\frac{\xi}{2}\right)}{\xi^{2}}=\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \frac{1-\cos (\xi)}{\xi^{2}} .
\end{aligned}
$$

5.Q4. [2 points] Does \hat{g} belong to the Schwartz class $\mathcal{S}(\mathbb{R})$? Why?

Solution: From the previous point we see that $\xi^{2} \hat{g}(\xi)$ is periodic (and non-zero), therefore it is not decaying and cannot be in $\mathcal{S}(\mathbb{R})$. Alternatively one sees that $g \notin \mathcal{S}(\mathbb{R})$ as it is not smooth. Since the Fourier transform is a bijection from $\mathcal{S}(\mathbb{R})$ to itself, \hat{g} cannot be in $\mathcal{S}(\mathbb{R})$.

Question 6 (12 points)

Consider the heat-type PDE

$$
\begin{equation*}
\partial_{t} u=\cos (t) \partial_{x x} u \text { in }(0, T) \times \mathbb{R}, \quad u\left(0^{+}, x\right)=f(x) \text { for all } x \in \mathbb{R} \tag{P}
\end{equation*}
$$

where

- $T>0$ is a given "final time",
- $u(t, x)$ is assumed to be real-valued and 2π-periodic in the x variable, that is $u(t, x)=$ $u(t, x+2 \pi)$ for all $t \in(0, T)$ and $x \in \mathbb{R}$, and
- $f(x)$ is a given initial condition which is also 2π-periodic.

Complete the following tasks:
6.Q1. [3 points] Assuming you are given the Fourier coefficients $\left\{c_{k}(f)\right\}_{k \in \mathbb{Z}}$, construct a formal solution w of (P) as a Fourier series in the x variable with t-dependent coefficients.

Solution: We write

$$
w(t, x)=\sum_{k \in \mathbb{Z}} w_{k}(t) e^{i k x}
$$

and from $(\overline{\mathrm{P}})$ we find for all $k \in \mathbb{Z}$ the ODEs

$$
w_{k}^{\prime}(t)+k^{2} \cos (t) w_{k}(t)=0 \text { in }(0, T), \quad w_{k}(0)=c_{k}(f)
$$

Solving we find

$$
w_{k}(t)=c_{k}(f) e^{-k^{2} \sin (t)} \text { for all } t \in(0, T)
$$

Hence the formal solution

$$
w(t, x):=\sum_{k \in \mathbb{Z}} c_{k}(f) e^{i k x-k^{2} \sin (t)} \quad \text { for all }(t, x) \in(0, T) \times \mathbb{R}
$$

6.Q2. [3 points] Check that, if $\int_{-\pi}^{\pi}|f|^{2}<\infty$ and $T<\pi$, then $w:(0, T) \times \mathbb{R} \rightarrow \mathbb{R}$ is indeed a well-defined continuous function.

Solution: By Parseval we know

$$
\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}<\infty
$$

Let us first show that the series defining w is absolutely convergent uniformly in compact
subsets of $(0, T) \times \mathbb{R}$ as long as $T<\pi$. In fact if we fix any $\delta>0$ we have

$$
\begin{aligned}
\sum_{|k| \geq m} \sup _{(\delta, \pi-\delta) \times \mathbb{R}}\left|c_{k}(f) e^{i k x-k^{2} \sin (t)}\right| & =\sum_{|k| \geq m}\left|c_{k}(f)\right| \sup _{t \in(\delta, \pi-\delta)}\left|e^{-k^{2} \sin (t)}\right| \\
& \leq\left\|\left\{c_{k}(f)\right\}\right\|_{\ell^{2}}\left(\sum_{|k| \geq m} e^{-2 k^{2} \sin \delta}\right)^{1 / 2} \xrightarrow{m \rightarrow \infty} 0
\end{aligned}
$$

and the series is convergent (for example by the ratio test or any other Analysis I criterion). We used crucially that in $(0, \pi)$ the sine function is positive, so

$$
\sup _{t \in(\delta, \pi-\delta)}\left|e^{-k^{2} \sin (t)}\right|=e^{-k^{2} \inf _{(\delta, \pi-\delta)} \sin }=e^{-k^{2} \sin \delta}
$$

We proved that $w:(0, T) \times \mathbb{R} \rightarrow \mathbb{R}$ is well-defined and continuous.
6.Q3. [3 points] Show that also the initial condition is met in the sense that

$$
\lim _{t \downarrow 0}\|w(t, \cdot)-f\|_{L^{2}(-\pi, \pi)}=0
$$

Solution: For each fixed $t>0$ the k th Fourier coefficient of the 2π-periodic function $w(t, \cdot)$ is indeed given by $w_{k}(t)$. Hence by Parseval's identity we have

$$
\frac{1}{2 \pi}\|f-w(t, \cdot)\|_{L^{2}(-\pi, \pi)}^{2}=\sum_{k \in \mathbb{Z}}\left|c_{k}(f)-w_{k}(t)\right|^{2}=\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right|^{2}\left(1-e^{-k^{2} \sin (t)}\right)^{2}
$$

We pass to the limit $t \downarrow 0$ using the dominated convergence theorem in $L^{1}(\mathbb{Z}, \#, \mathcal{P}(\mathbb{Z}))$ and find

$$
\lim _{t \downarrow 0}\|f-w(t, \cdot)\|_{L^{2}(-\pi, \pi)}^{2}=0
$$

The domination is given by

$$
\left|c_{k}(f)\right|^{2} \underbrace{\left(1-e^{-k^{2} \sin (t)}\right)^{2}}_{\leq 1} \leq\left|c_{k}(f)\right|^{2} \in \ell^{1} \text { by the assumption } f \in L^{2} .
$$

6.Q4. [3 points] Show that w is in fact of class C^{2} (in both variables) and solves the equation

$$
\partial_{t} w=\cos (t) \partial_{x x} w \text { in }(0, T) \times \mathbb{R}
$$

Solution: Now we have to do the same for the derivatives up to the second order. We first compute them

$$
\begin{aligned}
\left|\partial_{t}\left(e^{i k x-k^{2} \sin (t)}\right)\right| & =\left|\cos (t) k^{2} e^{i k x-k^{2} \sin (t)}\right| \leq k^{2}\left|e^{-k^{2} \sin (t)}\right| \\
\left|\partial_{x}\left(e^{i k x-k^{2} \sin (t)}\right)\right| & =\left|i k e^{i k x-k^{2} \sin (t)}\right| \leq|k|\left|e^{-k^{2} \sin (t)}\right| \\
\left|\partial_{x x}\left(e^{i k x-k^{2} \sin (t)}\right)\right| & =\left|k^{2} e^{i k x-k^{2} \sin (t)}\right| \leq k^{2}\left|e^{-k^{2} \sin (t)}\right| \\
\left|\partial_{x t}\left(e^{i k x-k^{2} \sin (t)}\right)\right| & =\left|k^{4} \cos (t) e^{i k x-k^{2} \sin (t)}\right| \leq k^{4}\left|e^{-k^{2} \sin (t)}\right| \\
\left|\partial_{t t}\left(e^{i k x-k^{2} \sin (t)}\right)\right| & =\left|k^{2}\left(k^{2} \cos ^{2}(t)+\sin (t)\right) e^{i k x-k^{2} \sin (t)}\right| \leq 2 k^{4}\left|e^{-k^{2} \sin (t)}\right| .
\end{aligned}
$$

Hence we find that, as long as $\alpha+\beta \leq 2$ with $\alpha, \beta \in \mathbb{N}$, then

$$
\sum_{k \in \mathbb{Z}} \sup _{(\delta, \pi-\delta) \times \mathbb{R}}\left|c_{k}(f) \partial_{t}^{\alpha} \partial_{x}^{\beta}\left(e^{i k x-k^{2} \sin (t)}\right)\right| \leq \sum_{k \in \mathbb{Z}} 2\left|c_{k}(f)\right| k^{4} \sup _{t \in(\delta, \pi-\delta)}\left|e^{-k^{2} \sin (t)}\right|
$$

By Cauchy Schwarz we conclude exactly as above since for every $\delta>0$ it holds

$$
\sum_{k \in \mathbb{Z}} k^{8} e^{-2 k^{2} \sin \delta}<\infty
$$

This proves that w is of class C^{2} and its derivatives can be computed termwise differentiating the series that defines w. Hence it is readily checked that w satisfies (P) since

$$
\partial_{t} w=\sum_{k \in \mathbb{Z}}-k^{2} \cos (t) w_{k}(t) e^{i k x}, \quad \partial_{x x} w=\sum_{k \in \mathbb{Z}}-k^{2} w_{k}(t) e^{i k x},
$$

and so $\partial_{t} w=\cos (t) \partial_{x x} w$.

