
ANALYSIS IV - MOCK EXAM - 90 MIN

Problem 1. Let H be a complex vector space and consider a function ⟨·, ·⟩ : H ×
H → C.

(a) Define what it means that the pair (H, ⟨·, ·⟩) is a complex Hilbert space.

From now on assume that (H, ⟨·, ·⟩) is in fact a complex Hilbert space.

(b) State the parallelogram law and the Cauchy-Schwarz inequality in (H, ⟨·, ·⟩).
(c) Show that the Cauchy-Schwarz inequality implies the triangular inequality

for the norm ∥v∥ :=
√
⟨v, v⟩.

(d) Consider H := L2((0, 1),R) with the standard L2 scalar product and the
set K := {v ∈ H : v ≥ 0 a.e.}. Prove that K is a convex and closed subset
of H and that

PK(u)(x) = max{u(x), 0},
where PK : H → K denotes the closest point projection.

Problem 2.

(a) Given f ∈ C1
c (R), state and prove the formula expressing F(f ′) in terms

of F(f).
(b) Compute the Fourier transform of f(t) := e−|t|, t ∈ R.
(c) Consider g : R → R, the only 2π-periodic function that agrees with f in

[−π, π]. Show that the Fourier partial sums SN (g) converge to g uniformly
in [−π, π].

Problem 3. Consider the heat-type PDE

(P) ∂tu =
1

1 + t2
u+ ∂xxu in (0,∞)× R, u(0+, x) = f(x) for all x ∈ R,

where

• u(t, x) is assumed to be real-valued and 2π-periodic in the x variable, that
is u(t, x) = u(t, x+ 2π) for all t > 0 and x ∈ R,

• f(x) is a given initial condition which is also 2π-periodic.

Complete the following tasks:

(a) Assuming you are given the Fourier coefficients {ck(f)}k∈Z construct a for-
mal solution w of (P) as a Fourier series in the x variable with t-dependent
coefficients.

(b) Check that, if
´ π
−π

|f |2 < ∞, then w : (0,∞) × R → R is well-defined, of

class C2 and solves the equation

∂tw =
1

1 + t2
w + ∂xxw in (0,∞)× R.

(c) Show that the initial condition is met in the sense that

lim
t↓0

∥w(t, ·)− f∥L2(−π,π) = 0.

Please turn the page!
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You can use the results seen in class if you clearly identify them (either you
call them by their name or you state unambiguously the assumptions and the
conclusion).

You can also give for granted the following facts:

• The definition of vector space over C.
• The Fourier transform in Rd (under suitable assumptions) is given by

f̂(ξ) = (2π)−d/2

ˆ
Rd

f(x)e−iξ·x dx.

• C1
c (R) denotes the vector space of continuously differentiable functions from

R to C each of which vanish outside a sufficiently large interval.
• For a 2π-periodic function f : R → C the kth fourier coefficient is given by

ck(f) :=
1

2π

ˆ π

−π

f(x)e−ikx dx for each k ∈ Z.

Under suitable assumption f can be expressed as a suitable limit of the
Fourier partial sums

SNf(x) =
∑

|k|≤N

ck(f)e
ikx.
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Solutions.

(1a) H must be a complex vector space (whose definition we can give for granted).
⟨·, ·⟩ must be a positive-definite, conjugate symmetric sesquilinear form.
That is for all x, y, z ∈ H and for all λ ∈ C we must have

⟨λx, y⟩ = λ⟨y, x⟩, ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

and ⟨x, x⟩ > 0 unless x = 0.
Finally, the normed vector space (H, ∥ · ∥) must be complete (i.e., all

Cauchy sequences must have a limit), where the norm is defined trough the

scalar product as ∥x∥ :=
√
⟨x, x⟩.

(1b) Parallelogram law: ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 for all x, y ∈ H.
Cauchy-Schwarz: |⟨x, y⟩| ≤ ∥x∥∥y∥, for all x, y ∈ H.

(1c) Just take the square root of

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2Re(⟨x, y⟩)
≤ ∥x∥2 + ∥y∥2 + 2|⟨x, y⟩|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ = (∥x∥+ ∥y∥)2.

In the first inequality we used that for any complex number Re(z) ≤ |z|
and in the second we used the C.S. inequality.

(1d) Clearly, if v1, v2 are non-negative and t ∈ [0, 1], then also tv1 + (1− t)v2 is
non-negative, hence K is convex. We remark also that K ̸= ∅

Let {vj} ⊂ K be a sequence with vj → v∞ in L2(0, 1). Up to a subse-
quence, we can assume that the convergence holds also almost everywhere,
now since each vj was non-negative, so must be its pointwise a.e. limit.

Let us call w ∈ L2(0, 1) the projection of u. Then w is uniquely deter-
mined by the conditions:

(0.1) w ∈ K and ⟨u− w, v − w⟩ ≤ 0 for all v ∈ K.

Now we set

u+ := max{u, 0} and u− := max{−u, 0},

so that u = u+ − u−. We check that u+ satisfies (0.1) and thus w = u+.
With our notation we have u = u+ − u− and so for any v ≥ 0 we have

⟨u− u+, u+ − v⟩ = −⟨u−, v⟩︸ ︷︷ ︸
≥0

+ ⟨u−, u+⟩︸ ︷︷ ︸
=0

≤ 0.

The first sign is justified because both u− and v are non-negative, so´
u−v ≥ 0. The second is due to the fact that u+u− ≡ 0, since where

one between u± is nonzero the other is zero.
(2a) The formula is

F(f ′)(ξ) = iξF(f)(ξ) for all ξ ∈ R,

both sides are well-defined continuous functions since both f and f ′ are in
L1(R) (being compactly supported), and we saw in class that

F(L1(R)) ⊂ C(R).

In order to prove this we notice that f(x)e−iξx is in C1
c (R) so the integral

of its derivative is zero, hence we find

0 =

ˆ
R

d

dx

(
f(x)e−iξx

)
dx =

ˆ
R
f ′(x)e−iξx dx− iξ

ˆ
R
f(x)e−iξx dx

which proves the formula up to the dividing by the factor
√
2π.
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(2b) Since e−t is in L1 we can use the integral formula for F and we have to
compute

√
2πf̂(ξ) =

ˆ ∞

0

e−x−iξx dx+

ˆ 0

−∞
ex−iξx dx

=
[
− e−(1+iξ)x

1 + iξ

]∞
x=0

+
[e(1−iξ)x

1− iξ

]0
x=−∞

=
1

1 + iξ
+

1

1− iξ
=

2

1 + ξ2

(2c) g is a of class C1 in [−π, π] and is attains the same value at the extrema of
the interval x = ±π (because it is even). Hence we saw in class that these
two conditions guarantee uniform convergence of the Fourier partial sums
to the original function.

The key point was that we could integrate by parts (thanks to the pe-
riodic condition no boundary term) and find {kck(g)} ∈ ℓ2, which entails
{ck(g)} ∈ ℓ1.

(3a) We write

w(t, x) =
∑
k∈Z

wk(t)e
−ikx,

deriving formally, we find

∂tw =
∑
k∈Z

w′
k(t)e

−ikx,
1

1 + t2
w =

∑
k∈Z

1

1 + t2
wk(t)e

−ikx

and ∂xxw =
∑
k∈Z

−k2wk(t)e
−ikx.

Moreover, we formally have

f(x) = w(0, x) =
∑
k∈Z

wk(0)e
−ikx,

so we set w(0) = ck(f) for each k.
We get that for any k ∈ Z, wk must satisfy the Cauchy problem{

w′
k =

(
1

1+t2 − k2
)
wk,

wk(0) = ck(f).

Integrating we find

wk(t) = ck(f)e
arctan t−k2t.

So the formal solution

w(t, x) =
∑
k∈Z

ck(f)e
arctan t−k2t+ikx.

(3b) We first check that the series defining w is totally convergent on compact
subsets of (0,∞)× R. To do so, it suffices to show that for each δ > 0 we
have ∑

k∈Z
sup

(δ,1/δ)×R
|wk(t)e

−ikx| < ∞.

This is readily checked since

sup
(δ,1/δ)×R

|wk(t)e
−ikx| = |ck(f)| sup

t∈(δ,1/δ)

|earctan te−k2t|

≤ |ck(f)| sup
t∈R

earctan t sup
t∈(δ,1/δ)

e−k2t ≤ |ck(f)|eπ/2e−k2δ.
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To check that this is summable we have to use the assumption f ∈ L2

which by Parseval implies∑
k∈Z

|ck(f)|2 =

ˆ π

−π

|f |2 < ∞,

and so by Cauchy Schwarz and the previous bound∑
k∈Z

sup
(δ,1/δ)×R

|wk(t)e
−ikx| ≤

∑
k∈Z

|ck(f)|eπ/2e−k2δ

≤
(∑

k∈Z
|ck(f)|2

)1/2(∑
k∈Z

eπ−2k2δ
)1/2

< ∞.

This implies w ∈ C((0,∞)× R).
In order to show that w is in fact C2 (actually, it is C∞) it suffices to

show that for each δ > 0 and p, q nonnegative integers with p + q ≤ 2 it
holds ∑

k∈Z
sup

(δ,1/δ)×R
|∂p

t ∂
q
x(wk(t)e

−ikx)| < ∞.

We compute all of them and show that they are bounded by a common
converging series. Set g(t) := earctan t, and notice that since it is smooth on
the whole R we have

Mδ := max
[δ,1/δ]

|g|+ |g′|+ |g′′| < ∞.

Then for all (t, x) ∈ (δ, 1/δ)× R we have

|g(t)e−k2t−ikx| ≤ e−k2δMδ

|∂t(g(t)e−k2t−ikx)| ≤
∣∣∣(g′(t)− k2g(t))e−k2t

∣∣∣ ≤ Mδ(1 + k2)e−k2δ

|∂tt(g(t)e−k2t−ikx)| ≤
∣∣∣(g′′(t)− 2g′(t)k2 + k4g(t))e−k2t

∣∣∣ ≤ Mδ(1 + 2k4)e−k2δ

|∂x(g(t)e−k2t−ikx)| ≤ Mδ|k|e−k2δ

|∂xx(g(t)e−k2t−ikx)| ≤ Mδk
2e−k2δ.

So taking the worst case we have anyway∑
k∈Z

sup
(δ,1/δ)×R

|∂p
t ∂

q
x(wk(t)e

−ikx)| ≤ 4Mδ

∑
k∈Z

|ck(f)|(1 + k4)e−k2δ,

which is convergent by Cauchy-Schwarz as above.
This proves that w ∈ C2((0,∞) × R) and that the derivatives can be

computed differntiating the series termwise. So the PDE is satisfied

∂tw(t, x) = ∂t

(∑
k∈Z

wk(t)e
ikx

)
=
∑
k∈Z

w′
k(t)e

ikx =
∑
k∈Z

(
1

1 + t2
− k2

)
wk(t)e

ikx

=
∑
k∈Z

1

1 + t2
wk(t)e

ikx − wk(t)∂xxe
ikx =

1

1 + t2

∑
k∈Z

wk(t)e
ikx − ∂xx

(∑
k∈Z

wk(t)e
ikx

)

=
1

1 + t2
w(t, x)− ∂xxw(t, x).

Of course, so far, we did not prove anything concerning what happens for
t ↓ 0.
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(3c) Again by applying Parseval’s identity, we find

lim
t↓0

∥w(t, ·)− f∥2L2(−π,π) = lim
t↓0

∑
k∈Z

∣∣∣ck(f)earctan t−k2t − ck(f)
∣∣∣2

= lim
t↓0

∑
k∈Z

|ck(f)|2
∣∣∣earctan t−k2t − 1

∣∣∣2
≤ lim

t↓0

∑
k∈Z

|ck(f)|2
∣∣∣e−k2t − 1

∣∣∣2︸ ︷︷ ︸
→0 for fixed k

= 0.

The last passage holds by the Dominated Convergence Theorem. Indeed,
the series on the right-hands side is the integral in L1(Z,P(Z),#) of ϕt(k) :=

|ck(f)|2
∣∣∣e−k2t − 1

∣∣∣2, which is dominated uniformly in t, since

|ϕk(t)| ≤ 4|ck(f)|2 ∈ L1(Z,P(Z),#)

and converges pointwise (i.e., for each k) to 0 as t → 0.


