Hints in the next page!

11.1. Some Fourier transforms. Compute the following one dimensional Fourier transforms for

$$
e^{i x-|x|^{2}}, \quad e^{-a|x|}, \quad e^{-a x} \sin (3 x) \mathbf{1}_{(0, \infty)}
$$

where $a \in \mathbb{C}, \operatorname{Re}(a)>0$. Given $u, v \in \mathcal{S}(\mathbb{R})$ compute the Fourier transforms of

$$
(x, y) \mapsto u(2 x) v(y / 2)
$$

in terms of \hat{u}, \hat{v}.
11.2. Dominated convergence review. Motivate each of the following statements using the dominated convergence theorem in a suitable measure space, but pay attention: one of them is in fact false!

1. Given $f \in L^{2}\left(\mathbb{R}^{d}\right)$ it holds

$$
\int_{\{|x|>R\}} f(x)^{2} \sin \left(x_{1}\right) d x \rightarrow 0 \text { as } R \rightarrow \infty
$$

2. Given $f \in L^{1}\left(\mathbb{R}^{d}\right)$ it holds

$$
\int_{\{|x|>R\}} \frac{\sqrt{1+f(x)^{2}}-1}{1+\hat{f}(x)} d x \rightarrow 0 \text { as } R \rightarrow \infty
$$

3. Let $\psi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ such that $\psi(x) \equiv 1$ in a neighbourhood of $x=0$. Then for each $f \in L^{1}\left(\mathbb{R}^{d}\right)$ it holds

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{d}} f(x) \psi(\epsilon x) d x=\int_{\mathbb{R}^{d}} f(x) d x \quad \text { and } \quad \lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{d}} f(x) \partial_{x_{j}} \psi(\epsilon x) d x=0 .
$$

4. Let $\left\{c_{k}\right\} \in \ell^{1}(\mathbb{N})$. The map $f(t):=\sum_{k \in \mathbb{N}} c_{k} e^{i \sin (k) t}$ is of class $C^{\infty}(\mathbb{R})$ and its derivatives are given by $f^{(m)}(t)=\sum_{k \in \mathbb{N}}(i \sin (k))^{m} c_{k} e^{i \sin (k) t}$.
5. Let $\left\{c_{k}\right\} \in \ell^{2}(\mathbb{N})$. The map $f(t):=\sum_{k \in \mathbb{N}} c_{k} e^{i k t^{2}}$ is of class $C^{1}(\mathbb{R})$ and its derivative is given by $f^{\prime}(t)=2 i t \sum_{k \in \mathbb{N}} k c_{k} e^{i k t^{2}}$.
11.3. Harmonic functions on the disk. In this problem we show the existence of the so-called harmonic extension in the interior of the disk of a sufficiently regular function f defined on the disk boundary.

Consider the second order differential operators in two variables $\left(x_{1}, x_{2}\right)$:

$$
\Delta:=\partial_{11}+\partial_{22} \quad \text { and } \quad L:=\partial_{11}+\frac{1}{x_{1}} \partial_{1}+\frac{1}{x_{1}^{2}} \partial_{22} .
$$

We say that a twice differentiable function $w\left(x_{1}, x_{2}\right)$ is harmonic $\Delta w=0$ in its domain.

1. Given $u: \bar{D} \rightarrow \mathbb{R}$, where $D:=\left\{(x, y): x^{2}+y^{2}<1\right\}$, consider the function

$$
\begin{equation*}
v(r, \theta):=u(r \cos \theta, r \sin \theta), \quad r \in[0,1], \theta \in \mathbb{R} .^{1} \tag{1}
\end{equation*}
$$

Using the chain rule, check that $(\Delta u)(r \cos \theta, r \sin \theta)=L v(r, \theta)$ for all $r \in(0,1)$ and $\theta \in \mathbb{R}$.
2. Given any regular function $F: \partial D \rightarrow \mathbb{R}$ consider its 2π periodic version $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(\cos \theta, \sin \theta)=: f(\theta), \quad \theta \in \mathbb{R}
$$

Show that we can find a solution of

$$
\begin{cases}\Delta u=0 & \text { in } D \backslash\{0\} \\ u=F & \text { on } \partial D\end{cases}
$$

solving instead

$$
\begin{cases}\partial_{\theta \theta} v+r \partial_{r} v+r^{2} \partial_{r r} v=0 & \text { in }(0,1] \times \mathbb{R}, \tag{2}\\ v(r, \theta+2 \pi)=v(r, \theta) & \text { in }(0,1] \times \mathbb{R}, \\ v(1, \theta)=f(\theta) & \text { for all } \theta \in \mathbb{R},\end{cases}
$$

and then defining u trough (1).
3. Formally solve the system (2) by the Ansatz $v:=\sum_{k \in \mathbb{Z}} u_{k}(r) e^{i k \theta}$. Explain why the $\left\{u_{k}(r)\right\}$ are not uniquely determined by the $\left\{c_{k}(f)\right\}$. Explain why they are unique if we further require that

$$
\begin{equation*}
\lim _{r \downarrow 0} u_{k}(r)=0 \text { for all } k \in \mathbb{Z} . \tag{3}
\end{equation*}
$$

4. Let $v(r, \theta)$ be the Ansatz constructed in the previous point using the extra assumption (3). Show that v is of class C^{∞} in the (r, θ) variables in $[0,1) \times \mathbb{R}$, as soon as $f \in L^{2}$.
5. (\star) show that, as soon as $f \in L^{2}(-\pi, \pi)$, the v you constructed with the extra assumption (3), corresponds in fact to a u that is $C^{\infty}(D)$ in the whole open disk including the origin!). Furthermore this u meets the boundary condition in the sense that

$$
\lim _{r \uparrow 1}\|u(r, \cdot)-f\|_{L^{2}(-\pi, \pi)}=0 .
$$

[^0]
Hints:

11.1. The first are elementary integrals. Use the dilation properties for the last.
11.2.2. Recall what you known about the Fourier transform of an L^{1} function.
11.3.1. Use the chain rule.
11.3.2. This is a simple verification.
11.3.3. You will find a second-order ODE, but only one initial condition at $r=1$. Imposing that u vanishes at $r=0$ acts as second condition.
11.3.4. You can show that when $r<1$ the Fourier coefficients decay faster than any power.
11.3.5. You need to express $\partial_{x} u$ and $\partial_{y} u$ as a linear combination of $\partial_{\theta}, \partial_{r}$, in polar coordinates. Then check continuity at $r=0$ in polar coordinates.

[^0]: ${ }^{1}$ This is u in polar coordinates.

