Hints in the next page!

12.1. Closed answer questions.

1. If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\hat{f} \in L^{2}\left(\mathbb{R}^{d}\right)$ is it necessarily true that $f \in L^{2}\left(\mathbb{R}^{d}\right)$?
2. Is the function $\frac{1}{1+i x^{4}}$ in the Schwartz class $\mathcal{S}(\mathbb{R})$?
3. Show that if $\lambda \in \mathbb{C}$ is an eigenvalue ${ }^{1}$ of $\mathcal{F}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, then necessarily $\lambda \in\{ \pm 1, \pm i\}$.
4. Let A be an invertible $d \times d$ matrix with real entries. Compute the Fourier transform of $x \mapsto f(A x)$ in terms of \hat{f} and A.
5. Using the computations of the previous problem sets, compute the Fourier transform of $1 /\left(1+4 x^{2}\right)$ (which is in L^{1}) and of $1 /(1+i x)$ (which is in $\left.L^{2}\right)$.
12.2. A differential equation. Given $\phi \in \mathcal{S}(\mathbb{R})$ we consider the differential equation

$$
u^{\prime}(x)+u(x)=\phi(x) \text { for all } x \in \mathbb{R} .
$$

1. Show that there is a unique solution within the class of Schwartz functions.
2. Taking the Fourier transform of both sides of the equation, and then the anti-Fourier transform show that

$$
u(x):=\int_{\mathbb{R}} a(\xi) \hat{\phi}(\xi) e^{i \xi x} d \xi,
$$

is indeed a solution of the above problem, for an appropriate function $a(\xi)$ to be determined.
3. (\star) Check that indeed this u belongs to $\mathcal{S}(\mathbb{R})$.
4. Solve again the above ODE, this time with classical methods (multiply by e^{t} etc..).
5. Check that the two results you found are indeed the same.
12.3. Decay of the Fourier transform and derivatives. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$ such that it's Fourier transform decays at infinity as a negative power, i.e., for some $\alpha \geq 0$ and large $M \geq 1$ it holds

$$
|\hat{f}(\xi)| \leq M|\xi|^{-\alpha} \text { for all }|\xi| \geq 1
$$

The goal of this problem is to show that in fact (up to a modification on a zero measure set) $f \in C^{k}\left(\mathbb{R}^{d}\right)$ for all integers $k<\alpha / 2 d$.

1. Consider for each $R>1$ the functions

$$
f_{R}(x):=(2 \pi)^{-d / 2} \int_{B_{R}} \hat{f}(\xi) e^{i \xi x} d \xi
$$

compute \hat{f}_{R} and show that $f_{R} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{d}\right)$.

[^0]2. Show that each $f_{R} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ but in general $f_{R} \notin \mathcal{S}\left(\mathbb{R}^{d}\right)$.
3. Using the decay assumption on \hat{f}, show that $\left\{f_{R}\right\}$ is a Cauchy sequence in $L^{\infty}\left(\mathbb{R}^{d}\right)$, provided $\alpha>d$. Conclude that, up to re-definition on a zero measure set, in this case $f \in C(\mathbb{R})$.
4. Applying the same argument to $\partial_{x_{j}} f_{R}$, show inductively that $f \in C^{k}$ whenever $\alpha>d+k$.

Hints:

12.1.3 Recall that $\mathcal{F} \circ \delta_{-1}=\delta_{-1} \circ \mathcal{F}=\mathcal{F}^{-1}$, where $\left(\delta_{\alpha} f\right)(x)=f(\alpha x)$. Furthermore, if a linear endomorphism ϕ satisfies $p(\phi)=0$ then all its eigenvalues μ must satisfy $p(\mu)=0$.
12.1.5 Use the inversion theorem.
12.2.1 The equation is linear, so you have to prove that any Schwartz function w satisfying $w^{\prime}+w=0$ must be identically zero.
12.2.3 Recall that $f \in \mathcal{S}$ if and only if $\hat{f} \in \mathcal{S}$.
12.3.2 Recall that $f \in \mathcal{S}$ if and only if $\hat{f} \in \mathcal{S}$, and Schwarz function must be smooth.

[^0]: ${ }^{1}$ That is to say: there exists some nonzero function $v \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $\mathcal{F} v=\lambda v$.

