Hints in the next page!

12.1. Closed answer questions.

- 1. If $f \in L^1(\mathbb{R}^d)$ and $\hat{f} \in L^2(\mathbb{R}^d)$ is it necessarily true that $f \in L^2(\mathbb{R}^d)$?
- 2. Is the function $\frac{1}{1+ix^4}$ in the Schwartz class $\mathcal{S}(\mathbb{R})$?
- 3. Show that if $\lambda \in \mathbb{C}$ is an eigenvalue¹ of $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, then necessarily $\lambda \in \{\pm 1, \pm i\}.$
- 4. Let A be an invertible $d \times d$ matrix with real entries. Compute the Fourier transform of $x \mapsto f(Ax)$ in terms of \hat{f} and A.
- 5. Using the computations of the previous problem sets, compute the Fourier transform of $1/(1 + 4x^2)$ (which is in L^1) and of 1/(1 + ix) (which is in L^2).
- 12.2. A differential equation. Given $\phi \in \mathcal{S}(\mathbb{R})$ we consider the differential equation

$$u'(x) + u(x) = \phi(x)$$
 for all $x \in \mathbb{R}$.

- 1. Show that there is a unique solution within the class of Schwartz functions.
- 2. Taking the Fourier transform of both sides of the equation, and then the anti-Fourier transform show that

$$u(x) := \int_{\mathbb{R}} a(\xi) \hat{\phi}(\xi) e^{i\xi x} d\xi,$$

is indeed a solution of the above problem, for an appropriate function $a(\xi)$ to be determined.

- 3. (*) Check that indeed this u belongs to $\mathcal{S}(\mathbb{R})$.
- 4. Solve again the above ODE, this time with classical methods (multiply by e^t etc..).
- 5. Check that the two results you found are indeed the same.

12.3. Decay of the Fourier transform and derivatives. Let $f \in L^2(\mathbb{R}^d)$ such that it's Fourier transform decays at infinity as a negative power, i.e., for some $\alpha \ge 0$ and large $M \ge 1$ it holds

$$|\hat{f}(\xi)| \le M |\xi|^{-\alpha}$$
 for all $|\xi| \ge 1$.

The goal of this problem is to show that in fact (up to a modification on a zero measure set) $f \in C^k(\mathbb{R}^d)$ for all integers $k < \alpha/2d$.

1. Consider for each R > 1 the functions

$$f_R(x) := (2\pi)^{-d/2} \int_{B_R} \hat{f}(\xi) e^{i\xi x} d\xi,$$

compute \hat{f}_R and show that $f_R \to f$ in $L^2(\mathbb{R}^d)$.

¹That is to say: there exists some nonzero function $v \in L^2(\mathbb{R}^d)$ such that $\mathcal{F}v = \lambda v$.

- 2. Show that each $f_R \in C^{\infty}(\mathbb{R}^d)$ but in general $f_R \notin \mathcal{S}(\mathbb{R}^d)$.
- 3. Using the decay assumption on \hat{f} , show that $\{f_R\}$ is a Cauchy sequence in $L^{\infty}(\mathbb{R}^d)$, provided $\alpha > d$. Conclude that, up to re-definition on a zero measure set, in this case $f \in C(\mathbb{R})$.
- 4. Applying the same argument to $\partial_{x_j} f_R$, show inductively that $f \in C^k$ whenever $\alpha > d + k$.

Hints:

- 12.1.3 Recall that $\mathcal{F} \circ \delta_{-1} = \delta_{-1} \circ \mathcal{F} = \mathcal{F}^{-1}$, where $(\delta_{\alpha} f)(x) = f(\alpha x)$. Furthermore, if a linear endomorphism ϕ satisfies $p(\phi) = 0$ then all its eigenvalues μ must satisfy $p(\mu) = 0$.
- 12.1.5 Use the inversion theorem.
- 12.2.1 The equation is linear, so you have to prove that any Schwartz function w satisfying w' + w = 0 must be identically zero.
- 12.2.3 Recall that $f \in \mathcal{S}$ if and only if $\hat{f} \in \mathcal{S}$.
- 12.3.2 Recall that $f \in \mathcal{S}$ if and only if $\hat{f} \in \mathcal{S}$, and Schwarz function must be smooth.