Hints in the next page!

13.1. Closed answer questions.

- 1. If $u \in L^1(\mathbb{R})$, is it necessarily true that $f(x_1, x_2) = u(x_1 + x_2)u(x_1 x_2) \in L^1(\mathbb{R}^2)$?
- 2. Let (X, d) be a metric space and let $q \in X$. Assume you have a sequence $\{x_k\} \subset X$ such that any subsequence $\{x_{k_j}\}$ must possess a sub-subsequence $\{x_{j_{k_\ell}}\}$ such that $x_{j_{k_\ell}} \to q$ as $\ell \to \infty$. Is it true that $x_k \to q$ as $k \to \infty$?
- 3. Is it true that if A is a linear endomorphism of \mathbb{R}^d and $f \in L^1(\mathbb{R}^d)$, then $f(Ax) \in L^1(B_1)$?
- 4. Let $u \in \mathcal{S}(\mathbb{R})$, show that $\|\hat{u}\|_{L^4(\mathbb{R})}^4 = 2\pi \|u * u\|_{L^2(\mathbb{R})}^2$.
- 5. Consider the set

$$X := \{ u \in L^2(\mathbb{R}^d) : \hat{u}(\xi) \equiv 0 \text{ for almost every } |\xi| > 2 \},\$$

show that X is closed and not open in $L^2(\mathbb{R}^d)$.

6. Consider the set

$$X := \{ u \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) : \int_{\mathbb{R}} u = 0 \},$$

show that X is dense in $L^2(\mathbb{R})$. What happens if we consider the exact same question in $[-\pi, \pi]$ instead of \mathbb{R} ?

13.2. Differential operators with constant coefficients. Let $u \in \mathcal{S}(\mathbb{R}^d)$ be a scalar function and $V \in \mathcal{S}(\mathbb{R}^d, \mathbb{R}^d)$ be vector field¹. Prove the following formulas

$$\mathcal{F}(\operatorname{div} V)(\xi) = i\xi \cdot \hat{V}(\xi), \quad \mathcal{F}(\operatorname{rot} V)(\xi) = i\xi \times \hat{V}(\xi) \text{ (here assume } d = 3),$$
$$\mathcal{F}(\Delta u)(\xi) = -|\xi|^2 \hat{u}(\xi) \quad \mathcal{F}(\nabla u)(\xi) = i\xi \hat{u}(\xi), \quad \mathcal{F}(\nabla V) = i\hat{V}(\xi) \otimes \xi,$$

here ∇V is the $d \times d$ matrix $\{\partial v_i / \partial x_j\}_{i,j}$ and for two (column) vectors a, b we set $a \otimes b = ab^T = \{a_i b_j\}_{i,j}$. In \mathbb{R}^3 we are also using the classical cross product.

Give now quick proofs of the following claims

- 1. if $V \in \mathcal{S}(\mathbb{R}^3, \mathbb{R}^3)$ such that |rot V| = div V = 0, then $V \equiv 0$.
- 2. If $u \in \mathcal{S}(\mathbb{R}^d)$ is harmonic $(\Delta u = 0)$, then it is identically zero.
- 3. If $u \in \mathcal{S}(\mathbb{R}^d)$ then

$$\int_{\mathbb{R}^d} \sum_{j,k} |\partial_{jk} u(x)|^2 \, dx = \int_{\mathbb{R}^d} (\Delta u(x))^2 \, dx.$$

¹The Fourier of a vector field is taken component-wise, i.e., $\hat{V}(\xi) = (\hat{v}_1(\xi), \dots, \hat{v}_d(\xi)).$

13.3. Poisson Kernel in the half-space. We consider the problem of extending a function $f \in \mathcal{S}(\mathbb{R}^d)$ to an harmonic function $u: (0, \infty) \times \mathbb{R}^d \to \mathbb{R}$ such that u(0+, x) = f(x) and $u(+\infty, x) = 0$, that is

$$\begin{cases} \Delta u = 0 & \text{in } (0, \infty) \times \mathbb{R}^d, \\ u(0+, x) = f(x) & \text{for all } x \in \mathbb{R}^d, \text{ where } f \in \mathcal{S}(\mathbb{R}^d) \text{ is given }, \\ u(+\infty, x) = 0 & \text{for all } x \in \mathbb{R}^d, \end{cases}$$

1. Find the solution formally, taking the Fourier transform of u with respect to the space variable x and solving the resulting ODE. Express your solution as

$$u(t,x) := \int_{\mathbb{R}^d} K(t,\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi, \quad \text{ for all } t > 0, x \in \mathbb{R}^d.$$

for a function $K(\cdot, \cdot)$ to be specified.

2. Show that the function u defined in the previous point attains the boundary value in the following sense

$$\lim_{t \downarrow 0} \|u(t, \cdot) - f\|_{L^{\infty}(\mathbb{R}^d)} = \lim_{t \uparrow \infty} \|u(t, \cdot)\|_{L^{\infty}(\mathbb{R}^d)} = 0.$$

Show that you don't need $f \in \mathcal{S}(\mathbb{R}^d)$, but only $\hat{f} \in L^1(\mathbb{R})$.

3. Show that $u \in C^{\infty}((0,\infty) \times \mathbb{R}^d)$, that for all $m \in \mathbb{N}, \alpha \in \mathbb{N}^d$

$$\partial_t^m \partial_x^\alpha u(t,x) = \int_{\mathbb{R}^d} \partial_t^m K(t,\xi) (i\xi_1)^{\alpha_1} \dots (i\xi_n)^{\alpha_n} e^{ix\cdot\xi} \hat{f}(\xi) \, d\xi,$$

and finally that $\Delta u = 0$. Also here only $\hat{f} \in L^1$ is needed.

4. In the case d = 2 show that, more explicitly, it holds

$$u(t,x) = (P_t * f)(x)$$
, where $P_t(x) := \frac{1}{\pi} \frac{t}{x^2 + t^2}$, for all $t > 0, x \in \mathbb{R}$.

Show that for all $p \in [1, \infty]$ and t > 0 it holds $||u(t, \cdot)||_{L^p(\mathbb{R})} \leq ||f||_{L^p(\mathbb{R})}$.

Hints

- 13.1.1 Try to change variable and use Fubini...
- 13.1.2 Argue by contradiction to extract an impossible subsequence...
- 13.1.3 In general $f \circ A$ is measurable but depends on the particular representative we chose for $f \ldots$
- 13.1.4 Use Plancherel and the fact that the Fourier transform sends product into convolutions...
- 13.1.5 Use the fact that the Fourier transform in L^2 is an isometry, hence an homeomorphism...
- 13.1.6 Show that $\mathcal{F}(X)$ is dense in $L^2(\mathbb{R}_{\xi})$... In the case of the interval use the Fourier series and Parseval's identity...
- 13.2.1 the two conditions tells that $\xi \times \hat{V}(\xi) = 0$ and $\xi \cdot \hat{V}(\xi) = 0$... then we recall the geometric meaning of the cross and the dot product...
- 13.2.3 Use Plancherel's formula and the fact that the Fourier transform sends derivatives in multiplications by coordinate functions...
- 13.3.1 $K(t,\xi) = e^{-|\xi|t}...$
- 13.3.2 Use the explicit form of K and the dominated convergence theorem.
- 13.3.3 Use the explicit form of K and the differentiation theorem under the integral sign.
- 13.3.4 In this case we can explicitly compute the inverse Fourier transform of $e^{-|\xi|t}$ for fixed t > 0... For the second part recall Young's inequality and the fact that $\|P_t\|_{L^1(\mathbb{R})} = \int_{\mathbb{R}} P_t = \hat{P}_t(0) = 1$...

13. Solutions

Solution of 13.1:

Solution of 13.2:

Solution of 13.3: