2.1. Modes of convergence of measurable functions.

- 1. Is it true that $\lim_{\epsilon \downarrow 0} \sum_{j \ge 1} \frac{e^{\sin(\epsilon j)} 1}{j^2 \arctan(\epsilon j)} = \sum_{j \ge 1} j^{-2}$?
- 2. Let f_k be a sequence of measurable functions such that $f_k \to f$ almost everywhere and $\sup_k \|f_k\|_{L^2(0,1)} \leq M < \infty$. Then $f_k \to f$ in $L^2(0,1)$? And in $L^1(0,1)$?
- 3. You know that $f_k \to f$ in $L^2(0,1)$ as $k \to \infty$. Is it true that for almost every $x \in (0,1)$ we have $f_k(x) \to f(x)$ as $k \to \infty$?

2.2. Scalar products and Hilbert spaces. Prove or disprove whether the following pairs (vector space, bilinear form) are Hilbert spaces. Additionally, write down what the squared norm of a vector is in each case.

- 1. $V := \{n \times n \text{ matrices with complex entries}\}$ and $\langle X, Y \rangle := \text{Tr}(XY^{\dagger})$.
- 2. $V := L^2(\mathbb{R}; \mathbb{C})$ and $\langle u, v \rangle := \int_{\mathbb{R}} u(t) \bar{v}(t) \frac{dt}{1+t^2}$
- 3. $V := \{\text{real polynomials of degree at most } N\}$ and $\langle p, q \rangle := p(\frac{d}{dx})|_{x=0}q$
- 4. $V := L^1(0, 1)$ and $\langle u, v \rangle := \int_0^1 u(x)v(x) \, dx$.
- 5. $V := H_1 \times H_2$, where $(H_1, \langle \cdot, \cdot \rangle_1), (H_2, \langle \cdot, \cdot \rangle_2)$ are two Hilbert spaces, and $\langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_1 + \langle \cdot, \cdot \rangle_2$.
- 6. $V := \mathbb{Q}^d$ and $\langle x, y \rangle := \sum_{k=1}^d x_k y_k$.

2.3. Legendre Polynomials I. Consider the Hilbert space $H := L^2((-1, 1), dx)$. Apply the Gram-Schmidt algorithm to the ordered set $\{1, x, x^2\} \subset H$, and find three orthonormal polynomials $e_0(x), e_1(x), e_2(x)$.

2.4. Legendre Polynomials II. Consider in the Hilbert space $H := L^2((-1, 1), dx)$ the polynomials

$$P_0 := 1, \quad P_k(x) := D^k((x^2 - 1)^k) \text{ for } k \ge 1,$$

where D := d/dx. Our first goal is to prove that $\{P_j\}_{j\geq 0}$ is an orthonormal system. You can follow this outline

- 1. Show that each P_k has degree k and compute explicitly the polynomial $D^k P_k(x)$.
- 2. Show that for $0 \le k' < k$ the function $D^{k'}((x^2 1)^k)$ vanishes at ± 1 (Hint: use the Leibniz formula $D^k(f \cdot g) = \sum_{j=0}^k {k \choose j} D^j f \cdot D^{k-j} g$);
- 3. Use the previous point and multiple integration by parts to show that if $0 \le k < k'$ then

$$\int_{-1}^{1} P_k(x) P_{k'}(x) \, dx = 0.$$

¹If p(X) is a polynomial, then $p(\frac{d}{dx})|_{x=0}$ is the differential operator obtained replacing X by $\frac{d}{dx}$ and then evaluating at x = 0. Example: if $p(X) = X^2 + 3$ then $p(\frac{d}{dx})|_{x=0}q = q''(0) + 3q(0)$.

In order to have a orthonormal basis we need to compute $||P_k||_{L^2(-1,1)}$. You can follow this outline

1. Given for granted² that $B(k+1, k+1) := \int_0^1 s^k (1-s)^k ds = \frac{(k!)^2}{(2k+1)!}$, show that

$$\int_{-1}^{1} (x^2 - 1)^k \, dx = (-1)^k \frac{2^{2k+1} (k!)^2}{(2k+1)!}$$

2. Using multiple times integration by parts and the previous points show that

$$\|P_k\|_{L^2(-1,1)}^2 = \int_{-1}^1 P_k(x)^2 \, dx = (-1)^k \int_{-1}^1 (x^2 - 1)^k D^k P_k(x) \, dx = \frac{2^{2k+1} (k!)^2}{2k+1}$$

3. Prove that $B(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)!}$ for all $n,m \ge 1$. You might want to prove it first for B(0,m) and then find a formula (integrating by parts) that relates B(n,m) with B(n-1,m+1) and proceed inductively.

Finally, (double) check that indeed

$$e_0(x) = \frac{P_0(x)}{\|P_0\|_{L^2(-1,1)}}, \quad e_1(x) = \frac{P_1(x)}{\|P_1\|_{L^2(-1,1)}} \text{ and } e_2(x) = \frac{P_2(x)}{\|P_2\|_{L^2(-1,1)}},$$

where e_0, e_1, e_2 are the polynomials of exercise 2.3. Is that a coincidence that they are the same?

²This is a value of the so-called Euler's Beta function $B(x,y) := \int_{-1}^{1} t^{x-1} (1-t)^{y-1} dt = B(y,x).$