2.1. Modes of convergence of measurable functions.

1. Is it true that $\lim _{\epsilon \downarrow 0} \sum_{j \geq 1} \frac{e^{\sin (\epsilon j)}-1}{j^{2} \arctan (\epsilon j)}=\sum_{j \geq 1} j^{-2}$?
2. Let f_{k} be a sequence of measurable functions such that $f_{k} \rightarrow f$ almost everywhere and $\sup _{k}\left\|f_{k}\right\|_{L^{2}(0,1)} \leq M<\infty$. Then $f_{k} \rightarrow f$ in $L^{2}(0,1)$? And in $L^{1}(0,1)$?
3. You know that $f_{k} \rightarrow f$ in $L^{2}(0,1)$ as $k \rightarrow \infty$. Is it true that for almost every $x \in(0,1)$ we have $f_{k}(x) \rightarrow f(x)$ as $k \rightarrow \infty$?
2.2. Scalar products and Hilbert spaces. Prove or disprove whether the following pairs (vector space, bilinear form) are Hilbert spaces. Additionally, write down what the squared norm of a vector is in each case.
4. $V:=\{n \times n$ matrices with complex entries $\}$ and $\langle X, Y\rangle:=\operatorname{Tr}\left(X Y^{\dagger}\right)$.
5. $V:=L^{2}(\mathbb{R} ; \mathbb{C})$ and $\langle u, v\rangle:=\int_{\mathbb{R}} u(t) \bar{v}(t) \frac{d t}{1+t^{2}}$
6. $V:=\{$ real polynomials of degree at most $N\}$ and ${ }^{1}\langle p, q\rangle:=\left.p\left(\frac{d}{d x}\right)\right|_{x=0} q$
7. $V:=L^{1}(0,1)$ and $\langle u, v\rangle:=\int_{0}^{1} u(x) v(x) d x$.
8. $V:=H_{1} \times H_{2}$, where $\left(H_{1},\langle\cdot, \cdot\rangle_{1}\right),\left(H_{2},\langle\cdot, \cdot\rangle_{2}\right)$ are two Hilbert spaces, and $\langle\cdot, \cdot\rangle:=$ $\langle\cdot, \cdot\rangle_{1}+\langle\cdot, \cdot\rangle_{2}$.
9. $V:=\mathbb{Q}^{d}$ and $\langle x, y\rangle:=\sum_{k=1}^{d} x_{k} y_{k}$.
2.3. Legendre Polynomials I. Consider the Hilbert space $H:=L^{2}((-1,1), d x)$. Apply the Gram-Schmidt algorithm to the ordered set $\left\{1, x, x^{2}\right\} \subset H$, and find three orthonormal polynomials $e_{0}(x), e_{1}(x), e_{2}(x)$.
2.4. Legendre Polynomials II. Consider in the Hilbert space $H:=L^{2}((-1,1), d x)$ the polynomials

$$
P_{0}:=1, \quad P_{k}(x):=D^{k}\left(\left(x^{2}-1\right)^{k}\right) \text { for } k \geq 1,
$$

where $D:=d / d x$. Our first goal is to prove that $\left\{P_{j}\right\}_{j \geq 0}$ is an orthonormal system. You can follow this outline

1. Show that each P_{k} has degree k and compute explicitly the polynomial $D^{k} P_{k}(x)$.
2. Show that for $0 \leq k^{\prime}<k$ the function $D^{k^{\prime}}\left(\left(x^{2}-1\right)^{k}\right)$ vanishes at ± 1 (Hint: use the Leibniz formula $\left.D^{k}(f \cdot g)=\sum_{j=0}^{k}\binom{k}{j} D^{j} f \cdot D^{k-j} g\right)$;
3. Use the previous point and multiple integration by parts to show that if $0 \leq k<k^{\prime}$ then

$$
\int_{-1}^{1} P_{k}(x) P_{k^{\prime}}(x) d x=0
$$

[^0]In order to have a orthonormal basis we need to compute $\left\|P_{k}\right\|_{L^{2}(-1,1)}$. You can follow this outline

1. Given for granted ${ }^{2}$ that $B(k+1, k+1):=\int_{0}^{1} s^{k}(1-s)^{k} d s=\frac{(k!)^{2}}{(2 k+1)!}$, show that

$$
\int_{-1}^{1}\left(x^{2}-1\right)^{k} d x=(-1)^{2} \frac{2^{2 k+1}(k!)^{2}}{(2 k+1)!}
$$

2. Using multiple times integration by parts and the previous points show that

$$
\left\|P_{k}\right\|_{L^{2}(-1,1)}^{2}=\int_{-1}^{1} P_{k}(x)^{2} d x=(-1)^{k} \int_{-1}^{1}\left(x^{2}-1\right)^{k} D^{k} P_{k}(x) d x=\frac{2^{2 k+1}(k!)^{2}}{2 k+1}
$$

3. Prove that $B(n, m)=\frac{(n-1)!(m-1)!}{(n+m-1)!}$ for all $n, m \geq 1$. You might want to prove it first for $B(0, m)$ and then find a formula (integrating by parts) that relates $B(n, m)$ with $B(n-1, m+1)$ and proceed inductively.

Finally, (double) check that indeed

$$
e_{0}(x)=\frac{P_{0}(x)}{\left\|P_{0}\right\|_{L^{2}(-1,1)}}, \quad e_{1}(x)=\frac{P_{1}(x)}{\left\|P_{1}\right\|_{L^{2}(-1,1)}} \text { and } e_{2}(x)=\frac{P_{2}(x)}{\left\|P_{2}\right\|_{L^{2}(-1,1)}},
$$

where e_{0}, e_{1}, e_{2} are the polynomials of exercise 2.3 . Is that a coincidence that they are the same?

[^1]
[^0]: ${ }^{1}$ If $p(X)$ is a polynomial, then $\left.p\left(\frac{d}{d x}\right)\right|_{x=0}$ is the differential operator obtained replacing X by $\frac{d}{d x}$ and then evaluating at $x=0$. Example: if $p(X)=X^{2}+3$ then $\left.p\left(\frac{d}{d x}\right)\right|_{x=0} q=q^{\prime \prime}(0)+3 q(0)$.

[^1]: ${ }^{2}$ This is a value of the so-called Euler's Beta function $B(x, y):=\int_{-1}^{1} t^{x-1}(1-t){ }^{y-1} d t=B(y, x)$.

